The Potential of Agaricus bisporus in Mitigating Pesticide-Induced Oxidative Stress in Honey Bees Infected with Nosema ceranae
Abstract
:1. Introduction
- Investigating the mechanisms of oxidative stress;
- Specifically detecting paramagnetic species such as reactive oxygen species (ROS);
- High spectral resolution;
- Time-resolved studies of kinetic processes. When the organism’s antioxidative defenses against ROS are not sufficiently effective, the result is oxidative and energetic stress, an imbalance between oxidative and antioxidative species. Although ROS are crucial messengers to immune cells and accomplish other essential tasks, they can kill too many host cells by reacting with many molecules, such as DNA and RNA, and cell structures such as lipid membranes [23]. When needed, antioxidant enzymes combat ROS. The most frequently used markers of oxidative stress in bee research are the concentration of malondialdehyde (MDA) and the activity of the antioxidative enzymes: catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase (SOD) [24,25,26,27,28].
2. Materials and Methods
2.1. The Tested Preparations
2.1.1. Agaricus Bisporus Extract
2.1.2. Pesticides
2.2. Bees and the Experimental Design
2.3. Inoculum Preparation and Experimental Infection
2.4. Bee Sampling
2.5. Nosema Spore Counting
2.6. Antioxidant Activity of Tested Preparations
2.6.1. Reagents and General Experimental Procedures
2.6.2. Determination of the Scavenging Activity Toward the DPPH Radicals
2.6.3. Determination of the Scavenging Activity Toward the •OH Radicals
2.7. Analyses of Oxidative Stress Parameters in Bees
2.8. Statistical Analyses
3. Results
3.1. Bee Survival
3.2. Number of Nosema Spores
3.3. Antioxidant Activity of Testing Solutions
3.3.1. Scavenging Activity Toward DPPH Radicals
3.3.2. Scavenging Activity Toward •OH Radicals
3.4. Results of Oxidative Stress Parameters in Bees
3.4.1. Catalase Activity
3.4.2. Superoxide Dismutase Activity
3.4.3. Glutathione S-Transferase Activity
3.4.4. Malondialdehyde Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paudel, Y.P.; Mackereth, R.; Hanley, R.; Qin, W. Honey bees (Apis mellifera L.) and pollination issues: Current status, impacts, and potential drivers of decline. J. Agric. Sci. 2015, 7, 93. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef]
- Stanimirović, Z.; Glavinić, U.; Ristanić, M.; Aleksić, N.; Jovanović, N.M.; Vejnović, B.; Stevanović, J. Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Vet. 2019, 69, 1–31. [Google Scholar] [CrossRef]
- Sanchez-Bayo, F.; Goka, K. 2 Pesticide residues and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.M.; Camilo, G.R.; Tonietto, R.K.; Ollerton, J.; Ahrné, K.; Arduser, M.; Threlfall, C.G. The city as a refuge for insect pollinators. Conserv. Biol. 2017, 31, 24–29. [Google Scholar] [CrossRef]
- Fries, I. Nosema ceranae in European honey bees (Apis mellifera). J. Invertebr. Pathol. 2010, 103, S73–S79. [Google Scholar] [CrossRef]
- Higes, M.; Meana, A.; Bartolomé, C.; Botías, C.; Martín-Hernández, R. Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen. Environ. Microbiol. Rep. 2013, 5, 17–29. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Evans, J.D.; Li, W.; Branchiccela, B.; Li, J.H.; Heerman, M.C.; Chen, Y.P. Nosemosis control in European honey bees, Apis mellifera, by silencing the gene encoding Nosema ceranae polar tube protein 3. J. Exp. Biol. 2018, 221, jeb184606. [Google Scholar] [CrossRef]
- Goblirsch, M. Nosema ceranae disease of the honey bee (Apis mellifera). Apidologie 2018, 49, 131–150. [Google Scholar] [CrossRef]
- Higes, M.; García-Palencia, P.; Urbieta, A.; Nanetti, A.; Martín-Hernández, R. Nosema apis and Nosema ceranae tissue tropism in worker honey bees (Apis mellifera). Vet. Pathol. 2020, 57, 132–138. [Google Scholar] [CrossRef]
- Chrustek, A.; Hołyńska-Iwan, I.; Dziembowska, I.; Bogusiewicz, J.; Wróblewski, M.; Cwynar, A.; Olszewska-Słonina, D. Current research on the safety of pyrethroids used as insecticides. Medicina 2018, 54, 61. Available online: https://www.mdpi.com/1648-9144/54/4/61# (accessed on 2 October 2024). [CrossRef]
- Xiao, J.; He, Q.; Liu, Q.; Wang, Z.; Yin, F.; Chai, Y.; Cao, H. Analysis of honey bee exposure to multiple pesticide residues in the hive environment. Sci. Total Environ. 2022, 805, 150292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Li, Y.; Jeang, B.; Wang, X.; Cummings, R.F.; Zhong, D.; Yan, G. Emerging mosquito resistance to piperonyl butoxide-synergized pyrethroid insecticide and its mechanism. J. Med. Entomol. 2022, 59, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Ravula, A.R.; Yenugu, S. Pyrethroid based pesticides–chemical and biological aspects. Crit. Rev. 2021, 51, 117–140. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, Y.; Tijjani, H.; Egbuna, C.; Adetunji, C.O.; Kala, S.; Kryeziu, T.L.; Patrick-Iwuanyanwu, K.C. Pesticides, history, and classification. In Natural Remedies for Pest, Disease and Weed Control; Elsevier: Amsterdam, The Netherlands, 2020; pp. 29–42. [Google Scholar]
- Pokhrel, V.; DeLisi, N.A.; Danka, R.G.; Walker, T.W.; Ottea, J.A.; Healy, K.B. Effects of truck-mounted, ultra low volume mosquito adulticides on honey bees (Apis mellifera) in a suburban field setting. PLoS ONE 2018, 13, e0193535. [Google Scholar] [CrossRef] [PubMed]
- Gajendiran, A.; Abraham, J. An overview of pyrethroid insecticides. Front. Biol. 2018, 13, 79–90. [Google Scholar] [CrossRef]
- Dworzańska, D.; Moores, G.; Zamojska, J.; Strażyński, P.; Węgorek, P. The influence of acetamiprid and deltamethrin on the mortality and behaviour of honeybees (Apis mellifera carnica Pollman) in oilseed rape cultivations. Apidologie 2020, 51, 1143–1154. [Google Scholar] [CrossRef]
- Oliver, C.J.; Softley, S.; Williamson, S.M.; Stevenson, P.C.; Wright, G.A. Pyrethroids and nectar toxins have subtle effects on the motor function, grooming and wing fanning behaviour of honeybees (Apis mellifera). PLoS ONE 2015, 10, e0133733. [Google Scholar] [CrossRef] [PubMed]
- Basak, M.; Ahmed Choudhury, R.; Goswami, P.; Kumar Dey, B.; Ahmed Laskar, M. A Review on Non-target Toxicity of Deltamethrin and Piperonyl Butoxide: Synergist. J. Pharm. Res. Int. 2021, 33, 85–89. [Google Scholar] [CrossRef]
- Belzunces, L.P.; Tchamitchian, S.; Brunet, J.L. Neural effects of insecticides in the honey bee. Apidologie 2020, 43, 348–370. [Google Scholar] [CrossRef]
- Christen, V.; Joho, Y.; Vogel, M.; Fent, K. Transcriptional and physiological effects of the pyrethroid deltamethrin and the organophosphate dimethoate in the brain of honey bees (Apis mellifera). Environ. Pollut. 2019, 244, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, T.; Kojima, Y.; Toki, T.; Komeda, Y.; Yoshiyama, M.; Kimura, K.; Nirasawa, K.; Kadowaki, T. The habitat disruption induces immune-suppression and oxidative stress in honey bees. Ecol. Evol. 2011, 1, 201–217. [Google Scholar] [CrossRef]
- Glavinic, U.; Stevanovic, J.; Ristanic, M.; Rajkovic, M.; Davitkov, D.; Lakic, N.; Stanimmirovic, Z. Potential of fumagillin and Agaricus blazei mushroom extract to reduce Nosema ceranae in honey bees. Insects 2021, 12, 282. [Google Scholar] [CrossRef] [PubMed]
- Glavinic, U.; Rajkovic, M.; Vunduk, J.; Vejnovic, B.; Stevanovic, J.; Milenkovic, I.; Stanimirovic, Z. Effects of Agaricus bisporus mushroom extract on honey bees infected with Nosema ceranae. Insects 2021, 12, 915. [Google Scholar] [CrossRef] [PubMed]
- Glavinic, U.; Blagojevic, J.; Ristanic, M.; Stevanovic, J.; Lakic, N.; Mirilovic, M.; Stanimirovic, Z. Use of thymol in Nosema ceranae control and health improvement of infected honey bees. Insects 2022, 13, 574. [Google Scholar] [CrossRef]
- Glavinic, U.; Jovanovic, N.M.; Dominikovic, N.; Lakic, N.; Ćosić, M.; Stevanovic, J.; Stanimirovic, Z. Potential of wormwood and oak bark-based supplement in health improvement of Nosema ceranae-infected honey bees. Animals 2024, 14, 1195. [Google Scholar] [CrossRef]
- Liu, T.; Sun, L.; Zhang, Y.; Wang, Y.; Zheng, J. Imbalanced GSH/ROS and sequential cell death. J. Biochem. Mol. Toxicol. 2022, 36, e22942. [Google Scholar] [CrossRef]
- Klaus, A.; Kozarski, M.; Niksic, M.; Jakovljevic, D.; Todorovic, N.; Van Griensven, L.D. Antioxidative activities and chemical char-acterization of polysaccharides extracted from the basidiomycete Schizophyllum commune. LWT-Food Sci. Technol. 2011, 44, 2005–2011. [Google Scholar] [CrossRef]
- Rajkovic, M.; Stanimirovic, Z.; Stevanovic, J.; Ristanic, M.; Vejnovic, B.; Goblirsch, M.; Glavinic, U. Evaluation of genotoxic and genoprotective effects of Agaricus bisporus extract on AmE-711 honey bee cell line in the Comet assay. J. Apic. Res. 2022, 63, 769–777. [Google Scholar] [CrossRef]
- Ramirez-Romero, R.; Chaufaux, J.; Pham-Delègue, M.H. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 2005, 36, 601–611. [Google Scholar] [CrossRef]
- Williamson, S.M.; Wright, G.A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honey-bees. J. Exp. Biol. 2013, 216, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- Fries, I.; Chauzat, M.P.; Chen, Y.P.; Doublet, V.; Genersch, E.; Gisder, S.; Higes, M.; McMahon, P.D.; Martín-Hernández, R.; Natsopoulou, M.; et al. Standard methods for Nosema research. J. Apicult. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Cantwell, G.E. Standard methods for counting Nosema spores. Am. Bee J. 1970, 110, 222–223. [Google Scholar]
- OIE–Office International Des Epizooties. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Chapter 2.2.4. Nosemosis of Honey Bees. 2018. Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.02.04_NOSEMOSIS_FINAL.pdf (accessed on 30 August 2021).
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Sanna, D.; Delogu, G.; Mulas, M.; Schirra, M.; Fadda, A. Determination of Free Radical Scavenging Activity of Plant Extracts Through DPPH Assay: An EPR and UV-Vis Study. Food Anal. Methods 2011, 5, 759–766. [Google Scholar] [CrossRef]
- Giordano, A.; Morales-Tapia, P.; Moncada-Basualto, M.; Pozo-Martínez, J.; Olea-Azar, C.; Nesic, A.; Cabrera-Barjas, G. Polyphenolic composition and antioxidant activity (ORAC, EPR and cellular) of different extracts of Argylia radiate vitroplants and natural roots. Molecules 2022, 27, 610. [Google Scholar] [CrossRef]
- Savic, A.G.; Mojovic, M. Free radicals identification from the complex EPR signals by applying higher order statistics. Anal. Chem. 2012, 84, 3398–3402. [Google Scholar] [CrossRef]
- Ilangovan, G.; Venkatakrishnan, C.D.; Bratasz, A.; Osinbowale, S.; Cardounel, A.J.; Zweier, J.L.; Kuppusamy, P. Heat shock-induced attenuation of hydroxyl radical generation and mitochondrial aconitase activity in cardiac H9c2 cells. Am. J. Physiol. Cell Physiol. 2006, 290, 313–324. [Google Scholar] [CrossRef]
- Villamena, F.A.; Hadad, C.M.; Zweier, J.L. Kinetic study and theoretical analysis of hydroxyl radical trapping and spin adduct decay of alkoxycarbonyl and dialkoxyphosphoryl nitrones in aqueous media. J. Phys. Chem. 2003, 107, 4407–4414. [Google Scholar] [CrossRef]
- Dubovskiy, I.M.; Martemyanov, V.V.; Vorontsova, Y.L.; Rantala, M.J.; Gryzanova, E.V.; Glupov, V.V. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp. Biochem. Physiol. 2008, 148, 1–5. [Google Scholar] [CrossRef]
- Mortensen, A.N.; Jack, C.J.; Bustamante, T.A.; Schmehl, D.R.; Ellis, J.D. Effects of supplemental pollen feeding on honey bee (Hymenoptera: Apidae) colony strength and Nosema spp. infection. J. Econ. Entomol. 2019, 1121, 60–66. [Google Scholar] [CrossRef]
- Gajger, I.T.; Vugrek, O.; Pinter, L.; Petrinec, Z. “Nozevit patties” treatment of honey bees (Apis mellifera) for the control of Nosema ceranae disease. J. Apic. Res. 2009, 149, 1053–1056. [Google Scholar]
- Gajger, I.T.; Petrinec, Z.; Pinter, L.; Kozari’c, Z. Experimental treatment of nosema disease with “Nozevit” phyto-pharmacological preparation. Am. Bee J. 2010, 149, 485–490. [Google Scholar]
- Glavinić, U.; Džogović, D.; Jelisić, S.; Ristanić, M.; Zorc, M.; Aleksić, N.; Stanimirović, Z. Oxidative status of honey bees infected with Nosema ceranae microsporidium and supplemented with Agaricus bisporus mushroom extract. Vet. Glas. 2023, 77, 35–50. [Google Scholar] [CrossRef]
- Romero, A.; Potter, M.F.; Haynes, K.F. Evaluation of piperonyl butoxide as a deltamethrin synergist for pyrethroid-resistant bed bugs. J. Econ. Entomol. 2009, 102, 2310–2315. [Google Scholar] [CrossRef]
- Brattsten, L.B. Enzymic adaptations in leaf-feeding insects to host-plant allelochemicals. J. Chem. Ecol. 1988, 14, 1919–1939. [Google Scholar] [CrossRef]
- Hsu, J.C.; Feng, H.T.; Wu, W.J. Resistance and synergistic effects of insecticides in Bactrocera dorsalis (Diptera: Tephritidae) in Taiwan. J. Econ. Entomol. 2004, 97, 1682–1688. [Google Scholar] [CrossRef]
- Waliwitiya, R.; Nicholson, R.A.; Kennedy, C.J.; Lowenberger, C.A. The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2012, 49, 614–623. [Google Scholar] [CrossRef]
- Emad, A.M.; Ali, S.F.; Meselhy, M.R.; Sattar, E.A. Comparative antioxidant activities of selected apiaceous plants using EPR technique. Pharmacogn. Mag. 2019, 11, 1359–1364. [Google Scholar] [CrossRef]
- Amin, K.A.; Hashem, K.S. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): Antioxidant defense and role of alpha-tocopherol. BMC Vet. Res. 2012, 8, 45. [Google Scholar] [CrossRef]
- Lu, Q.; Sun, Y.; Ares, I.; Anadón, A.; Martínez, M.; Martínez-Larrañaga, M.R.; Martínez, M.A. Deltamethrin toxicity: A review of oxidative stress and metabolism. Environ. Res. 2019, 170, 260–281. [Google Scholar] [CrossRef] [PubMed]
- Olgun, T.; Dayıoğlu, M.; Özsoy, N. Pesticide and pathogen induced oxidative stress in honey bees (Apis mellifera L.). Mellifera 2020, 20, 32–52. [Google Scholar]
- Li, H.Y.; Wu, S.Y.; Ma, Q.; Shi, N. The pesticide deltamethrin increases free radical production and promotes nuclear translocation of the stress response transcription factor Nrf2 in rat brain. Toxicol. Ind. Health 2011, 27, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Arslan, P. Pyrethroid-induced oxidative stress and biochemical changes in the primary mussel cell cultures. Environ. Sci. Pollut. Res. Int. 2023, 30, 48484–48490. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.; Refai, H.; El Sayed, N. Superparamagnetic iron oxide–loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. J. Pharm. Sci. 2018, 107, 2119–2127. [Google Scholar] [CrossRef]
- Smith, G.X., Jr. The Effects of Sublethal Exposure to Thiamethoxam on the Behavior of Individual Honey Bee Foragers; University of California, Davis: Davis, CA, USA, 2015. [Google Scholar]
- Yadav, K.; Rabha, B.; Dhiman, S.; Veer, V. Multi-insecticide susceptibility evaluation of dengue vectors Stegomyia albopicta and St. aegypti in Assam, India. Parasit. Vectors 2015, 8, 143. [Google Scholar] [CrossRef]
- Khan, R.U.; Rahman, Z.; Javed, I.; Muhammad, F. Supplementation of vitamins, probiotics and proteins on oxidative stress, enzymes and hormones in post-moult male broiler breeders. Arch. Anim. Breed. 2013, 56, 607–616. [Google Scholar] [CrossRef]
- Poljsak, B. Strategies for reducing or preventing the generation of oxidative stress. Oxid. Med. Cell. Longev. 2011, 2011, 194586. [Google Scholar] [CrossRef]
- Mrema, E.J.; Rubino, F.M.; Brambilla, G.; Moretto, A.; Tsatsakis, A.M.; Colosio, C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 2013, 307, 74–88. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M.; Storey, K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018, 17, 1101–1136. [Google Scholar] [CrossRef]
- Schneider, K.; Barreiro-Hurle, J.; Rodriguez-Cerezo, E. Pesticide reduction amidst food and feed security concerns in Europe. Nat. Food 2023, 4, 746–750. [Google Scholar] [CrossRef] [PubMed]
- Salerno, G.; Rebora, M.; Gorb, E.; Gorb, S. Mechanoecology: Biomechanical aspects of insect-plant interactions. J. Comp. Physiol. 2024, 210, 249–265. [Google Scholar] [CrossRef] [PubMed]
Groups 1 | Nosema ceranae 2 | Deltamethrin 2 | Deltamethrin and Piperonyl Butoxide 2 | Agaricus bisporus 2 |
---|---|---|---|---|
NT | Non-treated group | |||
D | 3 | |||
DPb | 3 | |||
N | 3 | |||
Ab | 1 | |||
N-Ab | 3 | 1 | ||
N-D | 3 | 3 | ||
N-DPb | 3 | 3 | ||
D-Ab | 3 | 1 | ||
DPb-Ab | 3 | 1 | ||
N-D-Ab | 3 | 3 | 1 | |
N-DPb-Ab | 3 | 3 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelisić, S.; Stanimirović, Z.; Ristanić, M.; Nakarada, Đ.; Mojović, M.; Bošnjaković, D.; Glavinić, U. The Potential of Agaricus bisporus in Mitigating Pesticide-Induced Oxidative Stress in Honey Bees Infected with Nosema ceranae. Life 2024, 14, 1498. https://doi.org/10.3390/life14111498
Jelisić S, Stanimirović Z, Ristanić M, Nakarada Đ, Mojović M, Bošnjaković D, Glavinić U. The Potential of Agaricus bisporus in Mitigating Pesticide-Induced Oxidative Stress in Honey Bees Infected with Nosema ceranae. Life. 2024; 14(11):1498. https://doi.org/10.3390/life14111498
Chicago/Turabian StyleJelisić, Stefan, Zoran Stanimirović, Marko Ristanić, Đura Nakarada, Miloš Mojović, Dušan Bošnjaković, and Uroš Glavinić. 2024. "The Potential of Agaricus bisporus in Mitigating Pesticide-Induced Oxidative Stress in Honey Bees Infected with Nosema ceranae" Life 14, no. 11: 1498. https://doi.org/10.3390/life14111498
APA StyleJelisić, S., Stanimirović, Z., Ristanić, M., Nakarada, Đ., Mojović, M., Bošnjaković, D., & Glavinić, U. (2024). The Potential of Agaricus bisporus in Mitigating Pesticide-Induced Oxidative Stress in Honey Bees Infected with Nosema ceranae. Life, 14(11), 1498. https://doi.org/10.3390/life14111498