Therapeutic Effects of Taurine and Histidine Supplementation in Retinal Diseases
Abstract
:1. Introduction
2. Amino Acid Metabolism and Function
2.1. Taurine Metabolism and General Function
2.2. Therapeutic Effects of Taurine in Retinal Diseases
Animal | Experimental Model | Dose/Method | Main Experimental Results | Reference |
---|---|---|---|---|
Rats and mice | (1) DBA/2J (2) Vein occlusion (3) P23H | 0.2 M taurine in drinking water | Increases in retinal ganglion cell densities | [41] |
Rats | Endothelin-1 (ET-1)-induced retinal and optic nerve injury | 320 nM taurine administered intravitreally | Improvement in caspase activities and optic nerve morphology | [72] |
Rats | NMDA-induced changes in retinal redox status and cell death | 2 μL taurine intravitreally | Reduction in retinal oxidative stress and preservation in retinal cell density in inner retinas | [43] |
Rats | Dystrophic Royal College of Surgeons (RCS) | 0.2 M taurine in drinking water | Decreases in photoreceptor degeneration and increases in electroretinographic responses | [46] |
Rats | Light-induced retinopathy | 4% taurine in diet | Reduction in retinal damage by photochemical stress through antioxidant mechanisms | [73] |
Rats | Streptozotocin-induced diabetic retinopathy | 1.2% taurine in diet | Modulation in glial fibrillary acidic protein and glutamate transporter expressions | [74] |
Mice | (1) Oxygen-induced retinopathy (2) Laser-induced choroidal neovascularization | 500 mg/kg taurine in drinking water | Decreases in retinal and choroidal neovascularization | [21] |
2.3. Histidine Metabolism and General Function
2.4. Therapeutic Effects of Histidine in Retinal Diseases
2.5. Potential Role of Other Amino Acids in Retinal Physiology and Pathology
3. Future Directions and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ling, Z.N.; Jiang, Y.F.; Ru, J.N.; Lu, J.H.; Ding, B.; Wu, J. Amino acid metabolism in health and disease. Signal Transduct. Target. Ther. 2023, 8, 345. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Razak, M.A.; Begum, P.S.; Viswanath, B.; Rajagopal, S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxidative Med. Cell. Longev. 2017, 2017, 1716701. [Google Scholar] [CrossRef]
- Choi, B.H.; Coloff, J.L. The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers 2019, 11, 675. [Google Scholar] [CrossRef]
- Aliu, E.; Kanungo, S.; Arnold, G.L. Amino acid disorders. Ann. Transl. Med. 2018, 6, 471. [Google Scholar] [CrossRef]
- Che, D.; Nyingwa, P.S.; Ralinala, K.M.; Maswanganye, G.M.T.; Wu, G. Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats. Adv. Exp. Med. Biol. 2021, 1285, 217–231. [Google Scholar] [CrossRef]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef]
- Roth, E.; Druml, W. Plasma amino acid imbalance: Dangerous in chronic diseases? Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 67–74. [Google Scholar] [CrossRef]
- de Koning, T.J. Amino acid synthesis deficiencies. J. Inherit. Metab. Dis. 2017, 40, 609–620. [Google Scholar] [CrossRef]
- Sivanand, S.; Vander Heiden, M.G. Emerging Roles for Branched-Chain Amino Acid Metabolism in Cancer. Cancer Cell 2020, 37, 147–156. [Google Scholar] [CrossRef]
- van Dijk, A.M.; Bruins Slot, A.S.; Portincasa, P.; Siegerink, S.N.; Chargi, N.; Verstraete, C.J.R.; de Bruijne, J.; Vleggaar, F.P.; van Erpecum, K.J. Systematic review with meta-analysis: Branched-chain amino acid supplementation in liver disease. Eur. J. Clin. Investig. 2023, 53, e13909. [Google Scholar] [CrossRef]
- Massini, G.; Caldiroli, L.; Molinari, P.; Carminati, F.M.I.; Castellano, G.; Vettoretti, S. Nutritional Strategies to Prevent Muscle Loss and Sarcopenia in Chronic Kidney Disease: What Do We Currently Know? Nutrients 2023, 15, 3107. [Google Scholar] [CrossRef]
- Tang, W.H.W. Dysregulated amino acid metabolism in heart failure: Role of gut microbiome. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 195–200. [Google Scholar] [CrossRef]
- Tărlungeanu, D.C.; Deliu, E.; Dotter, C.P.; Kara, M.; Janiesch, P.C.; Scalise, M.; Galluccio, M.; Tesulov, M.; Morelli, E.; Sonmez, F.M.; et al. Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder. Cell 2016, 167, 1481–1494.e1418. [Google Scholar] [CrossRef]
- Cai, Y.; Kang, Y. Gut microbiota and metabolites in diabetic retinopathy: Insights into pathogenesis for novel therapeutic strategies. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 164, 114994. [Google Scholar] [CrossRef]
- Orban, T.; Johnson, W.M.; Dong, Z.; Maeda, T.; Maeda, A.; Sakai, T.; Tsuneoka, H.; Mieyal, J.J.; Palczewski, K. Serum levels of lipid metabolites in age-related macular degeneration. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015, 29, 4579–4588. [Google Scholar] [CrossRef]
- Brown, C.N.; Green, B.D.; Thompson, R.B.; den Hollander, A.I.; Lengyel, I. Metabolomics and Age-Related Macular Degeneration. Metabolites 2018, 9, 4. [Google Scholar] [CrossRef]
- Wang, T.; Tsirukis, D.I.; Sun, Y. Targeting Neuroinflammation in Neovascular Retinal Diseases. Front. Pharmacol. 2020, 11, 234. [Google Scholar] [CrossRef]
- Wert, K.J.; Lin, J.H.; Tsang, S.H. General pathophysiology in retinal degeneration. Dev. Ophthalmol. 2014, 53, 33–43. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, M.; Wu, Y.; Zhang, F. Branched-Chain Amino Acids Metabolism and Their Roles in Retinopathy: From Relevance to Mechanism. Nutrients 2023, 15, 2161. [Google Scholar] [CrossRef]
- Shoda, C.; Lee, D.; Miwa, Y.; Yamagami, S.; Nakashizuka, H.; Nimura, K.; Okamoto, K.; Kawagishi, H.; Negishi, K.; Kurihara, T. Inhibition of hypoxia-inducible factors suppresses subretinal fibrosis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2024, 38, e23792. [Google Scholar] [CrossRef]
- Elias, R.J.; McClements, D.J.; Decker, E.A. Antioxidant activity of cysteine, tryptophan, and methionine residues in continuous phase beta-lactoglobulin in oil-in-water emulsions. J. Agric. Food Chem. 2005, 53, 10248–10253. [Google Scholar] [CrossRef]
- Levine, R.L.; Mosoni, L.; Berlett, B.S.; Stadtman, E.R. Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 15036–15040. [Google Scholar] [CrossRef]
- Luo, S.; Levine, R.L. Methionine in proteins defends against oxidative stress. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2009, 23, 464–472. [Google Scholar] [CrossRef]
- Campbell, K.; Vowinckel, J.; Keller, M.A.; Ralser, M. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway. Antioxid. Redox Signal. 2016, 24, 543–547. [Google Scholar] [CrossRef]
- Kilb, W. Putative Role of Taurine as Neurotransmitter During Perinatal Cortical Development. Adv. Exp. Med. Biol. 2017, 975 Pt 1, 281–292. [Google Scholar] [CrossRef]
- García-Ayuso, D.; Di Pierdomenico, J.; Martínez-Vacas, A.; Vidal-Sanz, M.; Picaud, S.; Villegas-Pérez, M.P. Taurine: A promising nutraceutic in the prevention of retinal degeneration. Neural Regen. Res. 2024, 19, 606–610. [Google Scholar] [CrossRef]
- Merckx, C.; De Paepe, B. The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites 2022, 12, 193. [Google Scholar] [CrossRef]
- Santulli, G.; Kansakar, U.; Varzideh, F.; Mone, P.; Jankauskas, S.S.; Lombardi, A. Functional Role of Taurine in Aging and Cardiovascular Health: An Updated Overview. Nutrients 2023, 15, 4236. [Google Scholar] [CrossRef]
- Tochitani, S. Taurine: A Maternally Derived Nutrient Linking Mother and Offspring. Metabolites 2022, 12, 228. [Google Scholar] [CrossRef]
- Sturman, J.A.; Gargano, A.D.; Messing, J.M.; Imaki, H. Feline maternal taurine deficiency: Effect on mother and offspring. J. Nutr. 1986, 116, 655–667. [Google Scholar] [CrossRef]
- Neuringer, M.; Sturman, J. Visual acuity loss in rhesus monkey infants fed a taurine-free human infant formula. J. Neurosci. Res. 1987, 18, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Imaki, H.; Moretz, R.; Wisniewski, H.; Neuringer, M.; Sturman, J. Retinal degeneration in 3-month-old rhesus monkey infants fed a taurine-free human infant formula. J. Neurosci. Res. 1987, 18, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Heller-Stilb, B.; van Roeyen, C.; Rascher, K.; Hartwig, H.G.; Huth, A.; Seeliger, M.W.; Warskulat, U.; Häussinger, D. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2002, 16, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Zhao, J.; Sparrow, J.R. Vitamin A aldehyde-taurine adducts function in photoreceptor cells. Redox Biol. 2022, 54, 102386. [Google Scholar] [CrossRef]
- Sturman, J.A.; Rassin, D.K.; Gaull, G.E. Taurine in development. Life Sci. 1977, 21, 1–22. [Google Scholar] [CrossRef]
- Sturman, J.A.; Rassin, D.K.; Gaull, G.E. Taurine in developing rat brain: Transfer of [35S] taurine to pups via the milk. Pediatr. Res. 1977, 11, 28–33. [Google Scholar] [CrossRef]
- Philipps, A.F.; Holzman, I.R.; Teng, C.; Battaglia, F.C. Tissue concentrations of free amino acids in term human placentas. Am. J. Obstet. Gynecol. 1978, 131, 881–887. [Google Scholar] [CrossRef]
- Rafiee, Z.; García-Serrano, A.M.; Duarte, J.M.N. Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes. Nutrients 2022, 14, 1292. [Google Scholar] [CrossRef]
- Oja, S.S.; Saransaari, P. Taurine and the Brain. Adv. Exp. Med. Biol. 2022, 1370, 325–331. [Google Scholar] [CrossRef]
- Froger, N.; Cadetti, L.; Lorach, H.; Martins, J.; Bemelmans, A.P.; Dubus, E.; Degardin, J.; Pain, D.; Forster, V.; Chicaud, L.; et al. Taurine provides neuroprotection against retinal ganglion cell degeneration. PLoS ONE 2012, 7, e42017. [Google Scholar] [CrossRef]
- Hadj-Saïd, W.; Fradot, V.; Ivkovic, I.; Sahel, J.A.; Picaud, S.; Froger, N. Taurine Promotes Retinal Ganglion Cell Survival Through GABA(B) Receptor Activation. Adv. Exp. Med. Biol. 2017, 975 Pt 2, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Jafri, A.J.A.; Agarwal, R.; Iezhitsa, I.; Agarwal, P.; Ismail, N.M. Taurine protects against NMDA-induced retinal damage by reducing retinal oxidative stress. Amino Acids 2019, 51, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Rokicki, W.; Dorecka, M.; Romaniuk, W. Retinal ganglion cells death in glaucoma—Mechanism and potential treatment. Part I. Klin. Ocz. 2007, 109, 349–352. [Google Scholar]
- Almasieh, M.; Wilson, A.M.; Morquette, B.; Cueva Vargas, J.L.; Di Polo, A. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 2012, 31, 152–181. [Google Scholar] [CrossRef]
- Martínez-Vacas, A.; Di Pierdomenico, J.; Gallego-Ortega, A.; Valiente-Soriano, F.J.; Vidal-Sanz, M.; Picaud, S.; Villegas-Pérez, M.P.; García-Ayuso, D. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol. 2022, 57, 102506. [Google Scholar] [CrossRef]
- Martínez-Vacas, A.; Di Pierdomenico, J.; Valiente-Soriano, F.J.; Vidal-Sanz, M.; Picaud, S.; Villegas-Pérez, M.P.; García-Ayuso, D. Glial Cell Activation and Oxidative Stress in Retinal Degeneration Induced by β-Alanine Caused Taurine Depletion and Light Exposure. Int. J. Mol. Sci. 2021, 23, 346. [Google Scholar] [CrossRef]
- Newton, F.; Megaw, R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes 2020, 11, 1120. [Google Scholar] [CrossRef]
- Zacks, D.N.; Kocab, A.J.; Choi, J.J.; Gregory-Ksander, M.S.; Cano, M.; Handa, J.T. Cell Death in AMD: The Rationale for Targeting Fas. J. Clin. Med. 2022, 11, 592. [Google Scholar] [CrossRef]
- Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight 2017, 2, e93751. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, T.Y.Y. Baseline Predictors of Visual Acuity Outcome in Patients with Wet Age-Related Macular Degeneration. BioMed Res. Int. 2018, 2018, 9640131. [Google Scholar] [CrossRef]
- Smith, L.E.; Wesolowski, E.; McLellan, A.; Kostyk, S.K.; D’Amato, R.; Sullivan, R.; D’Amore, P.A. Oxygen-induced retinopathy in the mouse. Investig. Ophthalmol. Vis. Sci. 1994, 35, 101–111. [Google Scholar]
- Lambert, V.; Lecomte, J.; Hansen, S.; Blacher, S.; Gonzalez, M.L.; Struman, I.; Sounni, N.E.; Rozet, E.; de Tullio, P.; Foidart, J.M.; et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 2013, 8, 2197–2211. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Tomita, Y.; Miwa, Y.; Kunimi, H.; Nakai, A.; Shoda, C.; Negishi, K.; Kurihara, T. Recent Insights into Roles of Hypoxia-Inducible Factors in Retinal Diseases. Int. J. Mol. Sci. 2024, 25, 10140. [Google Scholar] [CrossRef] [PubMed]
- Modrzejewska, M.; Zdanowska, O.; Połubiński, P. The Role of HIF-1α in Retinopathy of Prematurity: A Review of Current Literature. J. Clin. Med. 2024, 13, 4034. [Google Scholar] [CrossRef] [PubMed]
- Ban, N.; Shinojima, A.; Negishi, K.; Kurihara, T. Drusen in AMD from the Perspective of Cholesterol Metabolism and Hypoxic Response. J. Clin. Med. 2024, 13, 2608. [Google Scholar] [CrossRef]
- Li, H.Y.; Yuan, Y.; Fu, Y.H.; Wang, Y.; Gao, X.Y. Hypoxia-inducible factor-1α: A promising therapeutic target for vasculopathy in diabetic retinopathy. Pharmacol. Res. 2020, 159, 104924. [Google Scholar] [CrossRef]
- Husain, S.; Leveckis, R. Pharmacological regulation of HIF-1α, RGC death, and glaucoma. Curr. Opin. Pharmacol. 2024, 77, 102467. [Google Scholar] [CrossRef]
- Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185. [Google Scholar] [CrossRef]
- Schito, L.; Rey, S.; Tafani, M.; Zhang, H.; Wong, C.C.; Russo, A.; Russo, M.A.; Semenza, G.L. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc. Natl. Acad. Sci. USA 2012, 109, E2707–E2716. [Google Scholar] [CrossRef]
- Schultz, K.; Fanburg, B.L.; Beasley, D. Hypoxia and hypoxia-inducible factor-1alpha promote growth factor-induced proliferation of human vascular smooth muscle cells. Am. J. Physiology. Heart Circ. Physiol. 2006, 290, H2528–H2534. [Google Scholar] [CrossRef]
- Chen, C.; Pore, N.; Behrooz, A.; Ismail-Beigi, F.; Maity, A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem. 2001, 276, 9519–9525. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Rajput, M.; Pandey, M. Tumor hypoxia and role of hypoxia-inducible factor in oral cancer. World J. Surg. Oncol. 2024, 22, 18. [Google Scholar] [CrossRef] [PubMed]
- Baliou, S.; Adamaki, M.; Ioannou, P.; Pappa, A.; Panayiotidis, M.I.; Spandidos, D.A.; Christodoulou, I.; Kyriakopoulos, A.M.; Zoumpourlis, V. Protective role of taurine against oxidative stress (Review). Mol. Med. Rep. 2021, 24, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tan, W.; Zou, J.; Cao, J.; Huang, Q.; Jiang, B.; Yoshida, S.; Li, Y. Metabolomics Analyses of Mouse Retinas in Oxygen-Induced Retinopathy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 9. [Google Scholar] [CrossRef]
- Tomita, Y.; Cagnone, G.; Fu, Z.; Cakir, B.; Kotoda, Y.; Asakage, M.; Wakabayashi, Y.; Hellström, A.; Joyal, J.S.; Talukdar, S.; et al. Vitreous metabolomics profiling of proliferative diabetic retinopathy. Diabetologia 2021, 64, 70–82. [Google Scholar] [CrossRef]
- Harman, J.C.; Pivodic, A.; Nilsson, A.K.; Boeck, M.; Yagi, H.; Neilsen, K.; Ko, M.; Yang, J.; Kinter, M.; Hellström, A.; et al. Postnatal hyperglycemia alters amino acid profile in retinas (model of Phase I ROP). iScience 2023, 26, 108021. [Google Scholar] [CrossRef]
- Tzang, C.C.; Chi, L.Y.; Lin, L.H.; Lin, T.Y.; Chang, K.V.; Wu, W.T.; Özçakar, L. Taurine reduces the risk for metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Nutr. Diabetes 2024, 14, 29. [Google Scholar] [CrossRef]
- Yoeruek, E.; Jägle, H.; Lüke, M.; Grisanti, S.; Warga, M.; Krott, R.; Spitzer, M.S.; Tatar, O.; Bartz-Schmidt, K.U.; Szurman, P. Safety profile of a taurine containing irrigation solution (AcriProTect) in pars plana vitrectomy. Retina 2007, 27, 1286–1291. [Google Scholar] [CrossRef]
- Chopra, R.; Chander, A.; Jacob, J.J. Ocular associations of metabolic syndrome. Indian J. Endocrinol. Metab. 2012, 16 (Suppl. S1), S6–S11. [Google Scholar] [CrossRef]
- Lima-Fontes, M.; Barata, P.; Falcão, M.; Carneiro, Â. Ocular findings in metabolic syndrome: A review. Porto Biomed. J. 2020, 5, e104. [Google Scholar] [CrossRef]
- Nor Arfuzir, N.N.; Agarwal, R.; Iezhitsa, I.; Agarwal, P.; Sidek, S.; Ismail, N.M. Taurine protects against retinal and optic nerve damage induced by endothelin-1 in rats via antioxidant effects. Neural Regen. Res. 2018, 13, 2014–2021. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Chen, K.; Wei, N.; Zhang, Q.; Liu, J.; Mi, M. Dietary taurine reduces retinal damage produced by photochemical stress via antioxidant and anti-apoptotic mechanisms in Sprague-Dawley rats. Br. J. Nutr. 2007, 98, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xu, Z.; Mi, M.; Xu, H.; Zhu, J.; Wei, N.; Chen, K.; Zhang, Q.; Zeng, K.; Wang, J.; et al. Dietary taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of glutamate in streptozotocin-induced Sprague-Dawley rats. Neurochem. Res. 2008, 33, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Abe, H. Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry. Biokhimiia 2000, 65, 757–765. [Google Scholar]
- Holeček, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef]
- Jones, M.E. Albrecht Kossel, a biographical sketch. Yale J. Biol. Med. 1953, 26, 80–97. [Google Scholar]
- Vickery, H.B.; Leavenworth, C.S. On the separation of Histidine and Arginine: IV. the preparation of Histidine. J. Biol. Chem. 1928, 78, 627–635. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Histidine Metabolism and Function. J. Nutr. 2020, 150, 2570s–2575s. [Google Scholar] [CrossRef]
- Woody, N.C.; Snyder, C.H.; Harris, J.A. Histidinemia. Am. J. Dis. Child. 1965, 110, 606–613. [Google Scholar] [CrossRef]
- Ajikumar, A.; Premkumar, A.K.N.; Narayanan, S.P. The self-assembly of L-histidine might be the cause of histidinemia. Sci. Rep. 2023, 13, 17461. [Google Scholar] [CrossRef]
- Taylor, R.G.; Levy, H.L.; McInnes, R.R. Histidase and histidinemia. Clinical and molecular considerations. Mol. Biol. Med. 1991, 8, 101–116. [Google Scholar] [PubMed]
- Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.K.; Finley, L.W.S. Regulation and function of the mammalian tricarboxylic acid cycle. J. Biol. Chem. 2023, 299, 102838. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Li, C.L.; Qi, J.Y.; Huang, L.N.; Shi, D.; Du, S.S.; Liu, L.Y.; Feng, R.N.; Sun, C.H. Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study. Nutrients 2016, 8, 420. [Google Scholar] [CrossRef]
- Kasaoka, S.; Tsuboyama-Kasaoka, N.; Kawahara, Y.; Inoue, S.; Tsuji, M.; Ezaki, O.; Kato, H.; Tsuchiya, T.; Okuda, H.; Nakajima, S. Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition 2004, 20, 991–996. [Google Scholar] [CrossRef]
- Ookuma, K.; Yoshimatsu, H.; Sakata, T.; Fujimoto, K.; Fukagawa, F. Hypothalamic sites of neuronal histamine action on food intake by rats. Brain Res. 1989, 490, 268–275. [Google Scholar] [CrossRef]
- Schwartz, J.C.; Lampart, C.; Rose, C. Histamine formation in rat brain in vivo: Effects of histidine loads. J. Neurochem. 1972, 19, 801–810. [Google Scholar] [CrossRef]
- Pal, M.M. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front. Hum. Neurosci. 2021, 15, 722323. [Google Scholar] [CrossRef]
- Liao, R.J.; Jiang, L.; Wang, R.R.; Zhao, H.W.; Chen, Y.; Li, Y.; Wang, L.; Jie, L.Y.; Zhou, Y.D.; Zhang, X.N.; et al. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Sci. Rep. 2015, 5, 15356. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.D.; Zhu, L.J.; Shen, Y.J.; Wei, E.Q. Effects of histidine, a precursor of histamine, on pentylenetetrazole-induced seizures in rats. Acta Pharmacol. Sin. 2002, 23, 361–366. [Google Scholar]
- Lin, H.T.; Cheng, M.L.; Lo, C.J.; Lin, G.; Lin, S.F.; Yeh, J.T.; Ho, H.Y.; Lin, J.R.; Liu, F.C. (1)H Nuclear Magnetic Resonance (NMR)-Based Cerebrospinal Fluid and Plasma Metabolomic Analysis in Type 2 Diabetic Patients and Risk Prediction for Diabetic Microangiopathy. J. Clin. Med. 2019, 8, 874. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Kim, J.M.; Jeon, H.J.; Oh, T.; Choi, H.J.; Kim, B.J. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS ONE 2020, 15, e0241365. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhu, B.; Liu, X.; Jin, J.; Zou, H. Metabolic characterization of diabetic retinopathy: An (1)H-NMR-based metabolomic approach using human aqueous humor. J. Pharm. Biomed. Anal. 2019, 174, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Laíns, I.; Duarte, D.; Barros, A.S.; Martins, A.S.; Gil, J.; Miller, J.B.; Marques, M.; Mesquita, T.; Kim, I.K.; Cachulo, M.D.L.; et al. Human plasma metabolomics in age-related macular degeneration (AMD) using nuclear magnetic resonance spectroscopy. PLoS ONE 2017, 12, e0177749. [Google Scholar] [CrossRef]
- Xia, M.; Zhang, F. Amino Acids Metabolism in Retinopathy: From Clinical and Basic Research Perspective. Metabolites 2022, 12, 1244. [Google Scholar] [CrossRef]
- Torii, S.; Kurihara, A.; Li, X.Y.; Yasumoto, K.; Sogawa, K. Inhibitory effect of extracellular histidine on cobalt-induced HIF-1alpha expression. J. Biochem. 2011, 149, 171–176. [Google Scholar] [CrossRef]
- Jeong, H.J.; Moon, P.D.; Kim, S.J.; Seo, J.U.; Kang, T.H.; Kim, J.J.; Kang, I.C.; Um, J.Y.; Kim, H.M.; Hong, S.H. Activation of hypoxia-inducible factor-1 regulates human histidine decarboxylase expression. Cell. Mol. Life Sci. CMLS 2009, 66, 1309–1319. [Google Scholar] [CrossRef]
- Lee, D.; Miwa, Y.; Kunimi, H.; Ibuki, M.; Shoda, C.; Nakai, A.; Kurihara, T. HIF Inhibition Therapy in Ocular Diseases. Keio J. Med. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Aldosari, D.I.; Alshawakir, Y.A.; Alanazi, I.O.; Alhomida, A.S.; Ola, M.S. Differential Expression of Branched-Chain Aminotransferase in the Rat Ocular Tissues. J. Histochem. Cytochem. Off. J. Histochem. Soc. 2024, 72, 551–568. [Google Scholar] [CrossRef]
- Lim, E.W.; Fallon, R.J.; Bates, C.; Ideguchi, Y.; Nagasaki, T.; Handzlik, M.K.; Joulia, E.; Bonelli, R.; Green, C.R.; Ansell, B.R.E.; et al. Serine and glycine physiology reversibly modulate retinal and peripheral nerve function. Cell Metab. 2024, 36, 2315–2328.e2316. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, J.; Luo, D.; Xu, Y.; Zhang, R.; Li, X.; Yin, Z.; Fang, J.; Wang, H. Accumulation of branched-chain amino acids deteriorates the neuroinflammatory response of Müller cells in diabetic retinopathy via leucine/Sestrin2-mediated sensing of mTOR signaling. Acta Diabetol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Niklaus, S.; Glasauer, S.M.K.; Kovermann, P.; Farshori, K.F.; Cadetti, L.; Früh, S.; Rieser, N.N.; Gesemann, M.; Zang, J.; Fahlke, C.; et al. Glutamate transporters are involved in direct inhibitory synaptic transmission in the vertebrate retina. Open Biol. 2024, 14, 240140. [Google Scholar] [CrossRef] [PubMed]
- Adler, L.t.; Chen, C.; Koutalos, Y. Glutamine is the only amino acid that can adequately support the generation of NADPH in rod photoreceptors. Exp. Eye Res. 2024, 246, 110018. [Google Scholar] [CrossRef] [PubMed]
- Attallah, A.; Ardourel, M.; Lesne, F.; De Oliveira, A.; Felgerolle, C.; Briault, S.; Ranchon-Cole, I.; Perche, O. Dietary supplement enriched in antioxidants and omega-3 promotes retinal glutamine synthesis. Exp. Eye Res. 2024, 245, 109964. [Google Scholar] [CrossRef]
- Ardourel, M.; Felgerolle, C.; Pâris, A.; Acar, N.; Ramchani Ben Othman, K.; Ueda, N.; Rossignol, R.; Bazinet, A.; Hébert, B.; Briault, S.; et al. Dietary Supplement Enriched in Antioxidants and Omega-3 Promotes Glutamine Synthesis in Müller Cells: A Key Process against Oxidative Stress in Retina. Nutrients 2021, 13, 3216. [Google Scholar] [CrossRef]
- Neu, J.; Afzal, A.; Pan, H.; Gallego, E.; Li, N.; Li Calzi, S.; Caballero, S.; Spoerri, P.E.; Shaw, L.C.; Grant, M.B. The dipeptide Arg-Gln inhibits retinal neovascularization in the mouse model of oxygen-induced retinopathy. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3151–3155. [Google Scholar] [CrossRef]
- Gantner, M.L.; Eade, K.; Wallace, M.; Handzlik, M.K.; Fallon, R.; Trombley, J.; Bonelli, R.; Giles, S.; Harkins-Perry, S.; Heeren, T.F.C.; et al. Serine and Lipid Metabolism in Macular Disease and Peripheral Neuropathy. N. Engl. J. Med. 2019, 381, 1422–1433. [Google Scholar] [CrossRef]
- Bonelli, R.; Ansell, B.R.E.; Lotta, L.; Scerri, T.; Clemons, T.E.; Leung, I.; Peto, T.; Bird, A.C.; Sallo, F.B.; Langenberg, C.; et al. Genetic disruption of serine biosynthesis is a key driver of macular telangiectasia type 2 aetiology and progression. Genome Med. 2021, 13, 39. [Google Scholar] [CrossRef]
- Eade, K.; Gantner, M.L.; Hostyk, J.A.; Nagasaki, T.; Giles, S.; Fallon, R.; Harkins-Perry, S.; Baldini, M.; Lim, E.W.; Scheppke, L.; et al. Serine biosynthesis defect due to haploinsufficiency of PHGDH causes retinal disease. Nat. Metab. 2021, 3, 366–377. [Google Scholar] [CrossRef]
- Bonelli, R.; Jackson, V.E.; Prasad, A.; Munro, J.E.; Farashi, S.; Heeren, T.F.C.; Pontikos, N.; Scheppke, L.; Friedlander, M.; Egan, C.A.; et al. Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder. Commun. Biol. 2021, 4, 274. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Reviews. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Costello, S.M.; Schultz, A.; Smith, D.; Horan, D.; Chaverra, M.; Tripet, B.; George, L.; Bothner, B.; Lefcort, F.; Copié, V. Metabolic Deficits in the Retina of a Familial Dysautonomia Mouse Model. Metabolites 2024, 14, 423. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zizmare, L.; Calbiague, V.; Wang, L.; Yu, S.; Herberg, F.W.; Schmachtenberg, O.; Paquet-Durand, F.; Trautwein, C. Retinal metabolism displays evidence for uncoupling of glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle. eLife 2024, 12, RP91141. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Ni, X.S.; Han, X.Y.; Liu, S.; Ji, Y.K.; Yao, J.; Yan, B. Metabolomic profiling of a neurodegenerative retina following optic nerve transection. Mol. Med. Rep. 2023, 28, 13065. [Google Scholar] [CrossRef]
- Liang, C.; Li, F.; Gu, C.; Xie, L.; Yan, W.; Wang, X.; Shi, R.; Linghu, S.; Liu, T. Metabolomic profiling of ocular tissues in rabbit myopia: Uncovering differential metabolites and pathways. Exp. Eye Res. 2024, 240, 109796. [Google Scholar] [CrossRef]
- Kim, S.; Hong, K.B.; Kim, S.; Suh, H.J.; Jo, K. Creatine and taurine mixtures alleviate depressive-like behaviour in Drosophila melanogaster and mice via regulating Akt and ERK/BDNF pathways. Sci. Rep. 2020, 10, 11370. [Google Scholar] [CrossRef]
- Du, P.; Du, C.; Wang, R.; Zhu, H.; Hua, H.; Cheng, Y.; Guo, Y.; Qian, H. Caffeine combined with taurine improves cognitive function and locomotor performance in sleep-deprived mice. J. Funct. Foods 2022, 99, 105298. [Google Scholar] [CrossRef]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef]
- Tomita, Y.; Lee, D.; Tsubota, K.; Negishi, K.; Kurihara, T. Updates on the Current Treatments for Diabetic Retinopathy and Possibility of Future Oral Therapy. J. Clin. Med. 2021, 10, 4666. [Google Scholar] [CrossRef]
- Lee, M.Y.; Hsiao, P.J.; Huang, J.C.; Hsu, W.H.; Chen, S.C.; Shin, S.J. Association Between Metabolic Syndrome and Microvascular and Macrovascular Disease in Type 2 Diabetic Mellitus. Am. J. Med. Sci. 2018, 355, 342–349. [Google Scholar] [CrossRef]
- De Francesco, T.; Bacharach, J.; Smith, O.; Shah, M. Early diagnostics and interventional glaucoma. Ther. Adv. Ophthalmol. 2024, 16, 25158414241287431. [Google Scholar] [CrossRef]
- Bovee, C.E.; Pasquale, L.R. Evolving Surgical Interventions in the Treatment of Glaucoma. Semin. Ophthalmol. 2017, 32, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jeoung, J.W.; Park, K.H.; Oh, W.H.; Choi, H.J.; Kim, D.M. Metabolic syndrome as a risk factor in normal-tension glaucoma. Acta Ophthalmol. 2014, 92, e637–e643. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Lee, S.H.; Oum, B.S.; Chung, J.S.; Cho, B.M.; Hong, J.W. Relationship between intraocular pressure and systemic health parameters in a Korean population. Clin. Exp. Ophthalmol. 2002, 30, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.W.; Lee, S.; Park, C.; Kim, D.J. Elevated intraocular pressure is associated with insulin resistance and metabolic syndrome. Diabetes/Metab. Res. Rev. 2005, 21, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Han, K.; Park, H.Y.L.; Lee, S.H.; Park, C.K. Metabolic Health, Obesity, and the Risk of Developing Open-Angle Glaucoma: Metabolically Healthy Obese Patients versus Metabolically Unhealthy but Normal Weight Patients. Diabetes Metab. J. 2020, 44, 414–425. [Google Scholar] [CrossRef]
- Doğan, M.; Sabaner, M.C.; Akar, A.T.; Şenel, M.; Kaşikçi, İ.; Günal, E.; Özbay, A.E.; Şarman, T.; Gobeka, H.H.; Cam, Ö. Evaluation of the effect of energy drink consumption on retina and choroid: An optical coherence tomography and optical coherence tomography angiography study. Cutan. Ocul. Toxicol. 2020, 39, 295–297. [Google Scholar] [CrossRef]
- Nadeem, I.M.; Shanmugaraj, A.; Sakha, S.; Horner, N.S.; Ayeni, O.R.; Khan, M. Energy Drinks and Their Adverse Health Effects: A Systematic Review and Meta-analysis. Sports Health 2021, 13, 265–277. [Google Scholar] [CrossRef]
- Gualberto, P.I.B.; Benvindo, V.V.; Waclawovsky, G.; Deresz, L.F. Acute effects of energy drink consumption on cardiovascular parameters in healthy adults: A systematic review and meta-analysis of randomized clinical trials. Nutr. Rev. 2024, 82, 1028–1045. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Smith, L.E.H. Therapeutic Effects of Taurine and Histidine Supplementation in Retinal Diseases. Life 2024, 14, 1566. https://doi.org/10.3390/life14121566
Lee D, Smith LEH. Therapeutic Effects of Taurine and Histidine Supplementation in Retinal Diseases. Life. 2024; 14(12):1566. https://doi.org/10.3390/life14121566
Chicago/Turabian StyleLee, Deokho, and Lois E. H. Smith. 2024. "Therapeutic Effects of Taurine and Histidine Supplementation in Retinal Diseases" Life 14, no. 12: 1566. https://doi.org/10.3390/life14121566
APA StyleLee, D., & Smith, L. E. H. (2024). Therapeutic Effects of Taurine and Histidine Supplementation in Retinal Diseases. Life, 14(12), 1566. https://doi.org/10.3390/life14121566