Olfactory Selection Preferences of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) Adults Toward Lauraceae Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Instruments and Equipment
2.2. Test Insects
2.3. Selectivity Tests of P. tsushimanus Adults on Three Species of Plants
2.3.1. Choice Test
2.3.2. No-Choice Test
2.4. Behavioral Response Measurements of P. tsushimanus Adults to Three Species of Plants
2.4.1. Behavioral Responses of Adults to Three Species of Plants and Air Control
2.4.2. Behavioral Response of Adults Among Three Species of Plants
2.5. Extraction and Identification of Volatile Compounds Released by Lauraceae Plants
2.6. Behavioral Response Measurements of P. tsushimanus Adults to Four Volatile Components Released by Lauraceae Plants
2.7. Electroantennography (EAG) Responses Measurements of P. tsushimanus Adults to Four Volatile Components Released by Lauraceae Plants
2.8. Data Analysis
3. Results
3.1. Feeding Preferences of P. tsushimanus Adults Toward Three Species of Plants
3.2. Oviposition Preferences of P. tsushimanus Female Adults Toward Three Species of Plants
3.3. Behavioral Responses of P. tsushimanus Adults to Three Species of Lauraceae Plants
3.3.1. Behavioral Responses of Adults to One of Three species of Plants Versus Air Control
3.3.2. Behavioral Responses of Adults to Pairs of Three Species of Plants
3.4. Analysis of Different Volatile Compounds Among Three Species of Plants
3.5. Behavioral Responses of P. tsushimanus Adults to Four Volatile Components Released by Lauraceae Plants
3.6. EAG Responses of P. tsushimanus Adults to Four Volatile Components Released by Lauraceae Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, H.; Wang, J.; Song, L.; Cao, X.S.; Yao, X.; Tang, F.; Yue, Y.D. GC×GC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules 2016, 21, 423. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.S.; Geng, Z.F.; Zhang, W.J.; Liang, J.Y.; Wang, C.F.; Deng, Z.W.; Du, S.S. The chemical composition of essential oils from Cinnamomum camphora and their insecticidal activity against the stored product pests. Int. J. Mol. Sci. 2016, 17, 1836. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.T.; Ni, L.; Lu, H.X.; Xu, H.Y.; Zou, S.Q.; Zou, X.X. Terpenoids and their biological activities from Cinnamomum: A review. J. Chem. 2020, 1, 1–14. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, C.C.; Li, S.Y.; Zhu, H.; Fan, B.Q.; Wang, Y.; Su, P.; Han, Y.Y.; Hao, D.J. Biological traits and life history of Pagiophloeus tsushimanus (Coleoptera: Curculionidae), a weevil pest on camphor trees in China. J. Forestry Res. 2021, 32, 1979–1988. [Google Scholar] [CrossRef]
- Yan, Q.; Li, H.D.; Chen, Y.; Ye, Z.F.; You, X.F.; Zhou, J.X.; Mu, L.F.; Liu, S.J.; Kong, X.B.; Khuhro, S.A.; et al. Identification and field evaluation of the sex pheromone of Orthaga achatina (Lepidoptera: Pyralidae). J. Chem. Ecol. 2018, 44, 886–893. [Google Scholar] [CrossRef]
- Wei, S.J.; Xu, F.L.; Hua, F.L.; Lu, J.D.; Zhang, C.G.; Chen, X.X. A camphor insect pest-bionomics of Orthaga olivacea. Chin. Bull. Entomol. 2008, 45, 562–565. (In Chinese) [Google Scholar]
- Zhang, C.C.; Gu, T.Z.; Su, P.; Fan, B.Q.; Wang, Y.; Hao, D.J. Identification and phylogenetic position of Pagiophloeus tsushimanus based on COI and rDNA sequences. For. Res. 2018, 31, 78–87. (In Chinese) [Google Scholar]
- Morimoto, K. The family Curculionidae of Japan. I. subfamily Hylobxinae. Esakia 1982, 19, 51–121. [Google Scholar] [CrossRef]
- Li, S.Y.; Chen, C.; Jia, Z.Y.; Li, Q.; Tang, Z.Z.; Zhong, M.F.; Zhu, H.; Hao, D.J. Offspring performance and female preference of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) on three Lauraceae tree species: A potential risk of host shift caused by larval experience. J. Appl. Entomol. 2021, 145, 530–542. [Google Scholar] [CrossRef]
- Li, S.Y.; Chen, C.; Li, H.; Fan, B.Q.; Wang, Y.; Hao, D.J. Effects of feeding on diets containing components of different plants on the development and detoxifying enzyme activities in Pagiophloeus tsushimanus (Coleptera: Curculionidae) larvae. Acta Entomol. Sin. 2019, 62, 1286–1296. (In Chinese) [Google Scholar]
- Chen, C.; Zhu, H.; Li, S.Y.; Han, Y.Y.; Chen, L.; Fan, B.Q.; Zhang, Y.F.; Wang, Y.; Hao, D.J. Insights into chemosensory genes of Pagiophloeus tsushimanus adults using transcriptome and qRT-PCR analysis. Comp. Biochem. Phys. D 2021, 37, 100785. [Google Scholar] [CrossRef]
- Jia, Z.Y.; Chen, C.; Ma, Y.X.; Li, S.Y.; Fan, B.Q.; Wang, Y.; Hao, D.J. Effects of temperature on growth and development of Pagiophloeus tsushimanus Morimoto. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2020, 44, 131–136. [Google Scholar]
- Chen, C.; LI, S.Y.; Zhu, H.; Fan, B.Q.; Wang, Y.; Hao, D. Identification and evaluation of reference genes for gene expression analysis in the weevil pest Pagiophloeus tsushimanus using RT-qPCR. J. Asia-Pac. Entomol. 2020, 23, 336–344. [Google Scholar] [CrossRef]
- Song, W. Effects of temperature and host on the individual growth and development of Phenacoccus solenopsis Tinsley. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2016. (In Chinese). [Google Scholar]
- Gullan, P.J.; Cranston, P.S. The Insects: An Outline of Entomology, 3rd ed.; Blackwell Publishing Ltd.: OxFord, UK, 2009; pp. 211–239. [Google Scholar]
- Franziska, B.; Georg, P. Sequestration of plant defense compounds by insects: From mechanisms to insect-plant coevolution. Annu. Rev. Entomol. 2022, 67, 163–180. [Google Scholar]
- Jaenike, J. On optimal Oviposition Behavior in Phytophagous Insects; Academic Press: Cambridge, MA, USA, 1978; Volume 14, pp. 350–356. [Google Scholar]
- Carrasco, D.; Larsson, M.C.; Anderson, P. Insect host plant selection in complex environments. Curr. Opin. Insect Sci. 2015, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Griese, E.; Pineda, A.; Pashalidou, F.G.; Iradi, E.P.; Hilker, M.; Dicke, M.; Fatouros, N.E. Plant responses to butterfly oviposition partly explain preference-performance relationships on different brassicaceous species. Oecologia 2020, 192, 463–475. [Google Scholar] [CrossRef]
- Ballabeni, P.; Rahier, M. Performance of leaf beetle larvae on sympatric host and non-host plants. Entomol. Exp. Appl. 2000, 97, 175–181. [Google Scholar] [CrossRef]
- Naves, M.P.; Sousa, D.M.E.; Quartau, A.J. Feeding and oviposition preferences of Monochamus galloprovincialis for certain conifers under laboratory conditions. Entomol. Exp. Appl. 2006, 120, 99–104. [Google Scholar] [CrossRef]
- van Cornelus, N.F.A.; Peter, D.; Felix, W.; Tom, W.; Hans, J.; Bart, L. Bacterial volatiles elicit differential olfactory responses in insect species from the same and different trophic levels. Insect Sci. 2023, 30, 1464–1480. [Google Scholar]
- Pettersson, E.M. Volatiles from potential hosts of Rhopalicus tutela a bark beetle parasitoid. J. Chem. Ecol. 2001, 27, 2219–2231. [Google Scholar] [CrossRef]
- Hu, D.Y.; Xu, D.M.; Chu, M.L.; Zhang, C.C.; Gan, W.X. Brief introduction on main chemical constituents of Cinnamomum Camphora essential oil. China For. Prod. Ind. 2019, 56, 61–64. (In Chinese) [Google Scholar]
- Kaissling, K.E.; Thorson, J. Insect olfactory sensilla: Structural, chemical and electrical aspects of the functional organization. In Receptors for Neurotransmitters, Hormones and Pheromones in Insects; Sattelle, D.B., Hall, L.M., Hildebrand, J.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1980; pp. 261–282. [Google Scholar]
- Germinara, G.S.; Pistillo, M.; Griffo, R.; Garonna, A.P.; Palma, A.D. Electroantennographic responses of Aromia bungii (Faldermann, 1835) (Coleoptera, Cerambycidae) to a range of volatile compounds. Insects 2019, 10, 274. [Google Scholar] [CrossRef] [PubMed]
- Light, D.M.; Kamm, J.A.; Buttery, R.G. Electroantennogram response of alfalfa seed chalcid, Bruchophagus roddi (Hymenoptera: Eurytomidae) to host- and non host-plant volatiles. J. Chem. Ecol. 1992, 18, 333–352. [Google Scholar] [CrossRef] [PubMed]
- Raguso, R.A.; Light, D.M. Electroantennogram responses of male Sphinx perelegans hawkmoths to floral and ‘green leaf volatiles’. Entomol. Exp. Appl. 1998, 86, 287–293. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, S.P.; Zou, L.Q.; Lian, P.H. GC-MS analysis of chemical components of essential oil from leaves of Cinnamomum chekiangensis. Biomass Chem. Eng. 2009, 43, 25–27. [Google Scholar]
- Chen, Y.X.; Shi, H.F.; Xue, X.M.; Pan, B. Analysis and comparison of volatile components of four species of phoebe based on GC-MS. J. Cent. South Univ. For. Technol. 2019, 39, 92–96. [Google Scholar]
- Jiang, M. Effects of volatiles from host plant on the tropism, growth and reproduction of Agasicles hygrophila. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2019. (In Chinese). [Google Scholar]
- Thompson, J.N. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 1988, 47, 3–14. [Google Scholar] [CrossRef]
- Mayhew, P.J. Adaptive patterns of host plant selection by phytophagous insects. Oikos 1997, 79, 417–428. [Google Scholar] [CrossRef]
- Kuang, X.J.; Ge, F.; Xue, F.S. Influence of environment factors and individual differences to female fecundity in insect. J. Environ. Entomol. 2016, 38, 1275–1281. (In Chinese) [Google Scholar]
- Zhang, Q.D.; Ji, B.Z.; Xu, T.; Liu, S.W.; Wu, G.X.; Wang, T.X.; Chen, Z.M. Feeding and oviposition preferences of Aphrodisium sauteri. Chin. J. Appl. Entomol. 2011, 48, 626–633. (In Chinese) [Google Scholar]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Dai, J.Q.; Han, S.C.; Du, J.W. Progress Studies on behavioral effects of semiochemicals of host plant to insects. J. Environ. Entomol. 2010, 32, 407–414. (In Chinese) [Google Scholar]
- Corbet, S.A. Insect chemosensory responses: A chemical legacy hypothesis. Ecol. Entomol. 1985, 10, 143–153. [Google Scholar] [CrossRef]
- Petit, C.; Dupas, S.; Thiéry, D.; Capdevielle-Dulac, C.; Ru, B.; Harry, M.; Calatayud, P. Do the mechanisms modulating host preference in holometabolous phytophagous insects depend on their host plant specialization? a quantitative literature analysis. J. Pest Sci. 2017, 90, 797–805. [Google Scholar] [CrossRef]
- Tissot, M.; Stocker, R.F. Metamorphosis in Drosophila and other insects: The fate of neurons throughout the stages. Prog. Neurobiol. 2000, 62, 89–111. [Google Scholar] [CrossRef]
- Blackiston, D.J.; Casey, E.S.; Weiss, M.R. Retention of memory through metamorphosis: Can a moth remember what it learned as a caterpillar? PLoS ONE 2008, 3, e1736. [Google Scholar] [CrossRef]
- Craig, T.P.; Itami, J.K. Evolution of preference and performance relationships. In Specialization, Speciation, and Radiation. The Evolutionary Biology of Herbivorous Insects; Tilmon, K.J., Ed.; University of California Press: Oakland, CA, USA, 2008; pp. 20–28. [Google Scholar]
- Wang, C.Z.; Qin, J.D. Insect-plant co-evolution: Multitrophic interactions concerning Helicoverpa species. Chin. Bull. Entomol. 2007, 44, 311–319. (In Chinese) [Google Scholar]
- Qin, J.D. The Relationship Between Insects and Plants: On the Interaction and Evolution of Insects and Plants; Science Press: Beijing, China, 1987; p. 227. (In Chinese) [Google Scholar]
- Collins, J.K.; Mulder, P.G.; Grantham, R.A.; Reid, W.; Smith, M.W.; Eikenbary, R. Assessing feeding preferences of pecan weevil (Coleoptera: Curculionidae) adults using a hardee olfactometer. J. Kans. Entomol. Soc. 1997, 70, 181–188. [Google Scholar]
- Miksanek, J.R.; Adarkwah, C.; Tuda, M. Low concentrations of selenium nanoparticles enhance the performance of a generalist parasitoid and its host, with no net effect on host suppression. Pest Manag. Sci. 2024, 80, 1812–1820. [Google Scholar] [CrossRef]
- Liu, P.C.; Wang, Z.Y.; Qi, M.; Hu, H.Y. The chromosome-level genome provides insights into the evolution and adaptation of extreme aggression. Mol. Biol. Evol. 2024, 41, 1–21. [Google Scholar] [CrossRef]
Plant vs. Air | Selection Coefficients | |
---|---|---|
Female Adults | Male Adults | |
C. camphora vs. air | 0.363 ± 0.104 | 0.306 ± 0.028 |
C. chekiangensis vs. air | −0.131 ± 0.072 | −0.306 ± 0.028 |
P. chekiangensis vs. air | −0.178 ± 0.097 | −0.310 ± 0.156 |
Plant vs. Another Plant | Selection Coefficients | |
---|---|---|
Female Adults | Male Adults | |
C. camphora vs. C. chekiangensis | 0.485 ± 0.046 | 0.573 ± 0.124 |
C. camphora vs. P. chekiangensis | 0.537 ± 0.043 | 0.602 ± 0.076 |
C. chekiangensis vs. P. chekiangensis | 0.114 ± 0.059 | 0.048 ± 0.048 |
Volatile Components | Relative Content/% | Cas Number | ||
---|---|---|---|---|
C. camphora | C. chekiangensis | P. chekiangensis | ||
β-Caryophyllene | 13.53 ± 0.19 | 11.22 ± 0.10 | 0.51 ± 0.12 | 87-44-5 |
Linalool | 15.63 ± 0.20 | 2.72 ± 0.06 | - | 78-70-6 |
trans-Nerolidol | 2.83 ± 0.15 | - | - | 40716-66-3 |
α-Phellandrene | 1.51 ± 0.13 | - | - | 99-83-2 |
(+)-α-Pinene | 0.40 ± 0.02 | 11.76 ± 0.06 | 15.99 ± 0.06 | 7785-70-8 |
α-Ocimene | 1.94 ± 0.40 | 6.70 ± 0.21 | 0.53 ± 0.16 | 13877-91-3 |
Ocimene | 19.34 ± 0.09 | 18.09 ± 0.10 | 17.93 ± 0.06 | 3779-61-1 |
(+)-Camphor | 13.57 ± 0.18 | 3.23 ± 0.09 | 0.70 ± 0.09 | 464-49-3 |
Caryophyllene | 4.02 ± 0.12 | 1.79 ± 0.31 | - | 1139-30-6 |
α-Humulene | 2.48 ± 0.18 | 3.44 ± 0.18 | - | 6753-98-6 |
Eucalyptol | 7.27 ± 0.06 | - | - | 470-82-6 |
(E)-4-Hexen-1-ol | 1.59 ± 0.13 | - | - | 928-92-7 |
Germacratrien-1-ol | 1.49 ± 0.26 | - | - | 81968-62-9 |
β-Selinene | 1.64 ± 0.20 | - | - | 17066-67-0 |
Sabinene | - | 5.63 ± 0.25 | 31.99 ± 0.12 | 3387-41-5 |
D-Limonene | - | 9.27 ± 0.19 | 2.03 ± 0.09 | 5989-27-5 |
Camphene | - | 3.86 ± 0.17 | - | 79-92-5 |
(−)-β-Pinene | - | - | 18.41 ± 020 | 18172-67-3 |
Volatile Components vs. Air | Selection Coefficients | |
---|---|---|
Female Adults | Male Adults | |
Linalool vs. Air | 0.244 ± 0.770 | 0.204 ± 0.080 |
β-Caryophyllene vs. Air | 0.067 ± 0.184 | 0.001 ± 0.200 |
α-Phellandrene vs. Air | −0.242 ± 0.095 | −0.178 ± 0.168 |
trans-Nerolidol vs. Air | −0.289 ± 0.077 | −0.289 ± 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Lin, Z.; Du, J.; Huang, J.; Ling, C.; Chen, J. Olfactory Selection Preferences of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) Adults Toward Lauraceae Plants. Life 2024, 14, 1517. https://doi.org/10.3390/life14111517
Chen C, Lin Z, Du J, Huang J, Ling C, Chen J. Olfactory Selection Preferences of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) Adults Toward Lauraceae Plants. Life. 2024; 14(11):1517. https://doi.org/10.3390/life14111517
Chicago/Turabian StyleChen, Cong, Zhaoyan Lin, Jingyi Du, Jingyi Huang, Chunmei Ling, and Jianfeng Chen. 2024. "Olfactory Selection Preferences of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) Adults Toward Lauraceae Plants" Life 14, no. 11: 1517. https://doi.org/10.3390/life14111517
APA StyleChen, C., Lin, Z., Du, J., Huang, J., Ling, C., & Chen, J. (2024). Olfactory Selection Preferences of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) Adults Toward Lauraceae Plants. Life, 14(11), 1517. https://doi.org/10.3390/life14111517