Disease-Specific Risk Models for Predicting Dementia: An Umbrella Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Diabetes
3.2. Stroke
3.3. Atrial Fibrillation (AF)
3.4. Heart Failure
4. Discussion
4.1. Future Directions
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 2017, 357, j2099. [Google Scholar] [CrossRef] [PubMed]
- Tang, E.Y.; Harrison, S.L.; Errington, L.; Gordon, M.F.; Visser, P.J.; Novak, G.; Dufouil, C.; Brayne, C.; Robinson, L.; Launer, L.J.; et al. Current Developments in Dementia Risk Prediction Modelling: An Updated Systematic Review. PLoS ONE 2015, 10, e0136181. [Google Scholar] [CrossRef] [PubMed]
- Stephan, B.C.; Kurth, T.; Matthews, F.E.; Brayne, C.; Dufouil, C. Dementia risk prediction in the population: Are screening models accurate? Nat. Rev. Neurol. 2010, 6, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Brain, J.; Kafadar, A.H.; Errington, L.; Kirkley, R.; Tang, E.Y.H.; Akyea, R.K.; Bains, M.; Brayne, C.; Figueredo, G.; Greene, L.; et al. What’s New in Dementia Risk Prediction Modelling? An Updated Systematic Review. Dement. Geriatr. Cogn. Dis. Extra 2024, 14, 49–74. [Google Scholar] [CrossRef]
- Stephan, B.C.; Tang, E.; Muniz-Terrera, G. Composite risk scores for predicting dementia. Curr. Opin. Psychiatry 2016, 29, 174–180. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef]
- Brain, J.; Greene, L.; Tang, E.Y.H.; Louise, J.; Salter, A.; Beach, S.; Turnbull, D.; Siervo, M.; Stephan, B.C.M.; Tully, P.J. Cardiovascular disease, associated risk factors, and risk of dementia: An umbrella review of meta-analyses. Front. Epidemiol. 2023, 3, 1095236. [Google Scholar] [CrossRef]
- Tang, E.Y.H.; Price, C.I.; Robinson, L.; Exley, C.; Desmond, D.W.; Köhler, S.; Staals, J.; Yin Ka Lam, B.; Wong, A.; Mok, V.; et al. Assessing the Predictive Validity of Simple Dementia Risk Models in Harmonized Stroke Cohorts. Stroke 2020, 51, 2095–2102. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Robertson, J.; Peterson, J.; Welch, V.; Losos, M.; Tugwel, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; John Wiley & Sons Ltd: Oxford, UK, 2000; Available online: https://cmr.cochrane.org/?CRGReportID=2972 (accessed on 25 October 2024).
- Exalto, L.G.; Biessels, G.J.; Karter, A.J.; Huang, E.S.; Katon, W.J.; Minkoff, J.R.; Whitmer, R.A. Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: A cohort study. Lancet Diabetes Endocrinol. 2013, 1, 183–190. [Google Scholar] [CrossRef]
- Li, C.I.; Li, T.C.; Liu, C.S.; Liao, L.N.; Lin, W.Y.; Lin, C.H.; Yang, S.Y.; Chiang, J.H.; Lin, C.C. Risk score prediction model for dementia in patients with type 2 diabetes. Eur. J. Neurol. 2018, 25, 976–983. [Google Scholar] [CrossRef]
- Mehta, H.B.; Mehta, V.; Tsai, C.L.; Chen, H.; Aparasu, R.R.; Johnson, M.L. Development and Validation of the RxDx-Dementia Risk Index to Predict Dementia in Patients with Type 2 Diabetes and Hypertension. J. Alzheimers Dis. 2016, 49, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Chau, Y.-L.A.; Yoo, J.W.; Zhou, J.; LiutaoGuo, C.; Wong, W.T.; Chang, C.; Liu, T.; Jeevaratnam, K.; Zhang, Q.; Tse, G.; et al. Risk factors of dementia in type 2 diabetes mellitus: The Hong Kong diabetes study. Aging Health Res. 2023, 3, 100155. [Google Scholar] [CrossRef]
- McCoy, T.H., Jr.; Han, L.; Pellegrini, A.M.; Tanzi, R.E.; Berretta, S.; Perlis, R.H. Stratifying risk for dementia onset using large-scale electronic health record data: A retrospective cohort study. Alzheimers Dement. 2020, 16, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.N.; Chao, T.F.; Liu, C.J.; Wang, K.L.; Chen, S.J.; Tuan, T.C.; Lin, Y.J.; Chang, S.L.; Lo, L.W.; Hu, Y.F.; et al. Risk and prediction of dementia in patients with atrial fibrillation--a nationwide population-based cohort study. Int. J. Cardiol. 2015, 199, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Graves, K.G.; May, H.T.; Jacobs, V.; Knowlton, K.U.; Muhlestein, J.B.; Lappe, D.L.; Anderson, J.L.; Horne, B.D.; Bunch, T.J. CHA(2)DS(2)-VASc scores and Intermountain Mortality Risk Scores for the joint risk stratification of dementia among patients with atrial fibrillation. Heart Rhythm. 2019, 16, 3–9. [Google Scholar] [CrossRef]
- Manemann, S.M.; Chamberlain, A.M.; Bielinski, S.J.; Jiang, R.; Weston, S.A.; Roger, V.L. Predicting Alzheimer’s Disease and Related Dementias in Heart Failure and Atrial Fibrillation. Am. J. Med. 2023, 136, 302–307. [Google Scholar] [CrossRef]
- Hu, W.S.; Lin, C.L. Comparison of CHA(2)DS(2)-VASc and AHEAD scores for the prediction of incident dementia in patients hospitalized for heart failure: A nationwide cohort study. Intern. Emerg. Med. 2019, 14, 395–402. [Google Scholar] [CrossRef]
- Lip, G.Y.; Nieuwlaat, R.; Pisters, R.; Lane, D.A.; Crijns, H.J. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: The euro heart survey on atrial fibrillation. Chest 2010, 137, 263–272. [Google Scholar] [CrossRef]
- Gage, B.F.; Waterman, A.D.; Shannon, W.; Boechler, M.; Rich, M.W.; Radford, M.J. Validation of clinical classification schemes for predicting stroke: Results from the National Registry of Atrial Fibrillation. JAMA 2001, 285, 2864–2870. [Google Scholar] [CrossRef]
- Spinar, J.; Jarkovsky, J.; Spinarova, L.; Mebazaa, A.; Gayat, E.; Vitovec, J.; Linhart, A.; Widimsky, P.; Miklik, R.; Zeman, K.; et al. AHEAD score--Long-term risk classification in acute heart failure. Int. J. Cardiol. 2016, 202, 21–26. [Google Scholar] [CrossRef]
- Lamport, D.J.; Lawton, C.L.; Mansfield, M.W.; Dye, L. Impairments in glucose tolerance can have a negative impact on cognitive function: A systematic research review. Neurosci. Biobehav. Rev. 2009, 33, 394–413. [Google Scholar] [CrossRef] [PubMed]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef] [PubMed]
- Tang, E.Y.; Amiesimaka, O.; Harrison, S.L.; Green, E.; Price, C.; Robinson, L.; Siervo, M.; Stephan, B.C. Longitudinal Effect of Stroke on Cognition: A Systematic Review. J. Am. Heart. Assoc. 2018, 7, e006443. [Google Scholar] [CrossRef] [PubMed]
- Pendlebury, S.T.; Rothwell, P.M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol. 2009, 8, 1006–1018. [Google Scholar] [CrossRef]
- Pendlebury, S.T.; Rothwell, P.M. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: Analysis of the population-based Oxford Vascular Study. Lancet Neurol. 2019, 18, 248–258. [Google Scholar] [CrossRef]
- Gibson, L.L.; Weintraub, D.; Lemmen, R.; Perera, G.; Chaudhuri, K.R.; Svenningsson, P.; Aarsland, D. Risk of Dementia in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Mov. Disord. 2024, 39, 1697–1709. [Google Scholar] [CrossRef]
- Tang, E.; Exley, C.; Price, C.; Stephan, B.; Robinson, L. The views of public and clinician stakeholders on risk assessment tools for post-stroke dementia: A qualitative study. BMJ Open 2019, 9, e025586. [Google Scholar] [CrossRef]
Publication | Country | Baseline Sample Followed Up (Incident Cases) | Follow-Up (Years) | Predictor Variables Include in the Model | Range Development AUC/C-Statistic Range (95% CI) for Models Incorporating One or More of the Predictor Variables | Range Validation C-Statistic/AUC a | Calibration | Main Analytical Method | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|
DIABETES | |||||||||
Exalto (2013) [10] | USA | 29,961 type 2 diabetics (5173) | 10 | Age, education, microvascular disease, diabetic foot, cerebrovascular disease, cardiovascular disease, acute metabolic event, and depression | 0.74 | 0.75 | Yes, H-L x2 = 15.1 | Cox proportional hazard model | ****** |
Li (2018) (European journal) [11] | Taiwan | 27,540 Chinese type 2 diabetics including n = 18,360 derivation dataset (853 dementia cases) and n = 1228 in the validation dataset (375 dementia cases) | Mean = 8.1 | Age, sex, diabetes duration, BMI, variation (%) fasting plasma glucose, variation (%) HBa1c, stroke, hypoglycaemia, postural hypertension, coronary artery disease, and anti-diabetes medications | 0.76 (0.75–0.77) to 0.82 (0.80–0.84) | 0.75 (0.73–0.77) to 0.84 (0.80–0.88) | H-L all p > 0.05 (Excellent fit) | Cox regression | ****** |
Mehta (2016) [12] | UK | Participants with diabetes and hypertension: 133,176 Participants with diabetes and no hypertension: 16,677 (validation sample) | 9 | Age, gender, RxDx-Dementia risk index a, Charlson comorbidity score b, chronic disease score c | Age+Gender 0.78 (0.78–0.79) RxDx-Dementia Risk Index 0.81 (0.80–0.81) Charlson comorbidity score 0.78 (0.78–0.79) Chronic Disease Score 0.79 (0.78–0.80) | Age+Gender 0.83 (0.81–0.84) RxDx-Dementia Risk Index 0.86 (0.84–0.87) Charlson comorbidity score 0.83 (0.82–0.84) Chronic Disease Score 0.83 (0.82–0.85) | RxDx-Dementia risk index H-L test < 0.001 (Poor fit) | Cox regression | ****** |
Chau (2023) [13] | Hong Kong | Type 2 diabetics | Median = 11.6 | Age, total cholesterol (mmol/L), calcium channel blocker use, diuretics, antiplatelet use, Ischemic stroke, coronary heart disease, and fasting blood glucose | 0.69 to 0.69 | NA | NR | Multivariate Cox regression | ****** |
STROKE | |||||||||
McCoy (2020) [14] | USA | Total: 267,855 (6516) Stroke: 18,681 (NR) | 8 | Age, sex, white race, Charlson comorbidity index, cognitive symptom burden score (at discharge from narrative hospital notes) | 0.59 (0.57–0.61) | NA | NR | Fine–Gray sub-distribution hazards model | ****** |
ATRIAL FIBRILLATION | |||||||||
Liao (2015) [15] | Taiwan | Participants with atrial fibrillation: 332,665 (29,012) | 15 | CHA2DS2-VASc d and CHADS2 e | NA | CHA2DS2-VASc score 0.61 (0.61–0.61) CHADS2 score 0.59 (0.59–0.59) | NR | Cox regression | ***** |
Graves (2019) [16] | USA | 74,081 (449) with atrial fibrillation | 10 | IMRS (complete blood count and basic metabolic panel) CHA2DS2-VASc score (as above) d | NR | IMRS Women Overall: 0.69 (0.60–0.79) CHA2DS2-VASc < 1: Not enough events CHA2DS2-VASc 2: Not enough events CHA2DS2-VASc: 0.63 (0.53–0.74) Men Overall: 0.68 (0.59–0.78) CHA2DS2-VASc score < 1: Not enough events CHA2DS2-VASc 2: 0.68 (0.48–0.88) CHA2DS2-VASc 3: 0.57 (0.44–0.70) CHA2DS2-VASc Women Overall: 0.73 (0.64–0.82) Low IMRS: Not enough events Moderate IMRS: 0.77 (0.66–0.87) High IMRS: 0.59 (0.41–0.76) Men Overall: 0.65 (0.54–0.77) Low IMRS: Not enough events Moderate IMRS: 0.67 (0.51–0.83) High IMRS: 0.27 (0.16–0.39) | NR | Cox regression | ****** |
Manemann (2023) [17] | USA | Atrial fibrillation patients: 4107 (736) | Mean = 3.7 | Model 1: FDRS f Model 2: Model 1 + hypertension, coronary artery disease, arrhythmia, hyperlipidemia, arthritis, asthma, chronic kidney disease, chronic pulmonary disease, depression, osteoporosis, schizophrenia, and substance abuse disorder, sex, ejection fraction, smoking, education | NA | Model 1 0.74 (0.72–0.76) Model 2 0.76 (0.74–0.78) | Group-based measure of calibration indicated a mean standardised incidence ration of 0.994 (well-calibrated) | Cox proportional hazard model | ****** |
HEART FAILURE | |||||||||
Hu (2019) Comparison of CHA2 [18] | Taiwan | Heart failure patients: 387,595 (NR) | Mean = 2.91 | CHA2DS2-VASc d AHEAD g | CHA2DS2-VASc 0.61 (0.60–0.61) AHEAD 0.55 (0.54–0.55) | NA | NR | Cox proportional hazard model and Fine and Gray analysis (LASSO selection) | **** |
Manemann (2023) [17] | USA | Heart failure patients: 3052 (626) | Mean = 3.5 | Model 1: FDRS f Model 2: Model 1 + hypertension, coronary artery disease, heart failure, hyperlipidemia, arthritis, asthma, chronic kidney disease, chronic pulmonary disease, depression, osteoporosis, schizophrenia, and substance abuse disorder, sex, smoking, and education | NA | Model 1 0.69 (0.66–0.72) Model 2 0.72 (0.69–0.74) | Group-based measure of calibration indicated a mean standardised incidence ration of 0.988 (well-calibrated) | Cox proportional hazard model | ****** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, E.Y.H.; Brain, J.; Sabatini, S.; Pakpahan, E.; Robinson, L.; Alshahrani, M.; Naheed, A.; Siervo, M.; Stephan, B.C.M. Disease-Specific Risk Models for Predicting Dementia: An Umbrella Review. Life 2024, 14, 1489. https://doi.org/10.3390/life14111489
Tang EYH, Brain J, Sabatini S, Pakpahan E, Robinson L, Alshahrani M, Naheed A, Siervo M, Stephan BCM. Disease-Specific Risk Models for Predicting Dementia: An Umbrella Review. Life. 2024; 14(11):1489. https://doi.org/10.3390/life14111489
Chicago/Turabian StyleTang, Eugene Yee Hing, Jacob Brain, Serena Sabatini, Eduwin Pakpahan, Louise Robinson, Maha Alshahrani, Aliya Naheed, Mario Siervo, and Blossom Christa Maree Stephan. 2024. "Disease-Specific Risk Models for Predicting Dementia: An Umbrella Review" Life 14, no. 11: 1489. https://doi.org/10.3390/life14111489
APA StyleTang, E. Y. H., Brain, J., Sabatini, S., Pakpahan, E., Robinson, L., Alshahrani, M., Naheed, A., Siervo, M., & Stephan, B. C. M. (2024). Disease-Specific Risk Models for Predicting Dementia: An Umbrella Review. Life, 14(11), 1489. https://doi.org/10.3390/life14111489