GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Game Charger in the Field?
Abstract
:1. Introduction
2. Literature Search and Selection Criteria
- Reported on clinical outcomes related to DKD or cardiovascular risk in type 2 diabetes patients treated with GLP-1RAs.
- Included results from randomized controlled trials, large observational studies, meta-analyses, or comprehensive reviews.
- Focused on both glycemic and non-glycemic effects of GLP-1RAs, specifically emphasizing renal and cardiovascular protection.
3. Glucagon-like Peptide-1
4. GLP-1RAs and the Kidney in T2DM
5. GLP-1RAs and Cardiovascular Risk in Patients with DKD—Clinical Studies: Effects on Albuminuria and GFR
6. Limitations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycaemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef] [PubMed]
- Koye, D.N.; Magliano, D.J.; Nelson, R.G.; Pavkov, M.E. The Global Epidemiology of Diabetes and Kidney Disease. Adv. Chronic. Kidney Dis. 2018, 25, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Afkarian, M.; Sachs, M.C.; Kestenbaum, B.; Hirsch, I.B.; Tuttle, K.R.; Himmelfarb, J.; de Boer, I.H. Kidney Disease and Increased Mortality Risk in Type 2 Diabetes. J. Am. Soc. Nephrol. 2013, 24, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Theofilis, P.; Vordoni, A.; Kalaitzidis, R.G. Novel Therapeutic Approaches in the Management of Chronic Kidney Disease: A Narrative Review. Postgrad. Med. 2023, 135, 543–550. [Google Scholar] [CrossRef]
- Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.-H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef]
- Lewis, E.J.; Hunsicker, L.G.; Clarke, W.R.; Berl, T.; Pohl, M.A.; Lewis, J.B.; Ritz, E.; Atkins, R.C.; Rohde, R.; Raz, I. Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes. N. Engl. J. Med. 2001, 345, 851–860. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Hilliard, M.E.; Johnson, E.L.; Khunti, K.; Lingvay, I.; et al. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S219–S230. [Google Scholar] [CrossRef]
- Rossing, P.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- The EMPA-KIDNEY Collaborative Group; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zheng, L.; Wang, J.; Lin, Y.; Zhou, T. Overview of the Safety, Efficiency, and Potential Mechanisms of Finerenone for Diabetic Kidney Diseases. Front. Endocrinol. 2023, 14, 1320603. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, G.; Anker, S.D.; Böhm, M.; Gheorghiade, M.; Køber, L.; Krum, H.; Maggioni, A.P.; Ponikowski, P.; Voors, A.A.; Zannad, F.; et al. A Randomized Controlled Study of Finerenone vs. Eplerenone in Patients with Worsening Chronic Heart Failure and Diabetes Mellitus and/or Chronic Kidney Disease. Eur. Heart J. 2016, 37, 2105–2114. [Google Scholar] [CrossRef]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Nowack, C.; Kolkhof, P.; Ferreira, A.C.; Schloemer, P.; Filippatos, G. Design and Baseline Characteristics of the Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease Trial. Am. J. Nephrol. 2019, 50, 333–344. [Google Scholar] [CrossRef]
- Greco, E.; Russo, G.; Giandalia, A.; Viazzi, F.; Pontremoli, R.; De Cosmo, S. GLP-1 Receptor Agonists and Kidney Protection. Medicina 2019, 55, 233. [Google Scholar] [CrossRef]
- Michos, E.D.; Bakris, G.L.; Rodbard, H.W.; Tuttle, K.R. Glucagon-like Peptide-1 Receptor Agonists in Diabetic Kidney Disease: A Review of Their Kidney and Heart Protection. Am. J. Prev. Cardiol. 2023, 14, 100502. [Google Scholar] [CrossRef]
- Thomas, M.C.; Coughlan, M.T.; Cooper, M.E. The Postprandial Actions of GLP-1 Receptor Agonists: The Missing Link for Cardiovascular and Kidney Protection in Type 2 Diabetes. Cell Metab. 2023, 35, 253–273. [Google Scholar] [CrossRef]
- La Barre, J. Sur Les Possibilities d’un Traitement Du Diabete Par L’incretine. Bull. Acad. R. Med. Belg. 1932, 12, 620–634. [Google Scholar]
- Yu, J.H.; Park, S.Y.; Lee, D.Y.; Kim, N.H.; Seo, J.A. GLP-1 Receptor Agonists in Diabetic Kidney Disease: Current Evidence and Future Directions. Kidney Res. Clin. Pr. 2022, 41, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C. The Potential and Pitfalls of GLP-1 Receptor Agonists for Renal Protection in Type 2 Diabetes. Diabetes Metab. 2017, 43, 2S20–2S27. [Google Scholar] [CrossRef] [PubMed]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef] [PubMed]
- Goldney, J.; Sargeant, J.A.; Davies, M.J. Incretins and Microvascular Complications of Diabetes: Neuropathy, Nephropathy, Retinopathy and Microangiopathy. Diabetologia 2023, 66, 1832–1845. [Google Scholar] [CrossRef]
- Thornberry, N.A.; Gallwitz, B. Mechanism of Action of Inhibitors of Dipeptidyl-Peptidase-4 (DPP-4). Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 479–486. [Google Scholar] [CrossRef]
- Hendarto, H.; Inoguchi, T.; Maeda, Y.; Ikeda, N.; Zheng, J.; Takei, R.; Yokomizo, H.; Hirata, E.; Sonoda, N.; Takayanagi, R. GLP-1 Analog Liraglutide Protects against Oxidative Stress and Albuminuria in Streptozotocin-Induced Diabetic Rats via Protein Kinase A-Mediated Inhibition of Renal NAD(P)H Oxidases. Metabolism 2012, 61, 1422–1434. [Google Scholar] [CrossRef]
- Kodera, R.; Shikata, K.; Kataoka, H.U.; Takatsuka, T.; Miyamoto, S.; Sasaki, M.; Kajitani, N.; Nishishita, S.; Sarai, K.; Hirota, D.; et al. Glucagon-like Peptide-1 Receptor Agonist Ameliorates Renal Injury through Its Anti-Inflammatory Action without Lowering Blood Glucose Level in a Rat Model of Type 1 Diabetes. Diabetologia 2011, 54, 965–978. [Google Scholar] [CrossRef]
- Pyke, C.; Heller, R.S.; Kirk, R.K.; Ørskov, C.; Reedtz-Runge, S.; Kaastrup, P.; Hvelplund, A.; Bardram, L.; Calatayud, D.; Knudsen, L.B. GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed With Extensively Validated Monoclonal Antibody. Endocrinology 2014, 155, 1280–1290. [Google Scholar] [CrossRef]
- Gutzwiller, J.-P.; Tschopp, S.; Bock, A.; Zehnder, C.E.; Huber, A.R.; Kreyenbuehl, M.; Gutmann, H.; Drewe, J.; Henzen, C.; Goeke, B.; et al. Glucagon-Like Peptide 1 Induces Natriuresis in Healthy Subjects and in Insulin-Resistant Obese Men. J. Clin. Endocrinol. Metab. 2004, 89, 3055–3061. [Google Scholar] [CrossRef]
- Farr, S.; Taher, J.; Adeli, K. Glucagon-Like Peptide-1 as a Key Regulator of Lipid and Lipoprotein Metabolism in Fasting and Postprandial States. Cardiovasc. Hematol. Disord. -Drug Targets 2014, 14, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Jun, H.-S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediat. Inflamm. 2016, 2016, 3094642. [Google Scholar] [CrossRef] [PubMed]
- Deb, D.K.; Bao, R.; Li, Y.C. Critical Role of the CAMP-PKA Pathway in Hyperglycemia-induced Epigenetic Activation of Fibrogenic Program in the Kidney. FASEB J. 2017, 31, 2065–2075. [Google Scholar] [CrossRef] [PubMed]
- Vinué, Á.; Navarro, J.; Herrero-Cervera, A.; García-Cubas, M.; Andrés-Blasco, I.; Martínez-Hervás, S.; Real, J.T.; Ascaso, J.F.; González-Navarro, H. The GLP-1 Analogue Lixisenatide Decreases Atherosclerosis in Insulin-Resistant Mice by Modulating Macrophage Phenotype. Diabetologia 2017, 60, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Sourris, K.C.; Ding, Y.; Maxwell, S.S.; Al-sharea, A.; Kantharidis, P.; Mohan, M.; Rosado, C.J.; Penfold, S.A.; Haase, C.; Xu, Y.; et al. Glucagon-like Peptide-1 Receptor Signaling Modifies the Extent of Diabetic Kidney Disease through Dampening the Receptor for Advanced Glycation End Products–Induced Inflammation. Kidney Int. 2024, 105, 132–149. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Davies, M.J.; Bain, S.C.; Atkin, S.L.; Rossing, P.; Scott, D.; Shamkhalova, M.S.; Bosch-Traberg, H.; Syrén, A.; Umpierrez, G.E. Efficacy and Safety of Liraglutide Versus Placebo as Add-on to Glucose-Lowering Therapy in Patients With Type 2 Diabetes and Moderate Renal Impairment (LIRA-RENAL): A Randomized Clinical Trial. Diabetes Care 2016, 39, 222–230. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Perkovic, V.; Bain, S.; Bakris, G.; Buse, J.; Gondolf, T.; Idorn, T.; Lausvig, N.; Mahaffey, K.; Marso, S.; Nauck, M.; et al. FP482EGFR loss with glucagon-like peptide-1 (GLP-1) analogue treatment: Data from SUSTAIN 6 and LEADER. Nephrol. Dial. Transplant. 2019, 34, FP482. [Google Scholar] [CrossRef]
- Perkovic, V.; Bain, S.; Bakris, G.; Buse, J.; Idorn, T.; Mahaffey, K.; Marso, S.; Nauck, M.; Pratley, R.; Rasmussen, S.; et al. FP483EFFECTS of semaglutide and liraglutide on urinary albumin-to-creatinine ratio (UACR)—A pooled analysis of sustain 6 and leader. Nephrol. Dial. Transplant. 2019, 34, FP483. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Muskiet, M.H.A.; Wheeler, D.C.; Heerspink, H.J.L. New Pharmacological Strategies for Protecting Kidney Function in Type 2 Diabetes. Lancet Diabetes Endocrinol. 2019, 7, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Bethel, M.A.; Mentz, R.J.; Merrill, P.; Buse, J.B.; Chan, J.C.; Goodman, S.G.; Iqbal, N.; Jakuboniene, N.; Katona, B.G.; Lokhnygina, Y.; et al. Renal Outcomes in the EXenatide Study of Cardiovascular Event Lowering (EXSCEL). Diabetes 2018, 67, 522. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus Insulin Glargine in Patients with Type 2 Diabetes and Moderate-to-Severe Chronic Kidney Disease (AWARD-7): A Multicentre, Open-Label, Randomised Trial. Lancet Diabetes Endocrinol. 2018, 6, 605–617. [Google Scholar] [CrossRef]
- Georgianos, P.I.; Vaios, V.; Roumeliotis, S.; Leivaditis, K.; Eleftheriadis, T.; Liakopoulos, V. Evidence for Cardiorenal Protection with SGLT-2 Inhibitors and GLP-1 Receptor Agonists in Patients with Diabetic Kidney Disease. J. Pers. Med. 2022, 12, 223. [Google Scholar] [CrossRef]
- Vitale, M.; Haxhi, J.; Cirrito, T.; Pugliese, G. Renal Protection with Glucagon-like Peptide-1 Receptor Agonists. Curr. Opin. Pharmacol. 2020, 54, 91–101. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
Study | Subjects in the Study, n | Follow-Up | Treatment | Outcome | Results |
---|---|---|---|---|---|
LEADER | 9340 patients Increased CV risk | Follow-up: 3.8 years | Liraglutide vs. placebo | Rate of kidney function decline | 26% reduction in the de novo onset of albuminuria; 19% reduction in UACR |
LIRA RENAL | 279 patients with T2DM stage 3 CKD | Follow-up: 26 weeks | Liraglutide in moderate renal impairment | Rate of kidney function decline | Liraglutide did not affect renal function |
SUSTAIN-6 | 3297 patients with T2DM and CVD or with other CV risk factors | Follow-up: 2 years | Semaglutide vs. placebo | Rate of kidney function decline | Less frequent occurrence of new nephropathy or worsening nephropathy (HR, 0.64; 95% CI, 0.46 to 0.88; p = 0.005) |
ELIXA | 6068 patients with T2DM and Acute Coronary Syndrome | Follow-up: 108 weeks | Lixisenatide vs. placebo. | Albuminuria progression | Lixisenatide reduces UACR in albuminuric patients |
EXSCEL | 14,752 patients 73% with CVD and T2DM | Follow-up: 3.2 years | Extended-release exenatide vs. placebo | eGFR decline by 40%, RRT or new onset of macroalbuminuria | Favored exenatide group (HR, 0.85; 95% CI, 0.73 to 0.98, p = 0.027) |
AWARD-7 | 577 patients with CKD and T2DM | Follow-up: 52 weeks | Dulaglutide vs. insulin glargine | eGFR and UACR change from baseline | Dulaglutide reduced decline in eGFR with glycemic control similar to insulin glargine |
FLOW | 3533 patients with T2DM and CKD | Follow-up: 3.4 years | Semaglutide vs. placebo | Kidney disease (a composite, onset of kidney failure, 50% reduction in eGFR or death from kidney- or CV-related causes) | Lower risk (24%) of a primary-outcome event in the semaglutide group. All secondary outcomes favored semaglutide: annual eGFR slope decreased by 1.16 mL/min/1.73 m2 (p < 0.001); major CV events were 18% lower (HR, 0.82; 95% CI, 0.68 to 0.98; p = 0.029); risk of death from any cause was 20% lower (HR = 0.80; 0.67–0.95, p = 0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doumani, G.; Theofilis, P.; Tsimihodimos, V.; Kalaitzidis, R.G. GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Game Charger in the Field? Life 2024, 14, 1478. https://doi.org/10.3390/life14111478
Doumani G, Theofilis P, Tsimihodimos V, Kalaitzidis RG. GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Game Charger in the Field? Life. 2024; 14(11):1478. https://doi.org/10.3390/life14111478
Chicago/Turabian StyleDoumani, Georgia, Panagiotis Theofilis, Vasilis Tsimihodimos, and Rigas G. Kalaitzidis. 2024. "GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Game Charger in the Field?" Life 14, no. 11: 1478. https://doi.org/10.3390/life14111478
APA StyleDoumani, G., Theofilis, P., Tsimihodimos, V., & Kalaitzidis, R. G. (2024). GLP-1 Receptor Agonists and Diabetic Kidney Disease: A Game Charger in the Field? Life, 14(11), 1478. https://doi.org/10.3390/life14111478