Comparative Analysis of Growth Performance, Morphological Development, and Physiological Condition in Three Romanian Cyprinus carpio Varieties and Koi: Implications for Aquaculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Samples and Rearing Conditions
2.2. Sampling, Equipment, and Measurements
- Total length (TL): measured from the tip of the snout to the end of the caudal fin using an ichthyometer.
- Maximum height (MH): measured at the deepest part of the body using the same ichthyometer.
- Weight (W): determined using a calibrated electronic balance (Kern EMB 6000-1, precision 0.01 g).
- Temperature and dissolved oxygen: HQ30d flexiparameter (precision ±0.1 °C, ±0.1 mg/L).
- pH: HQ11D waterproof meter (precision ±0.01 pH).
- Total ammonia nitrogen: HI801 IRIS VISIBLE spectrophotometer (precision ±0.01 mg/L).
2.3. Growth Period Significance
2.4. Growth Performance Indices
- Weight Gain (WG) = Final Weight − Initial Weight
- Specific Growth Rate (SGR) = [(ln Final Weight − ln Initial Weight)/time (days)] × 100
- Relative Growth Rate (RGR) = [(Final Weight − Initial Weight)/Initial Weight] × 100
- Fulton’s condition factor (K) = (Weight/Total Length3) × 100
- Profile index = Maximum Height/Total Length
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.1.1. Weight Gain (WG)
3.1.2. Specific Growth Rate (SGR)
3.1.3. Relative Growth Rate (RGR)
3.2. Profile Index
3.3. Fulton’s Condition Factor
4. Discussion
4.1. Growth Performance
4.2. Profile Index and Morphological Development
4.3. Fulton’s Condition Factor
4.4. Implications for Aquaculture and Ecology
4.5. Future Research Directions
4.6. Limitations in Genetic Interpretation and Alternative Explanations
4.7. Management Strategies for Koi Production
4.8. Evolutionary Context and Management Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canosa, L.F.; Bertucci, J.I. The effect of environmental stressors on growth in fish and its endocrine control. Front. Endocrinol. 2023, 14, 1109461. [Google Scholar] [CrossRef] [PubMed]
- Maulu, S.; Hasimuna, O.J.; Haambiya, L.H.; Monde, C.; Musuka, C.G.; Makorwa, T.H.; Munganga, B.P.; Phiri, K.J.; Nsekanabo, J.D. Climate change effects on aquaculture production: Sustainability implications, mitigation, and adaptations. Front. Sustain. Food Syst. 2021, 5, 609097. [Google Scholar] [CrossRef]
- Munkittrick, K.R.; Dixon, D.G. A holistic approach to ecosystem health assessment using fish population characteristics. Hydrobiologia 1989, 188, 123–135. [Google Scholar] [CrossRef]
- Vandeputte, M.; Kocour, M.; Mauger, S.; Dupont-Nivet, M.; De Guerry, D.; Rodina, M.; Gela, D.; Vallod, D.; Chevassus, B.; Linhart, O. Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture 2004, 235, 223–236. [Google Scholar] [CrossRef]
- Ninh, N.H.; Ponzoni, R.W.; Nguyen, N.H.; Woolliams, J.A.; Taggart, J.B.; McAndrew, B.J.; Penman, D.J. A comparison of communal and separate rearing of families in selective breeding of common carp (Cyprinus carpio): Estimation of genetic parameters. Aquaculture 2011, 322, 39–46. [Google Scholar] [CrossRef]
- Gjedrem, T.; Robinson, N.; Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture 2012, 350, 117–129. [Google Scholar] [CrossRef]
- Janssen, K.; Chavanne, H.; Berentsen, P.; Komen, H. Impact of selective breeding on European aquaculture. Aquaculture 2017, 472, 8–16. [Google Scholar] [CrossRef]
- Pauly, D.; Cheung, W.W.L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Chang. Biol. 2017, 23, 3449–3459. [Google Scholar] [CrossRef]
- Huang, M.; Ding, L.; Wang, J.; Ding, C.; Tao, J. The impacts of climate change on fish growth: A summary of conducted studies and current knowledge. Ecol. Indic. 2021, 121, 106976. [Google Scholar] [CrossRef]
- Peng, L.; Jin, W.; Shao, W.; Liu, W.; Qu, M.; Chen, C. A comprehensive review of the mechanisms on fish stress affecting muscle qualities: Nutrition, physical properties, and flavor. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13336. [Google Scholar] [CrossRef]
- Sakai, M.; Hikima, J.; Kono, T. Fish cytokines: Current research and applications. Fish. Sci. 2021, 87, 1–9. [Google Scholar] [CrossRef]
- Mommsen, T.P. Paradigms of growth in fish. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001, 129, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, M. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system. J. Fish Biol. 2010, 76, 1233–1254. [Google Scholar] [CrossRef] [PubMed]
- Power, D.M.; Llewellyn, L.; Faustino, M.; Nowell, M.A.; Björnsson, B.T.; Einarsdottir, I.E.; Canario, A.V.; Sweeney, G.E. Thyroid hormones in growth and development of fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 130, 447–459. [Google Scholar] [CrossRef]
- Taranger, G.L.; Carrillo, M.; Schulz, R.W.; Fontaine, P.; Zanuy, S.; Felip, A.; Weltzien, F.A.; Dufour, S.; Karlsen, O.; Norberg, B.; et al. Control of puberty in farmed fish. Gen. Comp. Endocrinol. 2010, 165, 483–515. [Google Scholar] [CrossRef]
- Fuentes, E.N.; Einarsdottir, I.E.; Paredes, R.; Hidalgo, C.; Valdes, J.A.; Björnsson, B.T.; Molina, A. IGF-I/PI3K/Akt and IGF-I/MAPK/ERK pathways in vivo in skeletal muscle are regulated by nutrition and contribute to somatic growth in the fine flounder. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R136–R146. [Google Scholar] [CrossRef]
- Fjalestad, K.T.; Gjedrem, T.; Gjerde, B. Genetic improvement of disease resistance in fish: An overview. Aquaculture 1993, 111, 65–74. [Google Scholar] [CrossRef]
- Gutierrez, A.P.; Yáñez, J.M.; Fukui, S.; Swift, B.; Davidson, W.S. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar). PLoS ONE 2015, 10, e0119730. [Google Scholar] [CrossRef]
- Verta, J.P.; Debes, P.V.; Piavchenko, N.; Ruokolainen, A.; Ovaskainen, O.; Moustakas-Verho, J.E.; Tillanen, S.; Parre, N.; Aykanat, T.; Erkinaro, J.; et al. Cis-regulatory differences in isoform expression associate with life history strategy variation in Atlantic salmon. PLoS Genet. 2020, 16, e1009055. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharya, S.; Readman, G.D.; Chaklader, M.R.; Das, S. Epigenetics: Perspectives and potential in aquaculture. In Advances in Fisheries Biotechnology; Sharma, O.P., Gora, A.H., Gaur, V.K., Eds.; Springer: Singapore, 2022; pp. 133–150. [Google Scholar] [CrossRef]
- Xu, G.; Xing, W.; Li, T.; Xue, M.; Lu, Y.; Feng, X.; Shen, B. Comparative study on the effects of different feeding habits and diets on intestinal microbiota in Acipenser baeri Brandt and Huso huso. BMC Microbiol. 2019, 19, 297. [Google Scholar] [CrossRef]
- Devlin, R.H.; Leggatt, R.A.; Benfey, T.J. Genetic modification of growth in fish species used in aquaculture: Phenotypic and physiological responses. In Fish Physiology; Benfey, T.J., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 38, pp. 237–272. [Google Scholar] [CrossRef]
- Ringø, E.; Zhou, Z.; Vecino, J.L.G.; Wadsworth, S.; Romero, J.; Krogdahl, Å.; Olsen, R.E.; Dimitroglou, A.; Foey, A.; Davies, S.; et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquacult. Nutr. 2016, 22, 219–282. [Google Scholar] [CrossRef]
- Horvath, L.; Tamas, G.; Seagrave, C. Carp and Pond Fish Culture; Fishing News Books: Oxford, UK, 1976. [Google Scholar]
- Flajšhans, M.; Hulata, G. Common carp—Cyprinus carpio. In Genetic Impact of Aquaculture Activities on Native Populations; Svåsand, T., Crosetti, D., García-Vázquez, E., Verspoor, E., Eds.; European Commission: Genova, Italy, 2007; pp. 32–39. [Google Scholar]
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Springer Science & Business Media: Boston, MA, USA, 2012. [Google Scholar]
- Vandeputte, M.; Kocour, M.; Mauger, S.; Dupont-Nivet, M.; De Guerry, D.; Rodina, M.; Gela, D.; Vallod, D.; Chevassus, B.; Linhart, O. Genetic variation for growth at one and two summers of age in the common carp (Cyprinus carpio L.): Heritability estimates and response to selection. Aquaculture 2008, 277, 7–13. [Google Scholar] [CrossRef]
- Ross, L.G.; Ross, B. Anaesthetic and Sedative Techniques for Aquatic Animals, 3rd ed.; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Billard, R. Carp: Biology and Culture; Springer-Praxis Series in Aquaculture and Fisheries: London, UK, 1999. [Google Scholar]
- Hulata, G. A review of genetic improvement of the common carp (Cyprinus carpio L.) and other cyprinids by crossbreeding, hybridization and selection. Aquaculture 1995, 129, 143–155. [Google Scholar] [CrossRef]
- Bakos, J.; Gorda, S. Genetic Resources of Common Carp at the Fish Culture Research Institute, Szarvas, Hungary; FAO Fisheries Technical Paper 417; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Vandeputte, M. Selective breeding of quantitative traits in the common carp (Cyprinus carpio): A review. Aquat. Living Resour. 2003, 16, 399–407. [Google Scholar] [CrossRef]
- Kocour, M.; Gela, D.; Rodina, M.; Linhart, O. Testing of performance in common carp Cyprinus carpio L. under pond husbandry conditions I: Top-crossing with Northern mirror carp. Aquac. Res. 2005, 36, 1207–1215. [Google Scholar] [CrossRef]
- Nielsen, H.M.; Ødegård, J.; Olesen, I.; Gjerde, B.; Ardo, L.; Jeney, G.; Jeney, Z. Genetic analysis of common carp (Cyprinus carpio) strains: I: Genetic parameters and heterosis for growth traits and survival. Aquaculture 2010, 304, 14–21. [Google Scholar] [CrossRef]
- Hossain, M.B.; Nur, A.-A.U.; Ahmed, M.M.; Ullah, M.A.; Albeshr, M.F.; Arai, T. Growth, Yield and Profitability of Major Carps Culture in Coastal Homestead Ponds Stocked with Wild and Hatchery Fish Seed. Agriculture 2022, 12, 1131. [Google Scholar] [CrossRef]
- Radu, D.; Oprea, L.; Bucur, C.; Costache, M.; Oprea, D. Characteristics of Haematological Parameters for Carp Culture and Koi (Cyprinus carpio Linneaus, 1758) Reared in an Intensive System. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2009, 66, 231–236. [Google Scholar]
- Petrea, S.M.; Mogodan, A.; Metaxa, I.; Plăcintă, S.; Vasile, M.A.; Huian, G. A comparative study on the evaluation of cyprinids growth performance in IMTA systems. Aquac. Aquar. Conserv. Legis. 2017, 10, 87–102. [Google Scholar]
- Mabuchi, K.; Senou, H.; Suzuki, T.; Nishida, M. Discovery of an ancient lineage of Cyprinus carpio from Lake Biwa, central Japan, based on mtDNA sequence data, with reference to possible multiple origins of koi. J. Fish Biol. 2005, 66, 1516–1528. [Google Scholar] [CrossRef]
- Memis, D.; Kohlmann, K. Genetic characterization of wild common carp (Cyprinus carpio L.) from Turkey. Aquaculture 2006, 258, 257–267. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, X.; Wang, X.; Li, J.; Liu, G.; Kuang, Y.; Xu, J.; Zheng, X.; Ren, L.; Wang, G.; et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet. 2014, 46, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Nguyen, N.H.; Zhu, W. Genetic evaluation of a selective breeding program for common carp Cyprinus carpio conducted from 2004 to 2014. BMC Genet. 2015, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, J.; Sun, X.; Xu, P. Research advances and future perspectives of genomics and genetic improvement in allotetraploid common carp. Rev. Aquac. 2022, 14, 957–978. [Google Scholar] [CrossRef]
- Hegedüs, B.E.; Bagi, Z.; Kusza, S. Phylogenetic meta-analysis of the Cyprinidae (Teleostei: Cypriniformes) family using mitochondrial cytochrome b region. Anim. Breed. Feed. 2024, 73, 2. [Google Scholar]
- Gjedrem, T.; Baranski, M. Selective Breeding in Aquaculture: An Introduction; Springer Science & Business Media: Dordrecht, The Netherlands, 2010; Volume 10. [Google Scholar]
- Zheng, X.; Kuang, Y.; Zhang, X.; Lu, C.; Cao, D.; Li, C.; Sun, X. A genetic linkage map and comparative genome analysis of common carp (Cyprinus carpio L.) using microsatellites and SNPs. Mol. Genet. Genom. 2011, 286, 261–277. [Google Scholar] [CrossRef]
- Peng, W.; Xu, J.; Zhang, Y.; Feng, J.; Dong, C.; Jiang, L.; Feng, J.; Chen, B.; Gong, Y.; Chen, L.; et al. An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio). Sci. Rep. 2016, 6, 26693. [Google Scholar] [CrossRef]
- Wenne, R. Microsatellites as molecular markers with applications in exploitation and conservation of aquatic animal populations. Genes 2023, 14, 808. [Google Scholar] [CrossRef]
- Yue, G.H. Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish Fish. 2014, 15, 376–396. [Google Scholar] [CrossRef]
- Oikawa, S.; Itazawa, Y.; Gotoh, M. Ontogenetic change in the relationship between metabolic rate and body mass in a sea bream Pagrus major (Temminck & Schlegel). J. Fish Biol. 1991, 38, 483–496. [Google Scholar] [CrossRef]
- Osse, J.W.M.; Van den Boogaart, J.G.M. Fish larvae, development, allometric growth, and the aquatic environment. ICES Mar. Sci. Symp. 1995, 201, 21–34. [Google Scholar]
- Kováč, V.; Copp, G.H.; Francis, M.P. Morphometry of the stone loach, Barbatula barbatula: Do mensural characters reflect the species’ life history thresholds? Environ. Biol. Fish. 1999, 56, 105–115. [Google Scholar] [CrossRef]
- Urho, L. Characters of larvae—What are they? Folia Zool. 2002, 51, 161–186. [Google Scholar]
- Froese, R. Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Sistiaga, M.; Herrmann, B.; Nielsen, K.N.; Larsen, R.B. Understanding limits to cod and haddock separation using size selectivity in a multispecies trawl fishery: An application of FISHSELECT. Can. J. Fish. Aquat. Sci. 2011, 68, 927–940. [Google Scholar] [CrossRef]
- Jafari, O.; Ebrahimi, M.; Hedayati, S.A.A.; Zeinalabedini, M.; Poorbagher, H.; Nasrolahpourmoghadam, M.; Fernandes, J.M. Integration of morphometrics and machine learning enables accurate distinction between wild and farmed common carp. Life 2022, 12, 957. [Google Scholar] [CrossRef]
- Pakkasmaa, S.; Piironen, J. Morphological differentiation among local trout (Salmo trutta) populations. Biol. J. Linn. Soc. 2001, 72, 231–239. [Google Scholar] [CrossRef]
- Kohlmann, K.; Gross, R.; Murakaeva, A.; Kersten, P. Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquat. Living Resour. 2003, 16, 421–431. [Google Scholar] [CrossRef]
- Fontoura, N.F.; Jesus, A.S.; Larre, G.G.; Porto, J.R. Can weight/length relationship predict size at first maturity? A case study with two species of Characidae. Neotrop. Ichthyol. 2010, 8, 835–840. [Google Scholar] [CrossRef]
- Haas, T.C.; Blum, M.J.; Heins, D.C. Morphological responses of a stream fish to water impoundment. Biol. Lett. 2010, 6, 803–806. [Google Scholar] [CrossRef]
- Sheets, H.D.; Covino, K.M.; Panasiewicz, J.M.; Morris, S.R. Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Front. Zool. 2006, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Sagnes, P.; Gaudin, P.; Statzner, B. Shifts in morphometrics and their relation to hydrodynamic potential and habitat use during grayling ontogenesis. J. Fish Biol. 1997, 50, 846–858. [Google Scholar] [CrossRef]
- Nikolioudakis, N.; Koumoundouros, G.; Kiparissis, S.; Somarakis, S. Defining length-at-metamorphosis in fishes: A multi-character approach. Mar. Biol. 2010, 157, 991–1001. [Google Scholar] [CrossRef]
- Fleuren, M.; Quicazan-Rubio, E.M.; van Leeuwen, J.L.; Pollux, B.J. Why do placentas evolve? Evidence for a morphological advantage during pregnancy in live-bearing fish. PLoS ONE 2018, 13, e0195976. [Google Scholar] [CrossRef]
- McCarthy, J.H.; Linnansaari, T.; Curry, R.A. Movement and habitat shift responses of juvenile Atlantic Salmon (Salmo salar) to annually permanent stream flooding. J. Fish Biol. 2024, 104, 698–712. [Google Scholar] [CrossRef]
- Pulcini, D.; Wheeler, P.A.; Cataudella, S.; Russo, T.; Thorgaard, G.H. Domestication shapes morphology in rainbow trout Oncorhynchus mykiss. J. Fish Biol. 2013, 82, 390–407. [Google Scholar] [CrossRef]
- Colihueque, N.; Araneda, C. Appearance traits in fish farming: Progress from classical genetics to genomics, providing insight into current and potential genetic improvement. Front. Genet. 2014, 5, 25. [Google Scholar] [CrossRef]
- Balon, E.K. About the oldest domesticates among fishes. J. Fish Biol. 2004, 65, 1–27. [Google Scholar] [CrossRef]
- Bagheri, T.; Hedayati, A.A.; Jaferian, A.; Hesni, M.A.; Movahedinia, A. The study of seasonal fluctuation of steroid hormones in great sturgeon Huso huso cultured in brackish water condition. Bulg. J. Agric. Sci. 2008, 14, 432–435. [Google Scholar]
- Rašković, B.S.; Stanković, M.B.; Marković, Z.Z.; Poleksić, V.D. Histological methods in the assessment of different feed effects on liver and intestine of fish. J. Agric. Sci. 2011, 56, 87–100. [Google Scholar] [CrossRef]
- Oyugi, D.O.; Cucherousset, J.; Ntiba, M.J.; Kisia, S.M.; Harper, D.M.; Britton, J.R. Life history traits of an equatorial common carp Cyprinus carpio population in relation to thermal influences on invasive populations. Fish. Res. 2011, 110, 92–97. [Google Scholar] [CrossRef]
- Mozsár, A.; Boros, G.; Sály, P.; Antal, L.; Nagy, S.A. Relationship between Fulton’s condition factor and proximate body composition in three freshwater fish species. J. Appl. Ichthyol. 2015, 31, 315–320. [Google Scholar] [CrossRef]
- Lugert, V.; Thaller, G.; Tetens, J.; Schulz, C.; Krieter, J. A review on fish growth calculation: Multiple functions in fish production and their specific application. Rev. Aquac. 2016, 8, 30–42. [Google Scholar] [CrossRef]
- Vilizzi, L.; Copp, G.H. Global patterns and clines in the growth of common carp Cyprinus carpio. J. Fish Biol. 2017, 91, 3–40. [Google Scholar] [CrossRef]
- Gheorghe, D.C.; Răzlog, G.P.; Cristea, V.; Enache, I. The growth characteristics of common carp (Cyprinus carpio) in the northern part of the Small Island of Brăila Natural Park. Aquac. Aquar. Conserv. Legis. 2011, 4, 154–158. [Google Scholar]
- Yan, G.J.; He, X.K.; Cao, Z.D.; Fu, S.J. An interspecific comparison between morphology and swimming performance in cyprinids. J. Evol. Biol. 2013, 26, 1802–1815. [Google Scholar] [CrossRef]
- Çalta, B.M. Morphological development and growth of chub, Leuciscus cephalus (L.), larvae. J. Appl. Ichthyol. 2000, 16, 83–85. [Google Scholar] [CrossRef]
- Keckeis, H.; Kamler, E.; Bauer-Nemeschkal, E.; Schneeweiss, K. Survival, development and food energy partitioning of nase larvae and early juveniles at different temperatures. J. Fish Biol. 2001, 59, 45–61. [Google Scholar] [CrossRef]
- Fuiman, L.A. Special consideration on fish eggs and larvae. In Fishery Science: The Unique Contributions of Early Life Stages; Fuiman, L.A., Werner, R.G., Eds.; Blackwell Science: Oxford, UK, 2002; pp. 1–32. [Google Scholar]
- Kamler, E. Resource allocation in yolk-feeding fish. Rev. Fish Biol. Fish. 2008, 18, 143–200. [Google Scholar] [CrossRef]
- Chatzifotis, S.; Papadaki, M.; Despoti, S.; Roufidou, C.; Antonopoulou, E. Effect of starvation and re-feeding on reproductive indices, body weight, plasma metabolites and oxidative enzymes of sea bass (Dicentrarchus labrax). Aquaculture 2011, 316, 53–59. [Google Scholar] [CrossRef]
- Mohale, H.P.; Sarang, N.; Desai, A.Y. The Common Carp and its Culture System Management. In Advances in Fisheries Science; Sarang, N., Ed.; AkiNik Publications: New Delhi, India, 2020; pp. 127–145. [Google Scholar]
- Masood, Z.; Gul, G.N.; Khan, T.; Khan, W.; Kabir, M.; Iqbal, M.A.; Swelum, A.A. Comparison of growth performance and morphological variation among three carp species (Cyprinus Carpio, Hypophthalmichthys Molitrix, and Labeo rohita). J. King Saud Univ. Sci. 2022, 34, 102326. [Google Scholar] [CrossRef]
- Mraz, J.; Jia, H.; Roy, K. Biomass losses and circularity along local farm-to-fork: A review of industrial efforts with locally farmed freshwater fish in land-locked Central Europe. Rev. Aquac. 2023, 15, 1083–1099. [Google Scholar] [CrossRef]
- Teletchea, F. Fish domestication in aquaculture: Reassessment and emerging questions. Cybium 2019, 43, 7–15. [Google Scholar]
- Dong, Z.; Luo, M.; Wang, L.; Yin, H.; Zhu, W.; Fu, J. MicroRNA-206 regulation of skin pigmentation in koi carp (Cyprinus carpio L.). Front. Genet. 2020, 11, 47. [Google Scholar] [CrossRef]
- Nandeesha, M.C.; Gangadhara, B.; Manissery, J.K.; Venkataraman, L.V. Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis. Bioresour. Technol. 2001, 80, 117–120. [Google Scholar] [CrossRef]
- Sales, J.; Janssens, G.P. Nutrient requirements of ornamental fish. Aquat. Living Resour. 2003, 16, 533–540. [Google Scholar] [CrossRef]
- Lochmann, R.; Phillips, H. Nutritional aspects of health and related components of baitfish performance. In Nutrition and Fish Health; Lim, C., Webster, C.D., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 27–44. [Google Scholar]
- Velasco-Santamaría, Y.; Corredor-Santamaría, W. Nutritional requirements of freshwater ornamental fish: A review. Rev. MVZ Córdoba 2011, 16, 2458–2469. [Google Scholar] [CrossRef]
- Sudirman, D.A.; Arief, M.; Fasya, A.H. Addition different algae (Spirulina) flour to artificial feed on color quality and growth of Koi fish (Cyprinus carpio-Koi). IOP Conf. Ser. Earth Environ. Sci. 2020, 441, 012086. [Google Scholar] [CrossRef]
- Kirpichnikov, V.S.; Ilyasov, I.; Shart, L.A.; Vikhman, A.A.; Ganchenko, M.V.; Ostashevsky, A.L.; Simonov, V.M.; Tikhonov, G.F.; Tjurin, V.V. Selection of Krasnodar common carp (Cyprinus carpio L.) for resistance to dropsy: Principal results and prospects. In Genetics in Aquaculture; Elsevier: Amsterdam, The Netherlands, 1993; pp. 7–20. [Google Scholar] [CrossRef]
- Radu, D.; Oprea, L.; Nicolae, C.G. Comparative analyses concerning parasitic diversity of common carp and koi carp. Sci. Pap. Anim. Sci. Biotechnol. 2008, 41, 129. [Google Scholar]
- Bădilaş, I.N.; Păsărin, B. Researches on the reproductive performance of cultivated carp (Cyprinus carpio, Linne, 1758), variety without scales Moldova-Podu Iloaie grown in fish farms in northern Moldova. Sci. Pap. Anim. Sci. 2020, 73, 148–153. [Google Scholar]
- Kocour, M.; Gela, D.; Rodina, M.; Flajšhans, M. Performance of different tench, Tinca tinca (L.), groups under semi-intensive pond conditions: It is worth establishing a coordinated breeding program. Rev. Fish Biol. Fish. 2010, 20, 345–355. [Google Scholar] [CrossRef]
- Trọng, T.Q.; Mulder, H.A.; van Arendonk, J.A.; Komen, H. Heritability and genotype by environment interaction estimates for harvest weight, growth rate, and shape of Nile tilapia (Oreochromis niloticus) grown in river cage and VAC in Vietnam. Aquaculture 2013, 384, 119–127. [Google Scholar] [CrossRef]
- Gharrett, A.J.; Smoker, W.W. A perspective on the adaptive importance of genetic infrastructure in salmon populations to ocean ranching in Alaska. Fish. Res. 1993, 18, 45–58. [Google Scholar] [CrossRef]
- Sfakiotakis, M.; Lane, D.M.; Davies, J.B.C. Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 1999, 24, 237–252. [Google Scholar] [CrossRef]
- Kristjánsson, B.K.; Skúlason, S.; Noakes, D.L. Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L.). Biol. J. Linn. Soc. 2002, 76, 247–257. [Google Scholar] [CrossRef]
- Kocour, M.; Linhart, O.; Gela, D. Results of comparative growing test of all-female and bisexual population in two-year-old common carp (Cyprinus carpio L.). Aquac. Int. 2003, 11, 369–378. [Google Scholar] [CrossRef]
- Langerhans, R.B.; Reznick, D.N. Ecology and evolution of swimming performance in fishes: Predicting evolution with biomechanics. In Fish Locomotion: An Eco-Ethological Perspective; Domenici, P., Kapoor, B.G., Eds.; Science Publishers: Enfield, NH, USA, 2010; pp. 200–248. [Google Scholar]
- Pauly, D. The relationships between gill surface area and growth performance in fish: A generalization of von Bertalanffy’s theory of growth. Meeresforschung 1981, 28, 251–282. [Google Scholar]
- Brönmark, C.; Miner, J.G. Predator-induced phenotypical change in body morphology in crucian carp. Science 1992, 258, 1348–1350. [Google Scholar] [CrossRef]
- Balon, E.K. Origin and domestication of the wild carp, Cyprinus carpio: From Roman gourmets to the swimming flowers. Aquaculture 1995, 129, 3–48. [Google Scholar] [CrossRef]
- Pakkasmaa, S.; Piironen, J. Water velocity shapes juvenile salmonids. Evol. Ecol. 2000, 14, 721–730. [Google Scholar] [CrossRef]
- Andersson, J.; Johansson, F.; Söderlund, T. Interactions between predator-and diet-induced phenotypic changes in body shape of crucian carp. Proc. R. Soc. B Biol. Sci. 2006, 273, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Vela-Avitúa, S.; Meuwissen, T.H.; Luan, T.; Ødegård, J. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships. Genet. Sel. Evol. 2015, 47, 9. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Li, H.; Du, F.; Zhang, C.; Li, X.; Jing, X.; Zhang, Y.; Li, T. Combined QTL and genome scan analyses with the help of 2b-RAD identify growth-associated genetic markers in a new fast-growing carp strain. Front. Genet. 2018, 9, 592. [Google Scholar] [CrossRef] [PubMed]
- Panserat, S.; Plagnes-Juan, E.; Kaushik, S. Gluconeogenic enzyme gene expression is decreased by dietary carbohydrates in common carp (Cyprinus carpio) and gilthead seabream (Sparus aurata). Biochim. Biophys. Acta Gene Struct. Expr. 2002, 1579, 35–42. [Google Scholar] [CrossRef]
- Gómez-Requeni, P.; Mingarro, M.; Calduch-Giner, J.A.; Médale, F.; Martin, S.A.M.; Houlihan, D.F.; Kaushik, S.; Pérez-Sánchez, J. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 2004, 232, 493–510. [Google Scholar] [CrossRef]
- Cuesta, A.; Laiz-Carrión, R.; Del Río, M.M.; Meseguer, J.; Mancera, J.M.; Esteban, M.A. Salinity influences the humoral immune parameters of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2005, 18, 255–261. [Google Scholar] [CrossRef]
- Mimeault, C.; Trudeau, V.L.; Moon, T.W. Waterborne gemfibrozil challenges the hepatic antioxidant defense system and down-regulates peroxisome proliferator-activated receptor beta (PPARβ) mRNA levels in male goldfish (Carassius auratus). Toxicology 2006, 228, 140–150. [Google Scholar] [CrossRef]
- Urbányi, B.; Szabó, T.; Miskolczi, E.; Mihálffy, S.; Vranovics, K.; Horváth, Á. Successful fertilization and hatching of four European cyprinid species using cryopreserved sperm. J. Appl. Ichthyol. 2006, 22, 201–204. [Google Scholar] [CrossRef]
- Nica, A.; Mogodan, A.; Simionov, I.A.; Petrea, S.M.; Cristea, V. The influence of stocking density on growth performance of juvenile Japanese ornamental carp (koi, Cyprinus carpio L.). Sci. Pap. Ser. D Anim. Sci. 2020, 63, 452–458. [Google Scholar]
- Azizah, D.; Dewi, N.N.; Amin, M.; Fauzan, A.L. The influence of different stocking density on growth rate and survival rate koi larvae (Cyprinus carpio). IOP Conf. Ser. Earth Environ. Sci. 2024, 1392, 012016. [Google Scholar] [CrossRef]
- Dunun, S.S.; Omar, S.S. Effects of stocking density on the growth performance, physiological parameters and antioxidant status of juvenile common carp (Cyprinus carpio L.) reared in the cage system. J. Adv. Zool. 2024, 45, 78–89. [Google Scholar] [CrossRef]
- Moav, R.; Brody, T.; Hulata, G. Genetic improvement of wild fish populations. Science 1978, 201, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Banarescu, P.; Coad, B.W. Cyprinids of Eurasia. In Cyprinid Fishes; Winfield, I.J., Nelson, J.S., Eds.; Springer: Dordrecht, The Netherlands, 1991; pp. 127–155. [Google Scholar] [CrossRef]
- Memiş, D.; Çelikkale, M.S.; Ercan, E. The effect of different diets on the white worm (Enchytraeus albidus Henle, 1837) reproduction. Turk. J. Fish. Aquat. Sci. 2004, 4, 5–7. [Google Scholar]
- Ljubobratović, U.; Kucska, B.; Feledi, T.; Poleksić, V.; Marković, Z.; Lenhardt, M.; Peteri, A.; Kumar, S.; Ronyai, A. Effect of weaning strategies on growth and survival of pikeperch, Sander lucioperca, larvae. Turk. J. Fish. Aquat. Sci. 2015, 15, 325–331. [Google Scholar] [CrossRef]
- Policar, T.; Blecha, M.; Křišťan, J.; Mráz, J.; Velíšek, J.; Stará, A.; Stejskal, V.; Malinovskyi, O.; Svačina, P.; Samarin, A.M. Comparison of production efficiency and quality of differently cultured pikeperch (Sander lucioperca L.) juveniles as a valuable product for ongrowing culture. Aquac. Int. 2016, 24, 1607–1626. [Google Scholar] [CrossRef]
- Stoyanova, S.; Sirakov, I.; Velichkova, K.; Staykov, Y. Heavy metal content in the meat of common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss W.), cultivated under different technologies. Agric. Sci. Technol. 2016, 8, 90–93. [Google Scholar] [CrossRef]
- Kucharczyk, D.; Targońska, K.; Żarski, D.; Krejszeff, S.; Kupren, K.; Łuczyński, M.J.; Szczerbowski, A. The reproduction of neon tetra, Paracheirodon innesi (Myers, 1936), under controlled conditions. Pol. J. Nat. Sci. 2010, 25, 81–92. [Google Scholar] [CrossRef]
- Mráz, J.; Zajíc, T.; Pickova, J. Culture of common carp (Cyprinus carpio) with defined flesh quality for prevention of cardiovascular diseases using finishing feeding strategy. Neuroendocrinol. Lett. 2012, 33, 60–67. [Google Scholar]
- Doğankaya, L. Effects of dietary insect (Ephestia kuehniella) egg meal on growth performance and fatty acid profile of common carp (Cyprinus carpio). Turk. J. Vet. Anim. Sci. 2022, 46, 517–524. [Google Scholar] [CrossRef]
Cyprinus carpio Variety | WG0+ (g) | WG1+ (g) | WG2+ (g) |
---|---|---|---|
Frasinet | 37.55 ± 0.15a | 471.13 ± 1.78c | 834.45 ± 5.28a |
Ineu | 36.27 ± 0.11c | 560.79 ± 2b | 846.25 ± 5.17a |
Podul Iloaiei | 37.37 ± 0.14a | 583.65 ± 1.68a | 849.73 ± 4.09a |
Koi | 36.75 ± 0.08b | 77.73 ± 2.1d | 403.99 ± 14.21b |
F-value | 12.45 | 24.67 | 18.92 |
p-value | <0.001 | <0.001 | <0.001 |
Cyprinus carpio Variety | SGR0+ | SGR1+ | SGR2+ |
---|---|---|---|
Frasinet | 2.2 ± 0.05b | 0.31 ± 0b | 0.12 ± 0b |
Ineu | 2.57 ± 0.07a | 0.33 ± 0a | 0.1 ± 0c |
Podul Iloaiei | 2.73 ± 0.04a | 0.33 ± 0a | 0.1 ± 0c |
Koi | 2.7 ± 0.09a | 0.13 ± 0c | 0.18 ± 0a |
F-value | 15.32 | 21.84 | 19.76 |
p-value | <0.001 | <0.001 | <0.001 |
Cyprinus carpio Variety | RGR0+ | RGR1+ | RGR2+ |
---|---|---|---|
Frasinet | 119.98 ± 21.13b | 3.4 ± 0.02b | 0.45 ± 0b |
Ineu | 351.31 ± 122.65ab | 4.21 ± 0.02a | 0.39 ± 0b |
Podul Iloaiei | 322.27 ± 33.76ab | 4.26 ± 0.02a | 0.38 ± 0b |
Koi | 508.59 ± 141.95a | 0.58 ± 0.02c | 0.98 ± 0.05a |
F-value | 3.27 | 25.91 | 17.83 |
p-value | 0.045 | <0.001 | <0.001 |
Cyprinus carpio Variety | 7 Days | 0+ | 1+ | 2+ |
---|---|---|---|---|
Frasinet | 3.06 ± 0.07c | 2.57 ± 0.006b | 2.4 ± 0.005b | 2.43 ± 0.005a |
Ineu | 2.9 ± 0.07c | 2.44 ± 0.009c | 2.17 ± 0.005c | 2.16 ± 0.004b |
Podul Iloaiei | 4.22 ± 0.149a | 2.45 ± 0.009c | 2.18 ± 0.008c | 2.18 ± 0.004b |
Koi | 3.69 ± 0.101b | 2.93 ± 0.023a | 2.48 ± 0.005a | 2.17 ± 0.005b |
F-value | 28.64 | 19.82 | 22.15 | 16.93 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Study | Variety/Strain | Age | Weight Gain (g) | SGR (%/Day) | Fulton’s K | Profile Index |
---|---|---|---|---|---|---|
Current Study | Frăsinet | 1+ | 471.13 ± 1.78 | 0.31 ± 0 | 3.18 ± 0.014 | 2.4 ± 0.005 |
Ineu | 1+ | 560.79 ± 2 | 0.33 ± 0 | 3.87 ± 0.024 | 2.17 ± 0.005 | |
Podu Iloaiei | 1+ | 583.65 ± 1.68 | 0.33 ± 0 | 4 ± 0.04 | 2.18 ± 0.008 | |
Koi | 1+ | 77.73 ± 2.1 | 0.13 ± 0 | 0.63 ± 0.011 | 2.48 ± 0.005 | |
[28] | Mirror carp | 1+ | 583.7 ± 12.3 | 1.69 ± 0.01 | 3.24 ± 0.02 | - |
[29] | Various strains | 1+ | 329–438 | 1.51–1.66 | - | - |
[91] | Various strains | 1+ | 441–507 | - | - | - |
[33] | Wild carp | Adult | - | - | 1.69–2.15 | - |
[35] | Various strains | Adult | - | - | 1.72–2.86 | - |
[36] | Selective bred | 1+ | 539.8 ± 149.2 | - | - | - |
[66] | Wild carp | Adult | - | - | 1.60–1.78 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șerban, D.-A.; Barbacariu, C.-A.; Burducea, M.; Ivancia, M.; Creangă, Ș. Comparative Analysis of Growth Performance, Morphological Development, and Physiological Condition in Three Romanian Cyprinus carpio Varieties and Koi: Implications for Aquaculture. Life 2024, 14, 1471. https://doi.org/10.3390/life14111471
Șerban D-A, Barbacariu C-A, Burducea M, Ivancia M, Creangă Ș. Comparative Analysis of Growth Performance, Morphological Development, and Physiological Condition in Three Romanian Cyprinus carpio Varieties and Koi: Implications for Aquaculture. Life. 2024; 14(11):1471. https://doi.org/10.3390/life14111471
Chicago/Turabian StyleȘerban, Dana-Andreea, Cristian-Alin Barbacariu, Marian Burducea, Mihaela Ivancia, and Șteofil Creangă. 2024. "Comparative Analysis of Growth Performance, Morphological Development, and Physiological Condition in Three Romanian Cyprinus carpio Varieties and Koi: Implications for Aquaculture" Life 14, no. 11: 1471. https://doi.org/10.3390/life14111471
APA StyleȘerban, D. -A., Barbacariu, C. -A., Burducea, M., Ivancia, M., & Creangă, Ș. (2024). Comparative Analysis of Growth Performance, Morphological Development, and Physiological Condition in Three Romanian Cyprinus carpio Varieties and Koi: Implications for Aquaculture. Life, 14(11), 1471. https://doi.org/10.3390/life14111471