Ginsenoside-Enriched Extract from Black Ginseng Anti-Fatigue Effects by Improving Antioxidant Capacity and Mitochondrial Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Freeze-Dried Black Ginseng Ginsenoside Powder
2.2. Determination of Black Ginseng Ginsenoside Components by High-Performance Liquid Chromatography
2.3. Animal Experiment
2.4. Determination of Blood Biochemical Parameters
2.5. Anti-Fatigue Gene PCR Expression
2.6. Statistical Analysis
3. Results
3.1. HPLC Analysis of Black Ginseng Ginsenoside Content
3.2. Impact on Exercise Training in Mice
3.3. Serum Index Biological Parameters
3.4. Real-Time PCR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, W.; Cai, S.; Zhao, J.; Hu, S.; Zang, C.; Xu, J.; Hu, L. Beyond genome: Advanced omics progress of Panax ginseng. Plant Sci. 2024, 341, 112022. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Lyu, W.; Duan, C.; Ma, F.; Li, X.; Li, D. Preparation and bioactivity of the rare ginsenosides Rg3 and Rh2: An updated review. Fitoterapia 2023, 167, 105514. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, X.; Wang, W.; Zhang, L. Experimental study for the anti-fatigue effect of ginseng general ginsenosides P.E. in vivo. Wei Sheng Yan Jiu 2009, 38, 184–187. [Google Scholar] [PubMed]
- Tang, W.; Zhang, Y.; Gao, J.; Ding, X.; Gao, S. The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration. Biol. Pharm. Bull. 2008, 31, 2024–2027. [Google Scholar] [CrossRef]
- Metwaly, A.M.; Zhu, L.; Huang, L.; Dou, D. Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects. Molecules 2019, 24, 1856. [Google Scholar] [CrossRef]
- Huang, L.; Li, H.J.; Wu, Y.C. Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: A comprehensive review. Food Chem. 2023, 407, 134714. [Google Scholar] [CrossRef]
- Wei, W.; Liu, X.; Tao, Y.; Wang, Y.; Gong, J.; Liu, S. Saponin composition comparison of black ginseng and white ginseng by liquid chromatography-mass spectrometry combined with multivariate statistical analysis. Nat. Prod. Res. 2023, 37, 3297–3301. [Google Scholar] [CrossRef]
- Wang, C.Z.; Zhang, C.F.; Zhang, Q.H.; Yuan, C.S. Phytochemistry of Red Ginseng, a Steam-Processed Panax ginseng. Am. J. Chin. Med. 2024, 52, 35–55. [Google Scholar] [CrossRef]
- Fan, W.; Fan, L.; Wang, Z.; Mei, Y.; Liu, L.; Li, L.; Yang, L.; Wang, Z. Rare ginsenosides: A unique perspective of ginseng research. J. Adv. Res. 2024, 01, 003. [Google Scholar] [CrossRef]
- Yoo, S.; Park, B.I.; Kim, D.H.; Lee, S.; Lee, S.H.; Shim, W.S.; Seo, Y.K.; Kang, K.; Lee, K.T.; Yim, S.V.; et al. Ginsenoside Absorption Rate and Extent Enhancement of Black Ginseng (CJ EnerG) over Red Ginseng in Healthy Adults. Pharmaceutics 2021, 13, 487. [Google Scholar] [CrossRef]
- Huo, R.; Wang, M.; Wei, X.; Qiu, Y. Research Progress on Anti-Inflammatory Mechanisms of Black Ginseng. Chem. Biodivers. 2023, 20, e202200846. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Park, S.; Long, N.P.; Min, J.E.; Kim, H.M.; Yang, E.; Lee, S.J.; Lim, J.; Kwon, S.W. Research Quality-Based Multivariate Modeling for Comparison of the Pharmacological Effects of Black and Red Ginseng. Nutrients 2020, 12, 2590. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Kim, K.J.; Chei, S.; Seo, Y.J.; Lee, K.; Lee, B.Y. Korean Red Ginseng and Korean black ginseng extracts, JP5 and BG1, prevent hepatic oxidative stress and inflammation induced by environmental heat stress. J. Ginseng Res. 2020, 44, 267–273. [Google Scholar] [CrossRef]
- Moore, R.D.; Romine, M.W.; O’Connor, P.J.; Tomporowski, P.D. The influence of exercise-induced fatigue on cognitive function. J. Sports Sci. 2012, 30, 841–850. [Google Scholar] [CrossRef]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, X.; Qi, X.; Song, R.; Zhao, C.; Ma, J.; Li, X.; Deng, Q.; He, Y.; Kong, L.; et al. Bao Yuan decoction alleviates fatigue by restraining inflammation and oxidative stress via the AMPK/CRY2/PER1 signaling pathway. J. Ethnopharmacol. 2024, 328, 118058. [Google Scholar] [CrossRef]
- Zhou, S.S.; Zhou, J.; Xu, J.D.; Shen, H.; Kong, M.; Yip, K.M.; Han, Q.B.; Zhao, Z.Z.; Xu, J.; Chen, H.B.; et al. Ginseng ameliorates exercise-induced fatigue potentially by regulating the gut microbiota. Food Funct. 2021, 12, 3954–3964. [Google Scholar] [CrossRef] [PubMed]
- Oliynyk, S.; Oh, S. Actoprotective effect of ginseng: Improving mental and physical performance. J. Ginseng Res. 2013, 37, 144–166. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhao, Y.C.; Chen, X.Y.; She, X.X.; Sadia, K.; Jiang, Y.; Xie, H.Y.; Jiang, B.N.; Zheng, Y.A.; Liu, W.C.; et al. Anti-fatigue effect and molecular mechanism of black ginseng polysaccharides in mice. Food Sci. 2020, 41, 173–179. [Google Scholar] [CrossRef]
- Nam, K.Y.; Kim, Y.S.; Shon, M.Y.; Park, J.D. Recent advances in studies on chemical constituents and biological activities of Korean black ginseng (Panax ginseng CA Meyer). Korean J. Pharmacogn. 2015, 46, 173–188. [Google Scholar]
- Stevens, B.R.; Kakuda, D.K.; Yu, K.; Waters, M.; Vo, C.B.; Raizada, M.K. Induced nitric oxide synthesis is dependent on induced alternatively spliced CAT-2 encoding L-arginine transport in brain astrocytes. J. Biol. Chem. 1996, 271, 24017–24022. [Google Scholar] [CrossRef] [PubMed]
- Kakuda, D.K.; Sweet, M.J.; Mac Leod, C.L.; Hume, D.A.; Markovich, D. CAT2-mediated L-arginine transport and nitric oxide production in activated macrophages. Biochem. J. 1999, 340 Pt 2, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Mosher, S.L.; Sparks, S.A.; Williams, E.L.; Bentley, D.J.; Mc Naughton, L.R. Ingestion of a Nitric Oxide Enhancing Supplement Improves Resistance Exercise Performance. J. Strength. Cond. Res. 2016, 30, 3520–3524. [Google Scholar] [CrossRef] [PubMed]
- Bryan, N.S.; Burleigh, M.C.; Easton, C. The oral microbiome, nitric oxide and exercise performance. Nitric Oxide 2022, 125–126, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Guillou, H.; Zadravec, D.; Martin, P.G.; Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 2010, 49, 186–199. [Google Scholar] [CrossRef]
- Cohen, P.; Friedman, J.M. Leptin and the control of metabolism: Role for stearoyl-CoA desaturase-1 (SCD-1). J. Nutr. 2004, 134, 2455S–2463S. [Google Scholar] [CrossRef]
- He, F.; Ru, X.; Wen, T. NRF2, a Transcription Factor for Stress Response and Beyond. Int. J. Mol. Sci. 2020, 21, 4777. [Google Scholar] [CrossRef]
- Ryoo, I.G.; Kwak, M.K. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol. Appl. Pharmacol. 2018, 359, 24–33. [Google Scholar] [CrossRef]
- Biswas, M.; Chan, J.Y. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharmacol. 2010, 244, 16–20. [Google Scholar] [CrossRef]
- Hu, S.; Feng, J.; Wang, M.; Wufuer, R.; Liu, K.; Zhang, Z.; Zhang, Y. Nrf1 is an indispensable redox-determining factor for mitochondrial homeostasis by integrating multi-hierarchical regulatory networks. Redox Biol. 2022, 57, 102470. [Google Scholar] [CrossRef]
- Zhang, M.; An, C.; Gao, Y.; Leak, R.K.; Chen, J.; Zhang, F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 2013, 100, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Kanki, T.; Ohgaki, K.; Gaspari, M.; Gustafsson, C.M.; Fukuoh, A.; Sasaki, N.; Hamasaki, N.; Kang, D. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol. Cell Biol. 2004, 24, 9823–9834. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Chu, C.T.; Kaufman, B.A. The mitochondrial transcription factor TFAM in neurodegeneration: Emerging evidence and mechanisms. FEBS Lett. 2018, 592, 793–811. [Google Scholar] [CrossRef]
- Busch, J.D. MitoRibo-Tag Mice—A Novel Tool to Study the Composition of the Mitochondrial Ribosome In Vivo. Doctoral Dissertation, Universität zu Köln, Köln, Germany, 2019. [Google Scholar]
- Lin, M.; Hu, S.; Zeng, Q.; Xiao, B.; He, Y. Screening anti-fatigue components of American ginseng saponin by analyzing spectrum-effect relationship coupled with UPLC-Q-TOF-MS. Asian Biomed. 2023, 17, 163–172. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, B.; Wang, E.; Wang, W.; Li, Z.; Jiao, L.; Li, H.; Wu, W. Panax ginseng improves physical recovery and energy utilization on chronic fatigue in rats through the PI3K/AKT/mTOR signalling pathway. Pharm. Biol. 2023, 61, 316–323. [Google Scholar] [CrossRef]
- Choi, J.Y.; Woo, T.S.; Yoon, S.Y.; Ike Campomayor Dela, P.; Choi, Y.J.; Ahn, H.S.; Lee, Y.S.; Yu, G.Y.; Cheong, J.H. Red ginseng supplementation more effectively alleviates psychological than physical fatigue. J. Ginseng Res. 2011, 35, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Beak, S.; Ahn, S.; Moon, B.S.; Kim, B.S.; Lee, S.J.; Oh, S.J.; Park, H.Y.; Kwon, S.H.; Shin, C.H.; et al. Effects of taurine and ginseng extracts on energy metabolism during exercise and their anti-fatigue properties in mice. Nutr. Res. Pract. 2022, 16, 33–45. [Google Scholar] [CrossRef]
- Jo, G.S.; Chai, H.Y.; Ji, H.J.; Kang, M.H.; Kang, S.J.; Ji, J.G.; Kim, D.J.; Lee, B.J. Enhancement of exercise capacity by black ginseng extract in rats. Lab. Anim. Res. 2010, 26, 279–286. [Google Scholar] [CrossRef]
- Avakian, E.V.; Sugimoto, R.B.; Taguchi, S.; Horvath, S.M. Effect of Panax ginseng extract on energy metabolism during exercise in rats. Planta Med. 1984, 50, 151–154. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Shen, X.; Liu, Y. The use of traditional Chinese medicines in relieving exercise-induced fatigue. Front. Pharmacol. 2022, 13, 969827. [Google Scholar] [CrossRef]
- Khajehlandi, M.; Janbozorgi, M. Effect of one session of resistance training with and without blood flow restriction on serum levels of creatine kinase and lactate dehydrogenase in female athletes. J. Clin. Basic Res. 2018, 2, 5–10. [Google Scholar] [CrossRef]
- Pereira, B.; Costa Rosa, L.F.; Safi, D.A.; Medeiros, M.H.; Curi, R.; Bechara, E.J. Superoxide dismutase, catalase, and glutathione peroxidase activities in muscle and lymphoid organs of sedentary and exercise-trained rats. Physiol. Behav. 1994, 56, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.C.; Domenech, E.; Vina, J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radic. Biol. Med. 2008, 44, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.Y.; Ashour, O.M. Changes in nitric oxide and free radical levels in rat gastrocnemius muscle during contraction and fatigue. Clin. Exp. Pharmacol. Physiol. 2011, 38, 791–795. [Google Scholar] [CrossRef]
- Tsai, P.S.; Chen, C.C.; Tsai, P.S.; Yang, L.C.; Huang, W.Y.; Huang, C.J. Heme oxygenase 1, nuclear factor E2–related factor 2, and nuclear factor κB are involved in hemin inhibition of type 2 cationic amino acid transporter expression and L-arginine transport in stimulated macrophages. J. Am. Soc. Anesthesiol. 2006, 105, 1201–1210. [Google Scholar] [CrossRef]
- Thirumalai, T.; Therasa, S.V.; Elumalai, E.; David, E. Intense and exhaustive exercise induce oxidative stress in skeletal muscle. Asian Pac. J. Trop. Dis. 2011, 1, 63–66. [Google Scholar] [CrossRef]
- Deaton, C.M.; Marlin, D.J. Exercise-associated oxidative stress. Clin. Tech. Equine Pract. 2003, 2, 278–291. [Google Scholar] [CrossRef]
- Powers, S.K.; Lategan-Potgieter, R.; Goldstein, E. Exercise-induced Nrf2 activation increases antioxidant defenses in skeletal muscles. Free Radic. Biol. Med. 2024, 224, 470–478. [Google Scholar] [CrossRef]
- Chen, L.; Ru, Q.; Xiong, Q.; Yang, J.; Xu, G.; Wu, Y. Potential Effects of Nrf2 in Exercise Intervention of Neurotoxicity Caused by Methamphetamine Oxidative Stress. Oxid. Med. Cell Longev. 2022, 2022, 4445734. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, C.; Hou, J.; Su, P.; Yang, Y.; Xia, B.; Zhao, X.; He, R.; Wang, L.; Cao, C.; et al. Red ginseng extract improves skeletal muscle energy metabolism and mitochondrial function in chronic fatigue mice. Front. Pharmacol. 2022, 13, 1077249. [Google Scholar] [CrossRef]
- Lu, G.; Liu, Z.; Wang, X.; Wang, C. Recent Advances in Panax ginseng C.A. Meyer as a Herb for Anti-Fatigue: An Effects and Mechanisms Review. Foods 2021, 10, 1030. [Google Scholar] [CrossRef]
- Kennedy, G.; Spence, V.A.; McLaren, M.; Hill, A.; Underwood, C.; Belch, J.J. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free. Radic. Biol. Med. 2005, 39, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Roberts, F.L.; Markby, G.R. New insights into molecular mechanisms mediating adaptation to exercise; A review focusing on mitochondrial biogenesis, mitochondrial function, mitophagy and autophagy. Cells 2021, 10, 2639. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer |
---|---|---|
CAT-2 | ATCTTCTCCATCGTGGGCTTCAT | CCATGGATATGTGTACTTC |
Scd-2 | TGGTGCCCTGGTACTGCT | CGATGAAGAACGTGGTGAAG |
NRF1 | GGCGGGAGGACCTTCTGTATGC | GGCCCAATTTTGTTCCACCTCTCC |
NRE2L2 | CAGCCCAGCACATCCAGACAGA | GAATATCCAGGGCAAGCGACTCAT |
TFAM | CGGGGAATGTGGGGCGTGCTAA | GCGTTTCTGCCGGGCTTCCTTCTC |
MtCOX2 | ACAAGACGCCACATCACCTATCAT | TACTTCTTGGGCGTCTATTGTGCT |
MtND1 | GCAAAGGCCCCAACATCGTAG | TAAGGGGGTGAGGTATTGGTAAGG |
No. | Name | Retention Time (min) | Content (μg/mL) |
---|---|---|---|
1 | Rg1 | 32.319 | 41.21893 ± 0.068 |
2 | Re | 32.454 | 61.79905 ± 0.049 |
3 | Rb1 | 39.896 | 122.02576 ± 0.042 |
4 | RC | 40.573 | 50.13992 ± 0.015 |
5 | Rb2 | 41.156 | 55.49115 ± 0.022 |
6 | S-Rg2 | 41.749 | 45.89925 ± 0.029 |
7 | R-Rg2 | 41.945 | 14.43858 ± 0.003 |
8 | Rh1 | 42.440 | 9.59264 ± 0.003 |
9 | Rd | 42.740 | 24.24622 ± 0.002 |
10 | S-Rg3 | 52.392 | 158.83643 ± 0.062 |
11 | R-Rg3 | 53.009 | 63.97367 ± 0.041 |
12 | RK1 | 61.862 | 98.88668 ± 0.046 |
13 | Rg5 | 62.905 | 92.69036 ± 0.013 |
Total | 839.23864 ± 0.212 |
Groups | Food Intake (g/d) | Final Weight (g) | Swimming Time (min) | Rotating Rod Time (s) | Running Time (s) |
---|---|---|---|---|---|
Control group | 5.33 ± 0.26 a | 33.32 ± 1.92 a | 17.17 ± 1.28 b | 1371.04 ± 41.25 c | 809.00 ± 33.80 d |
LBG | 5.31 ± 0.18 a | 32.56 ± 2.11 a | 17.49 ± 0.43 b | 1432.30 ± 30.67 c | 1344.00 ± 51.53 c |
MBG | 5.29 ± 0.18 a | 32.54 ± 2.61 a | 21.06 ± 0.69 a | 1723.84 ± 84.77 b | 1777.00 ± 49.09 b |
HBG | 5.36 ± 0.28 a | 32.68 ± 1.89 a | 21.97 ± 0.91 a | 1812.70 ± 67.16 a | 2095.00 ± 67.16 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, S.; Li, J.; Tai, X.; Wang, K.; Huang, L.; Su, W.; Zhang, G.; Zhong, B.; Li, F. Ginsenoside-Enriched Extract from Black Ginseng Anti-Fatigue Effects by Improving Antioxidant Capacity and Mitochondrial Function. Life 2024, 14, 1467. https://doi.org/10.3390/life14111467
Ge S, Li J, Tai X, Wang K, Huang L, Su W, Zhang G, Zhong B, Li F. Ginsenoside-Enriched Extract from Black Ginseng Anti-Fatigue Effects by Improving Antioxidant Capacity and Mitochondrial Function. Life. 2024; 14(11):1467. https://doi.org/10.3390/life14111467
Chicago/Turabian StyleGe, Shunji, Jiating Li, Xueyue Tai, Kuo Wang, Liyan Huang, Weixin Su, Guoqi Zhang, Bao Zhong, and Fenglin Li. 2024. "Ginsenoside-Enriched Extract from Black Ginseng Anti-Fatigue Effects by Improving Antioxidant Capacity and Mitochondrial Function" Life 14, no. 11: 1467. https://doi.org/10.3390/life14111467
APA StyleGe, S., Li, J., Tai, X., Wang, K., Huang, L., Su, W., Zhang, G., Zhong, B., & Li, F. (2024). Ginsenoside-Enriched Extract from Black Ginseng Anti-Fatigue Effects by Improving Antioxidant Capacity and Mitochondrial Function. Life, 14(11), 1467. https://doi.org/10.3390/life14111467