The Role of the Six-Minute Walk Test in the Functional Evaluation of the Efficacy of Rehabilitation Programs After COVID-19
Abstract
:1. Introduction
2. Materials and Methods
- Age between 18 and 80 years;
- History of COVID-19, presented to the department 3 to 6 months after confirmed infection (via PCR or rapid antigen test), exhibiting post-viral symptoms, such as fatigue, decreased exercise tolerance, reduced global muscle strength, and exertional dyspnea, impacting functional walking tests;
- Stable patients with the ability to move (with or without a cane);
- Subjects evaluated at admission for biological laboratory analyses including the following: 25-hydroxy Vitamin D (25 OH Vit D), total calcium (total Ca), creatine kinase (CK), creatinine, D-dimers, fibrinogen, glucose, glycated hemoglobin (glycosylated HGB), leukocytes, hematocrit, erythrocytes, platelets, hemoglobin, C-reactive protein (PCR), total proteins, alanine aminotransferase (TGP), aspartate aminotransferase (TGO), urea, erythrocyte sedimentation rate (ESR), imaging (chest radiography), and functional perspectives (6MWT with dyspnea evaluation using the Borg scale, blood pressure, pulse, and oxygen saturation);
- Subjects who followed a complex rehabilitation treatment program and were re-evaluated functionally using the same tests/scales at admission for comparison.
- Exclusion Criteria:
- Age below 18 years or above 80 years;
- Incomplete data for evaluations specified within the inclusion criteria (biological, imaging, and functional assessments);
- Abnormal clinical evaluation values at admission, including blood pressure, pulse, and oxygen saturation at rest;
- Coexisting diseases affecting various systems that prevent the full implementation of the prescribed rehabilitation program or result in non-compliance with the treatment.
2.1. The 6-Minute Walk Test (6MWT)
- For men: 6 MWT (meters) = 7.57 × Height (cm) − 5.03 × Age (years) − 1.76 × Weight (kg) − 309
- For women: 6 MWT (meters) = 2.11 × Height (cm) − 5.78 × Age (years) − 2.29 × Weight (kg) − 667
2.2. The Borg Scale
- -
- Subgroup 1 consisted of 18 patients with musculoskeletal disorders who underwent a rehabilitation program that included High-Intensity Laser Therapy (HILT) and physiotherapy;
- -
- Subgroup 2 consisted of 15 patients without musculoskeletal disorders who received only physiotherapy as part of their rehabilitation program.
- -
- Lung training: exercises to expand the chest and strengthen the diaphragm;
- -
- Musculoskeletal system training: stretching exercises for the muscular and fascial chains;
- -
- Strength training: exercises to tone various muscle groups;
- -
- Balance training: static balance exercises on unstable surfaces and dynamic exercises such as walking over obstacles or resisting an elastic band;
- -
- Aerobic training: therapeutic exercises using an ergometric bicycle, treadmill, or stepper.
2.3. Research Hypotheses
3. Results
- -
- Age with walking distance at admission (p < 0.01, r = −0.636) and discharge (p < 0.01, r = −0.541);
- -
- Age with oxygenation at admission (p < 0.01, r = −0.527) and discharge (p < 0.01, r = −0.552);
- -
- Age with cardiac involvement (p < 0.01, r = 0.499);
- -
- BMI with exertion at admission (p < 0.01, r = 0.506) and with lung damage (p < 0.01, r = 0.482);
- -
- The 6MWT distance at admission with exertion at admission (p < 0.05, r = −0.403), lung damage (p < 0.05, r = −0.399), D-dimers (p < 0.01, r = −0.620), and fibrinogen (p < 0.01, r = −0.438);
- -
- The 6MWT distance at discharge with 6MWT at admission (p < 0.01, r = 0.893), exertion at admission (p < 0.01, r = −0.449) and at discharge (p < 0.05, r = −0.362), with lung damage (p < 0.05, r = −0.459), and D-dimers (p < 0.01, r = −0.576);
- -
- O2 saturation at discharge with O2 saturation at admission (p < 0.01, r = 0.613) and with cardiac damage (p < 0.01, r = −0.530);
- -
- Exertion at admission with exertion at discharge (p < 0.01, r = 0.810), cardiac damage (p < 0.05, r = 0.389), and Fibrinogen (p < 0.05, r = 0.474);
- -
- Exertion at discharge with cardiac damage (p < 0.05, r = 0.382);
- -
- Lung damage with cardiac damage (p < 0.05, r = 0.430);
- -
- Musculoskeletal damage with neurological damage (p < 0.05, r = 0.456);
- -
- HILT with distance at discharge (p < 0.01, r = −0.692) and with yield distance (p < 0.01, r = −0.666);
- -
- On patients with no HILT: 6MWT distance at admission with age (p < 0.01, r = −0.710), 6MWT distance at discharge with distance at admission (p < 0.01, r = 0.912), and age (p < 0.01, r = −0.585).
4. Discussion
4.1. Impact of Age on Functional Outcomes
4.2. Influence of BMI on Exertion and Lung Damage
4.3. Correlation Between 6MWT Performance and Inflammatory Markers
4.4. Role of HILT in Rehabilitation
4.5. Musculoskeletal and Neurological Impacts
4.6. The 6MWT as a Sensitive Indicator of Recovery
4.7. Variation in Perceived Exertion During Physical Activity
4.8. Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babliuk, L.; Fediaeva, S.; Babova, I.; Mesoedova, V.; Tamazlykar, S. Rehabilitation of Post-COVID Patients with Chronic Fatigue and Cognitive Disorders Syndromes. Balneo PRM Res. J. 2022, 13, 497. [Google Scholar] [CrossRef]
- Hamdan, A.; Eastaugh, J.; Snygg, J.; Naidu, J.; Alhaj, I. Coping Strategies Used by Healthcare Professionals during COVID-19 Pandemic in Dubai: A Descriptive Cross-Sectional Study. Narra X 2023, 1, e71. [Google Scholar] [CrossRef]
- Attaway, A.H.; Scheraga, R.G.; Bhimraj, A.; Biehl, M.; Hatipoğ Lu, U. Severe COVID-19 Pneumonia: Pathogenesis and Clinical Management. BMJ 2021, 372, e247. [Google Scholar] [CrossRef]
- Silawal, S.; Gögele, C.; Pelikan, P.; Werner, C.; Levidou, G.; Mahato, R.; Schulze-Tanzil, G. A Histological Analysis and Detection of Complement Regulatory Protein CD55 in SARS-CoV-2 Infected Lungs. Life 2024, 14, 1058. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, A.; Vashisht, V.; Singh, H.; Ahluwalia, P.; Mondal, A.K.; Williams, C.; Farmaha, J.; Woodall, J.; Kolhe, R. Neurological Complications of COVID-19: Unraveling the Pathophysiological Underpinnings and Therapeutic Implications. Viruses 2024, 16, 1183. [Google Scholar] [CrossRef]
- Nica, S.; Nica, R.I.; Nica, H.A.; Miricescu, D.; Abdelfatah, M.A.A.K.; Schiopu, O.M.; Nedelcu, I.C.; Cimponeriu, D.G.; Stefani, C.; Stanescu-Spinu, I.-I.; et al. Characteristics of Patients with Persistent COVID-19 Symptoms and Unscheduled Return Visits to a Centre for COVID-19 Evaluation. Diseases 2024, 12, 199. [Google Scholar] [CrossRef]
- Bodey, R.; Grimaldi, J.; Tait, H.; Godfrey, B.; Witton, S.; Shardha, J.; Tarrant, R.; Sivan, M. How Long Is Long COVID? Evaluation of Long-Term Health Status in Individuals Discharged from a Specialist Community Long COVID Service. J. Clin. Med. 2024, 13, 5817. [Google Scholar] [CrossRef]
- Munteanu, C.; Păun, D.-L.; Șuță, A.-M.; Florescu, S.A.; Onose, G. Diabetes Mellitus and COVID-19 in the Post-Acute Phase Patients—Possible Links with Physical and Rehabilitation Medicine and Balneotherapy. Balneo Res. J. 2020, 11, 350–367. [Google Scholar] [CrossRef]
- Stanescu, I.; Bulboaca, A.; Cordos, A.I.; Fodor, D.; Bulboaca, A.E. Rehabilitation Challenges in COVID-19 Induced Acute Polyradiculoneuropathies. Balneo PRM Res. J. 2021, 12, 94–98. [Google Scholar] [CrossRef]
- Silisteanu, S.C.; Antonescu, E.; Duica, L. Strategies for the Recovery of Patients with Post Stroke Sequelae in the Context of the COVID-19 Pandemic. Balneo Res. J. 2020, 11, 507–511. [Google Scholar] [CrossRef]
- Cristea, A.A.; Ionescu, T.; Spînu, A.; Ion, A.; Popescu, C.; Onose, G. Clinical Particularities Regarding Rehabilitation Treatment of a Young Patient with Right Pontine Ischemic Stroke, Resulting in Dysarthria and Left Side Brachial and Crural Hemiparesis, and Quite Recent COVID-19 History. Balneo PRM Res. J. 2022, 13, 484. [Google Scholar] [CrossRef]
- Brumă, E.; Onose, G.; Ciobanu, V. Research on Clinical-Paraclinical and Evolutive Aspects in Patients with Post Spinal Cord Injury (SCI) Statuses and Covid-19—A Systematic Literature Review. Balneo PRM Res. J. 2023, 14, 538. [Google Scholar] [CrossRef]
- Băilă, M.; Spînu, A.; Popescu, C.; Zamfir, C.; Constantin, E.; Brumă, E.; Raducanu, C.; Petre, Ş.; Onose, G. Neuromuscular Rehabilitation Interventions and COVID-19 Management in a Case of Incomplete Paraplegia with Neurogenic Bladder, Post T3-T5 Ependymoma. Balneo PRM Res. J. 2022, 13, 479. [Google Scholar] [CrossRef]
- Trandafir, A.I.; Onose, G.; Munteanu, C.; Băila, M.; Saglam, A.O.; Mandu, M.; Săulescu, I.; Grădinaru, E.; Bojincă, V.C. Particularities Regarding Clinical-Biological and Evolutive Parameters of Immune-Mediated Rheumatic Diseases in Patients with COVID-19—Systematic Literature Review. Balneo PRM Res. J. 2023, 14, 562. [Google Scholar] [CrossRef]
- Carsote, M.; Stanciu, M.; Popa, F.L.; Sima, O.C.; Caraban, B.M.; Dumitrascu, A.; Iliescu, M.G.; Nistor, C. Domestic Fall—Related Multiple Osteoporotic Vertebral Frac-Tures: Considerations amid Late COVID-19 Pandemic (a Case on Point). Balneo PRM Res. J. 2023, 14, 637. [Google Scholar] [CrossRef]
- Ciumărnean, L.; Milaciu, M.V.; Orășan, O.H.; Para, I.; Leach, N.V.; Vesa, Ș.C.; Rebeleanu, C.; Hirișcău, E.I.; Dogaru, G.B. The COVID-19 Pandemic Has Revealed an Increase in Cancer Diagnoses and a Decrease in Prehabilitation Programs among Patients in Transylvania. Balneo PRM Res. J. 2023, 14, 600. [Google Scholar] [CrossRef]
- Sabău, A.-H.; Cocuz, I.-G.; Niculescu, R.; Tinca, A.C.; Szoke, A.R.; Lazar, B.-A.; Chiorean, D.M.; Cotoi, O.S. The Impact of the COVID-19 Pandemic on Melanoma Diagnosis: A Single-Center Study. Diagnostics 2024, 14, 2032. [Google Scholar] [CrossRef]
- Dickson, M.C.; Skrepnek, G.H. Association between Priority Conditions and Access to Care, Treatment of an Ongoing Condition, and Ability to Obtain Prescription Medications among Medicare Beneficiaries during the COVID-19 Pandemic. COVID 2023, 4, 13–22. [Google Scholar] [CrossRef]
- Sporea, C.; Florescu, M.S.; Orzan, O.A.; Cristescu, I. Improving the Perspectives on Quality of Life for Adolescents with Cerebral Palsy by Medical Textile. Ind. Textila 2020, 71, 81–90. [Google Scholar] [CrossRef]
- Mutiawati, E.; Kusuma, H.I.; Fathima, R.; Syahrul, S.; Musadir, N. A Comparison Study of Headache Characteristics and Headache-Associated Quality-of-Life of COVID-19 and Non-COVID-19 Patients. Narra J. 2022, 2, e93. [Google Scholar] [CrossRef]
- Apostol, O.A.; Morcov, M.V.; Sporea, C.; Morcov, M.; Morcov, C.G.; Cioca, I.E. Findings Regarding the Relationship between Parenting Styles and Sociodemographic Parameters in Families Having Children with Cerebral Palsy. Balneo PRM Res. J. 2023, 14, 619. [Google Scholar] [CrossRef]
- Morcov, M.V.; Padure, L.; Morcov, C.G.; Onose, G. Further Detailed Objectification within Comparative Analysis of Quality of Life—Based on Some Sociodemographic Characteris-Tics/Parameters and Related Statistical Analysis—Between Mothers of Children with Congenital versus Acquired Neuropathology. Balneo PRM Res. J. 2022, 13, 517. [Google Scholar] [CrossRef]
- Morcov, M.V.; Pădure, L.; Morcov, C.G.; Mirea, A.; Ghiță, M.; Onose, G. Comparative Analysis of the Quality of Life in Families with Children or Adolescents Having Congenital versus Acquired Neuropathology. Children 2022, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Burcea, C.-C.; Oancea, M.-D.-A.; Tache-Codreanu, D.-L.; Georgescu, L.; Neagoe, I.-C.; Sporea, C. The Benefits of a Rehabilitation Program Following Medial Patellofemoral Ligament Reconstruction. Life 2024, 14, 1355. [Google Scholar] [CrossRef]
- Sporea, C.; Morcov, M.V.; Morcov, M.; Mirea, A. Effectiveness of Passive Movement Training in Patients with Cerebral Palsy: A Comparative Analysis of Robot-Assisted Therapy and Electrical Stimulation in Hand Rehabilitation. Balneo PRM Res. J. 2023, 14, 623. [Google Scholar] [CrossRef]
- Academy of Neurologic Physical Therapy Core Measure: Six Minute Walk Test (6MWT). Available online: https://neuropt.org/docs/default-source/cpgs/core-outcome-measures/core-outcome-measures-documents-july-2018/6mwt_protocol.pdf?sfvrsn=fc325343_2 (accessed on 30 September 2024).
- Shirley Ryan AbilityLab. 6 Minute Walk Test. Available online: https://www.sralab.org/rehabilitation-measures/6-minute-walk-test (accessed on 30 September 2024).
- Ferreira, M.B.; Saraiva, F.A.; Fonseca, T.; Costa, R.; Marinho, A.; Oliveira, J.C.; Carvalho, H.C.; Rodrigues, P.; Ferreira, J.P. Clinical Associations and Prognostic Implications of 6-Minute Walk Test in Rheumatoid Arthritis. Sci. Rep. 2022, 12, 18672. [Google Scholar] [CrossRef]
- Paap, E.; van der Net, J.; Helders, P.J.M.; Takken, T. Physiologic Response of the Six-Minute Walk Test in Children with Juvenile Idiopathic Arthritis. Arthritis Rheum. 2005, 53, 351–356. [Google Scholar] [CrossRef]
- Millar, S.C.; Bennett, K.; Rickman, M.; Thewlis, D. Retention of Kinematic Patterns during a 6-Minute Walk Test in People with Knee Osteoarthritis. Gait Posture 2023, 101, 106–113. [Google Scholar] [CrossRef]
- Abasıyanık, Z.; Kahraman, T.; Veldkamp, R.; Ertekin, Ö.; Kalron, A.; Feys, P. Changes in Gait Characteristics During and Immediately After the 6-Minute Walk Test in Persons With Multiple Sclerosis: A Systematic Review. Phys. Ther. 2022, 102, pzac036. [Google Scholar] [CrossRef]
- Murdoch, M.; Window, P.; Morton, C.; O’Donohue, R.; Ballard, E.; Claus, A. People at a Persistent Pain Service Can Walk It, but Some Struggle to Talk about It: Reliability, Detectable Difference and Clinically Important Difference of the Six-minute Walk Test. Musculoskelet. Care 2023, 21, 221–231. [Google Scholar] [CrossRef]
- Gray, M.; Madero, E.N.; Gills, J.L.; Paulson, S.; Jones, M.D.; Campitelli, A.; Myers, J.; Bott, N.T.; Glenn, J.M. Intervention for a Digital, Cognitive, Multi-Domain Alzheimer Risk Velocity Study: Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2022, 11, e31841. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Salisbury, D.; Mathiason, M.A. Inter-Individual Differences in the Responses to Aerobic Exercise in Alzheimer’s Disease: Findings from the FIT-AD Trial. J. Sport Health Sci. 2021, 10, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Üğüt, B.O.; Kalkan, A.C.; Kahraman, T.; Dönmez Çolakoğlu, B.; Çakmur, R.; Genç, A. Determinants of 6-Minute Walk Test in People with Parkinson’s Disease. Ir. J. Med. Sci. 2023, 192, 359–367. [Google Scholar] [CrossRef]
- Bailo, G.; Saibene, F.L.; Bandini, V.; Arcuri, P.; Salvatore, A.; Meloni, M.; Castagna, A.; Navarro, J.; Lencioni, T.; Ferrarin, M.; et al. Characterization of Walking in Mild Parkinson’s Disease: Reliability, Validity and Discriminant Ability of the Six-Minute Walk Test Instrumented with a Single Inertial Sensor. Sensors 2024, 24, 662. [Google Scholar] [CrossRef]
- Sinovas-Alonso, I.; Gil-Agudo, Á.; Cano-de-la-Cuerda, R.; Del-Ama, A.J. Walking Ability Outcome Measures in Individuals with Spinal Cord Injury: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 9517. [Google Scholar] [CrossRef]
- Regan, E.; Middleton, A.; Stewart, J.C.; Wilcox, S.; Pearson, J.L.; Fritz, S. The Six-Minute Walk Test as a Fall Risk Screening Tool in Community Programs for Persons with Stroke: A Cross-Sectional Analysis. Top. Stroke Rehabil. 2020, 27, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.K.; Nelson, M.; Brooks, D.; Salbach, N.M. Validation of Stroke-Specific Protocols for the 10-Meter Walk Test and 6-Minute Walk Test Conducted Using 15-Meter and 30-Meter Walkways. Top. Stroke Rehabil. 2020, 27, 251–261. [Google Scholar] [CrossRef]
- Axente, M.; Mirea, A.; Sporea, C.; Pădure, L.; Drăgoi, C.M.; Nicolae, A.C.; Ion, D.A. Clinical and Electrophysiological Changes in Pediatric Spinal Muscular Atrophy after 2 Years of Nusinersen Treatment. Pharmaceutics 2022, 14, 2074. [Google Scholar] [CrossRef]
- Badina, M.; Sporea, C.; Bejan, G.C.; Mirea, A.; Ion, D.A. The Dynamic of Changes of PNFH Levels in the CSF Compared with the Motor Scales’ Scores during Three Years of Nusinersen Treatment in Children with Spinal Muscular Atrophy Types 2 and 3. Balneo PRM Res. J. 2024, 15, 643. [Google Scholar] [CrossRef]
- Tache-Codreanu, D.-L.; David, I.; Popp, C.G.; Bobocea, L.; Trăistaru, M.R. Successfully Physical Therapy Program for Functional Respiratory Rehabilitation after Lung Transplant Surgery—Case Report. Rom. J. Morphol. Embryol. 2024, 65, 331–340. [Google Scholar] [CrossRef]
- Bellet, R.N.; Adams, L.; Morris, N.R. The 6-Minute Walk Test in Outpatient Cardiac Rehabilitation: Validity, Reliability and Responsiveness—A Systematic Review. Physiotherapy 2012, 98, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Åhlund, K.; Bäck, M.; Öberg, B.; Ekerstad, N. Effects of Comprehensive Geriatric Assessment on Physical Fitness in an Acute Medical Setting for Frail Elderly Patients. Clin. Interv. Aging 2017, 12, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.L.S.; Pin, T.W. Reliability, Validity and Minimal Detectable Change of 2-Minute Walk Test, 6-Minute Walk Test and 10-Meter Walk Test in Frail Older Adults with Dementia. Exp. Gerontol. 2019, 115, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hanifah, H.; Pratiwi, Y.S.; Panjdi, T.D. Six-Minutes Walk Test Characteristics in Geriatric Outpatient Clinic at Dr. Hasan Sadikin General Hospital Bandung. Althea Med. J. 2019, 6, 181–185. [Google Scholar] [CrossRef]
- Academy of Neurologic Physical Therapy Core Measure: Six Minute Walk Test (6MWT). 1983, Volume 53, pp. 911–912. Available online: https://www.neuropt.org/docs/default-source/cpgs/core-outcome-measures/6mwt-pocket-guide-proof9.pdf?sfvrsn=9ee25043_0 (accessed on 30 September 2024).
- Mitu, F. Recuperarea Bolnavilor Cu Cardiopatie Ischemică; Dosoftei: Iasi, Romania, 2002; ISBN 9738108063. [Google Scholar]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; MacIntyre, N.R.; McKay, R.T.; Johnson, D.; Wanger, J.S.; Zeballos, R.J.; Bittner, V.; et al. ATS Statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Quinn, L.; Khalil, H.; Dawes, H.; Fritz, N.E.; Kegelmeyer, D.; Kloos, A.D.; Gillard, J.W.; Busse, M. Reliability and Minimal Detectable Change of Physical Performance Measures in Individuals with Pre-Manifest and Manifest Huntington Disease. Phys. Ther. 2013, 93, 942–956. [Google Scholar] [CrossRef]
- Moore, J.L.; Potter, K.; Blankshain, K.; Kaplan, S.L.; O’Dwyer, L.C.; Sullivan, J.E. A Core Set of Outcome Measures for Adults with Neurologic Conditions Undergoing Rehabilitation. J. Neurol. Phys. Ther. 2018, 42, 174–220. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign IL, USA, 1998; ISBN 0880116234. [Google Scholar]
- Borg, G. Borg Rating Scale of Perceived Exertion. Available online: https://www.sralab.org/rehabilitation-measures/borg-rating-scale-perceived-exertion (accessed on 1 October 2024).
- Esparza, W.; Noboa, A.; Madera, C.; Acosta-Vargas, P.; Acosta-Vargas, G.; Carrión-Toro, M.; Santórum, M.; Ayala-Chauvin, M.; Santillán, G. Implementing a Pulmonary Telerehabilitation Program for Young Adults with Post-COVID-19 Conditions: A Pilot Study. Healthcare 2024, 12, 1864. [Google Scholar] [CrossRef]
- Çiftçi, R.; Kurtoğlu, A.; Eken, Ö.; Durmaz, D.; Eler, S.; Eler, N.; Aldhahi, M.I. Investigation of Factors Affecting Shuttle Walking Performance at Increased Speed for Patients with Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2023, 12, 4752. [Google Scholar] [CrossRef]
- Ciortea, V.M.; Iliescu, M.I.; Blendea, E.; Motoasca, I.; Borda, I.M.; Ciubean, A.D.; Ungur, R.A.; Pintea, A.L.; Popa, F.L.; Irsay, L. Effects of Low Laser Level Therapy in Rehabilitation of Patients with COVID-19 Pneumonia. Balneo PRM Res. J. 2021, 12, 323–326. [Google Scholar] [CrossRef]
- Ailioaie, L.M.; Ailioaie, C.; Litscher, G. Light as a Cure in COVID-19: A Challenge for Medicine. Photonics 2022, 9, 686. [Google Scholar] [CrossRef]
- Tache-Codreanu, D.-L.; Trăistaru, M.R. The Effectiveness of High Intensity Laser in Improving Motor Deficits in Patients with Lumbar Disc Herniation. Life 2024, 14, 1302. [Google Scholar] [CrossRef] [PubMed]
- de la Barra Ortiz, H.A.; Jélvez, F.; Parraguez, D.; Pérez, F.; Vargas, C. Effectiveness of High-Intensity Laser Therapy in Patients with Plantar Fasciitis: A Systematic Review with Meta-Analysis of Randomized Clinical Trials. Adv. Rehabil. 2023, 37, 34–51. [Google Scholar] [CrossRef]
- Tache-Codreanu, D.-L.; David, I. Functional Effects of Hydrokinesiotherapy and Underwater Shower in Tetramelic Sensorimotor Demyelinating Polyneuropathy Rehabilitation—A Case Study. Health Sport. Rehabil. Med. 2021, 22, 9–13. [Google Scholar] [CrossRef]
- Mantineo, M.E.A. Laser Therapy in Inflamation: Mechanisms, Techniques and Instrumentation. Ph.D. Thesis, Universidade de Coimbra (Portugal), Coimbra, Portugal, 2014. [Google Scholar]
- Van Breugel, H.H.F.I.; Bär, P.R. He-Ne Laser Irradiation Affects Proliferation of Cultured Rat Schwann Cells in a Dose-Dependent Manner. J. Neurocytol. 1993, 22, 185–190. [Google Scholar] [CrossRef]
- Tache-Codreanu, D.-L.; Tache-Codreanu, A. Acting and Dancing during the COVID-19 Pandemic as Art Therapy for the Rehabilitation of Children with Behavioural Disorders Living in Socially Disadvantaged Environments. Children 2024, 11, 461. [Google Scholar] [CrossRef]
- Tache-Codreanu, D.-L.; Murgu, A.I.; Marinescu, L.D. The Possible Side Effects of High Intensity Laser Efectele Adverse Posibile Ale Laserului de Înaltă Intensitate. Palestrica third Millenn.–Civiliz. Sport 2015, 16, 219–222. [Google Scholar]
- Angelova, A.; Ilieva, E.M. Effectiveness of High Intensity Laser Therapy for Reduction of Pain in Knee Osteoarthritis. Pain Res. Manag. 2016, 2016, 9163618. [Google Scholar] [CrossRef]
- Tache-Codreanu, D.-L. The Reducing of The Disability in The Treatment of Lumbar Disc Hernia with Motor Deficit by Using High Intensity Laser Therapy. Rev. Română Anat. Funcțională Și Clin. Macro- Și Microsc. Și Antropol. 2015, 4, 643–648. [Google Scholar]
- Lu, Q.; Yin, Z.; Shen, X.; Li, J.; Su, P.; Feng, M.; Xu, X.; Li, W.; He, C.; Shen, Y. Clinical Effects of High-Intensity Laser Therapy on Patients with Chronic Refractory Wounds: A Randomised Controlled Trial. BMJ Open 2021, 11, e045866. [Google Scholar] [CrossRef]
- Esnouf, A.; Wright, P.A.; Moore, J.C.; Ahmed, S. Depth of Penetration of an 850nm Wavelength Low Level Laser in Human Skin. Acupunct. Electrother. Res. 2007, 32, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.H.; Obeid, M.; Hassanien, E. Efficiency of Diode Laser in Control of Post-Endodontic Pain: A Randomized Controlled Trial. Clin. Oral Investig. 2023, 27, 2797–2804. [Google Scholar] [CrossRef] [PubMed]
- Pryor, B.A. Class IV Laser Therapy Interventional and Case Reports Confirm Positive; LiteCure LLC.: New Castle, DE, USA, 2009. [Google Scholar]
- Izawa, K.P.; Watanabe, S.; Oka, K.; Hiraki, K.; Morio, Y.; Kasahara, Y.; Osada, N.; Omiya, K.; Iijima, S. Age-Related Differences in Physiologic and Psychosocial Outcomes after Cardiac Rehabilitation. Am. J. Phys. Med. Rehabil. 2010, 89, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.S.; Cohen, H.J.; Pieper, C.F.; Fillenbaum, G.G.; Kraus, W.E.; Huffman, K.M.; Cornish, M.A.; Shiloh, A.; Flynn, C.; Sloane, R.; et al. Physical Performance across the Adult Life Span: Correlates with Age and Physical Activity. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2017, 72, 572–578. [Google Scholar] [CrossRef]
- Strait, J.B.; Lakatta, E.G. Aging-Associated Cardiovascular Changes and Their Relationship to Heart Failure. Heart Fail. Clin. 2012, 8, 143–164. [Google Scholar] [CrossRef]
- Yan, M.; Sun, S.; Xu, K.; Huang, X.; Dou, L.; Pang, J.; Tang, W.; Shen, T.; Li, J. Cardiac Aging: From Basic Research to Therapeutics. Oxid. Med. Cell. Longev. 2021, 2021, 9570325. [Google Scholar] [CrossRef]
- Dayaramani, C.; De Leon, J.; Reiss, A.B. Cardiovascular Disease Complicating COVID-19 in the Elderly. Medicina 2021, 57, 833. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Tritto, I.; Benincasa, G.; Mansueto, G.; Ambrosio, G. Cardiovascular Involvement during COVID-19 and Clinical Implications in Elderly Patients. A Review. Ann. Med. Surg. 2020, 57, 236–243. [Google Scholar] [CrossRef]
- Dreher, M.; KABITZ, H.J. Impact of Obesity on Exercise Performance and Pulmonary Rehabilitation. Respirology 2012, 17, 899–907. [Google Scholar] [CrossRef]
- Martínez-Camacho, M.Á.; Jones-Baro, R.A.; Gómez-González, A.; Morales-Hernández, D.; Lugo-García, D.S.; Melo-Villalobos, A.; Navarrete-Rodríguez, C.A.; Delgado-Camacho, J. Physical and Respiratory Therapy in the Critically Ill Patient with Obesity: A Narrative Review. Front. Med. 2024, 11, 1321692. [Google Scholar] [CrossRef]
- Jipa-Dunǎ, D.; Croitoru, A.; Bezdedeanu, A.E.; Toma, C.; Bogdan, M.A. The Effects of a Respiratory Rehabilitation Programme on Body Composition. Pneumologia 2020, 69, 29–36. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Mangoni, A.A.; Dettori, P.; Nasrallah, G.K.; Pintus, G.; Zinellu, A. D-Dimer Concentrations and Covid-19 Severity: A Systematic Review and Meta-Analysis. Front. Public Health 2020, 8, 432. [Google Scholar] [CrossRef] [PubMed]
- Hayiroglu, M.I.; Cinar, T.; Tekkesin, A.I. Fibrinogen and D-Dimer Variances and Anticoagulation Recommendations in Covid-19: Current Literature Review. Rev. Assoc. Med. Bras. 2020, 66, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Mehrdad, R.; Zahra, K.; Mansouritorghabeh, H. Hemostatic System (Fibrinogen Level, D-Dimer, and FDP) in Severe and Non-Severe Patients With COVID-19: A Systematic Review and Meta-Analysis. Clin. Appl. Thromb. 2021, 27, 10760296211010973. [Google Scholar] [CrossRef]
- Yu, H.H.; Qin, C.; Chen, M.; Wang, W.; Tian, D.S. D-Dimer Level Is Associated with the Severity of COVID-19. Thromb. Res. 2020, 195, 219–225. [Google Scholar] [CrossRef]
- Eljilany, I.; Elzouki, A.N. D-Dimer, Fibrinogen, and IL-6 in COVID-19 Patients with Suspected Venous Thromboembolism: A Narrative Review. Vasc. Health Risk Manag. 2020, 16, 455–462. [Google Scholar] [CrossRef]
- Dias, L.D.; Blanco, K.C.; De Faria, C.M.G.; Dozza, C.; Zanchin, E.M.; Paolillo, F.R.; Zampieri, K.; Laurenti, K.C.; Souza, K.J.O.; Bruno, J.S.A.; et al. Perspectives on Photobiomodulation and Combined Light-Based Therapies for Rehabilitation of Patients after COVID-19 Recovery. Laser Phys. Lett. 2022, 19, 045604. [Google Scholar] [CrossRef]
- Awosanya, O.D.; Dadwal, U.C.; Imel, E.A.; Yu, Q.; Kacena, M.A. The Impacts of COVID-19 on Musculoskeletal Health. Curr. Osteoporos. Rep. 2022, 20, 213–225. [Google Scholar] [CrossRef]
- Evcik, D. Musculoskeletal Involvement: COVID-19 and Post COVID 19. Turk. J. Phys. Med. Rehabil. 2023, 69, 1–7. [Google Scholar] [CrossRef]
- Silva, R.N.; Goulart, C.D.L.; Oliveira, M.R.; Tacao, G.Y.; Back, G.D.; Severin, R.; Faghy, M.A.; Arena, R.; Borghi-Silva, A. Cardiorespiratory and Skeletal Muscle Damage Due to COVID-19: Making the Urgent Case for Rehabilitation. Expert Rev. Respir. Med. 2021, 15, 1107–1120. [Google Scholar] [CrossRef]
- Bandala, C.; Cortes-Altamirano, J.L.; Reyes-Long, S.; Lara-Padilla, E.; Ilizaliturri-Flores, I.; Alfaro-Rodríguez, A. Putative Mechanism of Neurological Damage in COVID-19 Infection. Acta Neurobiol. Exp. 2021, 81, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Karmakar, S.; Basu, M.; Ghosh, P.; Ghosh, M.K. Neurological Damages in COVID-19 Patients: Mechanisms and Preventive Interventions. MedComm 2023, 4, e247. [Google Scholar] [CrossRef] [PubMed]
HILT | No HILT | |||
---|---|---|---|---|
No | 18 | 15 | ||
Sex—Male | 7 | 7 | ||
Age (yrs.) Min ÷ Max | 30 ÷ 72 | 41 ÷ 79 | ||
BMI classification | ||||
Normal | 5 | 8 | ||
Overweight | 12 | 6 | ||
Obese | 1 | 1 | ||
Comorbidities | ||||
yes | no | yes | no | |
Musculoskeletal damage | 18 | 0 | 0 | 15 |
Lung damage | 10 | 8 | 8 | 7 |
Neurological damage | 2 | 16 | 5 | 10 |
Cardiac damage | 11 | 7 | 4 | 11 |
Parameter | Admission | Discharge |
---|---|---|
6MWT Min ÷ Max % from ideal walking distance | 154 ÷ 650 36 ÷ 98% | 264 ÷ 748 56 ÷ 100% |
O2 saturation Min ÷ Max | 91 ÷ 99 | 93 ÷ 99 |
Borg exertion Min ÷ Max | 0 ÷ 8 | 0 ÷ 5 |
BMI Classification | Values | 6 MWT | Exertion (Borg) | ||
---|---|---|---|---|---|
Admission | Discharge | Admission | Discharge | ||
Normal | Min ÷ Max Mean | 154 ÷ 650 437.62 | 264 ÷ 745 505.77 | 0 ÷ 3 1.42 | 0 ÷ 1 0.38 |
Overweight | Min ÷ Max Mean | 165 ÷ 616 398 | 330 ÷ 748 476.12 | 0.5 ÷ 8 2.88 | 0 ÷ 5 1.24 |
Obese | Min ÷ Max Mean | 320 ÷ 396 358 | 420 | 3 ÷ 4 3.5 | 0 |
Rehabilitation Procedures | Values | 6 MWT | Exertion (Borg) | ||
---|---|---|---|---|---|
Admission | Discharge | Admission | Discharge | ||
With HILT | Min ÷ Max Mean | 165 ÷ 650 450.71 | 330 ÷ 748 519 | 0.5 ÷ 5 2.03 | 0 ÷ 3 0.71 |
Without HILT | Min ÷ Max Mean | 154 ÷ 484 367.27 | 264 ÷ 600 445.73 | 0 ÷ 8 2.67 | 0 ÷ 5 0.93 |
Lung Damage (LD) | Values | 6 MWT | Exertion (Borg) | ||
---|---|---|---|---|---|
Admission | Discharge | Admission | Discharge | ||
No LD | Min ÷ Max Mean | 165 ÷ 616 466 | 330 ÷ 748 536.18 | 0.5 ÷ 5 1.86 | 0 ÷ 2 0.55 |
LD | Min ÷ Max Mean | 154 ÷ 396 370.29 | 264 ÷ 462 440.58 | 0.5 ÷ 5 2.47 | 0 ÷ 3 0.82 |
Musculoskeletal Damage (MSKD) | Values | 6 MWT | Exertion (Borg) | ||
---|---|---|---|---|---|
Admission | Discharge | Admission | Discharge | ||
No MSKD | Min ÷ Max Mean | 220 ÷ 484 386.82 | 396 ÷ 600 458.73 | 1 ÷ 2 2.36 | 0 ÷ 1 0.64 |
MSKD | Min ÷ Max Mean | 154 ÷ 418 424.57 | 264 ÷ 572 498.24 | 0.5 ÷ 5 2.3 | 0 ÷ 3 0.71 |
Cardiac Damage (CD) | Values | 6 MWT | Exertion (Borg) | ||
---|---|---|---|---|---|
Admission | Discharge | Admission | Discharge | ||
No CD | Min ÷ Max Mean | 165 ÷ 616 429.15 | 330 ÷ 748 494.50 | 0.5 ÷ 5 1.98 | 0 ÷ 3 0.55 |
CD | Min ÷ Max Mean | 154 ÷ 444 336.29 | 264 ÷ 572 426.43 | 2 ÷ 5 3.14 | 1 ÷ 3 1.29 |
Neurological Damage (ND) | Values | 6 MWT | Exertion (Borg) | ||
---|---|---|---|---|---|
Admission | Discharge | Admission | Discharge | ||
No ND | Min ÷ Max Mean | 220 ÷ 506 383.42 | 396 ÷ 600 457.83 | 1 ÷ 5 3 | 0 ÷ 3 1 |
ND | Min ÷ Max Mean | 154 ÷ 616 426.80 | 264 ÷ 748 488.13 | 0.5 ÷ 4 1.63 | 0 ÷ 2 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tache-Codreanu, D.-L.; Bobocea, L.; David, I.; Burcea, C.-C.; Sporea, C. The Role of the Six-Minute Walk Test in the Functional Evaluation of the Efficacy of Rehabilitation Programs After COVID-19. Life 2024, 14, 1514. https://doi.org/10.3390/life14111514
Tache-Codreanu D-L, Bobocea L, David I, Burcea C-C, Sporea C. The Role of the Six-Minute Walk Test in the Functional Evaluation of the Efficacy of Rehabilitation Programs After COVID-19. Life. 2024; 14(11):1514. https://doi.org/10.3390/life14111514
Chicago/Turabian StyleTache-Codreanu, Diana-Lidia, Lucian Bobocea, Iuliana David, Claudia-Camelia Burcea, and Corina Sporea. 2024. "The Role of the Six-Minute Walk Test in the Functional Evaluation of the Efficacy of Rehabilitation Programs After COVID-19" Life 14, no. 11: 1514. https://doi.org/10.3390/life14111514
APA StyleTache-Codreanu, D. -L., Bobocea, L., David, I., Burcea, C. -C., & Sporea, C. (2024). The Role of the Six-Minute Walk Test in the Functional Evaluation of the Efficacy of Rehabilitation Programs After COVID-19. Life, 14(11), 1514. https://doi.org/10.3390/life14111514