RtHSFA9s of Rhodomyrtus tomentosa Positively Regulate Thermotolerance by Transcriptionally Activating RtHSFA2s and RtHSPs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Phylogenetic Analysis and Sequence Alignment
2.3. Gene Cloning, Plasmid Construction, and Generation of Transgenic Arabidopsis Plants
2.4. Subcellular Localization
2.5. Heat Stress Treatment of Transgenic Arabidopsis
2.6. Transient Transformation of R. tomentosa, RNA Extraction, and Reverse Transcription Quantitative PCR (RT-qPCR) Analysis
2.7. Transactivation Activity Assays in Tobacco Leaves
2.8. Statistical Analysis
3. Results
3.1. Sequence Characteristics, and Phylogenetic and Subcellular Localization Analyses of RtHSFA9a, RtHSFA9b, and RtHSFA9c
3.2. Effects of RtHSFA9s on Heat Stress Tolerance in Arabidopsis
3.3. Regulatory Networks of RtHSFA9s in Heat Stress Response in R. tomentosa
3.4. RtHSFA9a, RtHSFA9b, and RtHSFA9c Showed Different Transactivation Activities in Regulating Heat Stress Response Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerbler, S.M.; Wigge, P.A. Temperature Sensing in Plants. Annu. Rev. Plant Biol. 2023, 74, 341–366. [Google Scholar] [CrossRef] [PubMed]
- Kan, Y.; Mu, X.-R.; Zhang, H.; Gao, J.; Shan, J.-X.; Ye, W.-W.; Lin, H.-X. TT2 Controls Rice Thermotolerance through SCT1-Dependent Alteration of Wax Biosynthesis. Nat. Plants 2021, 8, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Piao, S.; Huang, Y.; Wang, X.; Ciais, P.; Huang, M.; Zeng, Z.; Peng, S. Field Warming Experiments Shed Light on the Wheat Yield Response to Temperature in China. Nat. Commun. 2016, 7, 13530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.-M.; Lin, H.-X.; Chong, K. Crop Improvement through Temperature Resilience. Annu. Rev. Plant Biol. 2019, 70, 753–780. [Google Scholar] [CrossRef]
- Hayes, S.; Schachtschabel, J.; Mishkind, M.; Munnik, T.; Arisz, S.A. Hot Topic: Thermosensing in Plants. Plant Cell Environ. 2021, 44, 2018–2033. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Z.; Biederman, J.A.; Qian, R.; Ran, Q.; Zhang, B.; Xu, C.; Wang, F.; Zhou, S.; Che, R.; et al. Drought and Heat Wave Impacts on Grassland Carbon Cycling across Hierarchical Levels. Plant Cell Environ. 2021, 44, 2402–2413. [Google Scholar] [CrossRef]
- Case, M.F.; Wigley-Coetsee, C.; Nzima, N.; Scogings, P.F.; Staver, A.C. Severe Drought Limits Trees in a Semi-Arid Savanna. Ecology 2019, 100, e02842. [Google Scholar] [CrossRef]
- Hartmann, H.; Bastos, A.; Das, A.J.; Esquivel-Muelbert, A.; Hammond, W.M.; Martínez-Vilalta, J.; McDowell, N.G.; Powers, J.S.; Pugh, T.A.M.; Ruthrof, K.X.; et al. Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annu. Rev. Plant Biol. 2022, 73, 673–702. [Google Scholar] [CrossRef]
- McDowell, N.; Allen, C.D.; Anderson-Teixeira, K.; Brando, P.; Brienen, R.; Chambers, J.; Christoffersen, B.; Davies, S.; Doughty, C.; Duque, A.; et al. Drivers and Mechanisms of Tree Mortality in Moist Tropical Forests. New Phytol. 2018, 219, 851–869. [Google Scholar] [CrossRef]
- Zhang, Y.; Keenan, T.F.; Zhou, S. Exacerbated Drought Impacts on Global Ecosystems Due to Structural Overshoot. Nat. Ecol. Evol. 2021, 5, 1490–1498. [Google Scholar] [CrossRef]
- Choi, K.R.; Jung, S.Y.; Lee, S.Y. From Sustainable Feedstocks to Microbial Foods. Nat. Microbiol. 2024, 9, 1167–1175. [Google Scholar] [CrossRef]
- Fu, J.; Jian, Y.; Wang, X.; Li, L.; Ciais, P.; Zscheischler, J.; Wang, Y.; Tang, Y.; Müller, C.; Webber, H.; et al. Extreme Rainfall Reduces One-Twelfth of China’s Rice Yield over the Last Two Decades. Nat. Food 2023, 4, 416–426. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Janni, M.; Gullì, M.; Maestri, E.; Marmiroli, M.; Valliyodan, B.; Nguyen, H.T.; Marmiroli, N. Molecular and Genetic Bases of Heat Stress Responses in Crop Plants and Breeding for Increased Resilience and Productivity. J. Exp. Bot. 2020, 71, 3780–3802. [Google Scholar] [CrossRef]
- Liu, H.; Xu, C.; Allen, C.D.; Hartmann, H.; Wei, X.; Yakir, D.; Wu, X.; Yu, P. Nature-Based Framework for Sustainable Affor-estation in Global Drylands under Changing Climate. Glob. Change Biol. 2022, 28, 2202–2220. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The Enduring World Forest Carbon Sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Wu, P.; Ma, G.; Li, N.; Deng, Q.; Yin, Y.; Huang, R. Investigation of in Vitro and in Vivo Antioxidant Activities of Flavonoids Rich Extract from the Berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem. 2015, 173, 194–202. [Google Scholar] [CrossRef]
- Guihur, A.; Rebeaud, M.E.; Goloubinoff, P. How Do Plants Feel the Heat and Survive? Trends Biochem. Sci. 2022, 47, 824–838. [Google Scholar] [CrossRef]
- Wu, J.; Liu, P.; Liu, Y. Thermosensing and Thermal Responses in Plants. Trends Biochem. Sci. 2023, 48, 923–926. [Google Scholar] [CrossRef]
- Kan, Y.; Mu, X.-R.; Gao, J.; Lin, H.-X.; Lin, Y. The Molecular Basis of Heat Stress Responses in Plants. Mol. Plant 2023, 16, 1612–1634. [Google Scholar] [CrossRef]
- Devireddy, A.R.; Arbogast, J.; Mittler, R. Coordinated and Rapid Whole-Plant Systemic Stomatal Responses. New Phytol. 2020, 225, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wu, Q.; Wang, M.; Chen, D.; Li, J.; Shen, J.; Hou, S.; Zhang, P.; Qin, L.; Acharya, B.R.; et al. Maize MITO-GEN-ACTIVATED PROTEIN KINASE 20 Mediates High-Temperature-Regulated Stomatal Movement. Plant Physiol. 2023, 193, 2788–2805. [Google Scholar] [CrossRef] [PubMed]
- Casal, J.J.; Balasubramanian, S. Thermomorphogenesis. Annu. Rev. Plant Biol. 2019, 70, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Thirumalaikumar, V.P.; Gorka, M.; Schulz, K.; Masclaux-Daubresse, C.; Sampathkumar, A.; Skirycz, A.; Vierstra, R.D.; Bala-zadeh, S. Selective Autophagy Regulates Heat Stress Memory in Arabidopsis by NBR1-Mediated Targeting of HSP90.1 and ROF1. Autophagy 2021, 17, 2184–2199. [Google Scholar] [CrossRef]
- Purschke, M.; Laubach, H.-J.; Rox Anderson, R.; Manstein, D. Thermal Injury Causes DNA Damage and Lethality in Unheated Surrounding Cells: Active Thermal Bystander Effect. J. Investig. Dermatol. 2010, 130, 86–92. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, Y.; Wu, W.; Lyu, L.; Li, W. A Review of Changes at the Phenotypic, Physiological, Biochemical, and Molecular Levels of Plants Due to High Temperatures. Planta 2024, 259, 57. [Google Scholar] [CrossRef]
- Vacca, R.A.; de Pinto, M.C.; Valenti, D.; Passarella, S.; Marra, E.; De Gara, L. Production of Reactive Oxygen Species, Alteration of Cytosolic Ascorbate Peroxidase, and Impairment of Mitochondrial Metabolism Are Early Events in Heat Shock-Induced Programmed Cell Death in Tobacco Bright-Yellow 2 Cells. Plant Physiol. 2004, 134, 1100–1112. [Google Scholar] [CrossRef]
- Mittler, R.; Finka, A.; Goloubinoff, P. How Do Plants Feel the Heat? Trends Biochem. Sci. 2012, 37, 118–125. [Google Scholar] [CrossRef]
- Fang, Y.; Liao, K.; Du, H.; Xu, Y.; Song, H.; Li, X.; Xiong, L. A Stress-Responsive NAC Transcription Factor SNAC3 Confers Heat and Drought Tolerance through Modulation of Reactive Oxygen Species in Rice. J. Exp. Bot. 2015, 66, 6803–6817. [Google Scholar] [CrossRef]
- Andrási, N.; Pettkó-Szandtner, A.; Szabados, L. Diversity of Plant Heat Shock Factors: Regulation, Interactions, and Functions. J. Exp. Bot. 2021, 72, 1558–1575. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Li, S.; Yuan, L.; Mu, H.; Wang, Y.; Li, Y.; Duan, W.; Fan, P.; Liang, Z.; et al. The Class B Heat Shock Factor HSFB1 Regulates Heat Tolerance in Grapevine. Hortic. Res. 2023, 10, uhad001. [Google Scholar] [CrossRef] [PubMed]
- Qu, A.-L.; Ding, Y.-F.; Jiang, Q.; Zhu, C. Molecular Mechanisms of the Plant Heat Stress Response. Biochem. Biophys. Res. Commun. 2013, 432, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, M.; Jiang, Y.; Du, D.; Dong, C.; Zhang, Z.; Wang, W.; Liu, J.; Liu, X.; Li, S.; et al. Thermosensitive SUMOylation of TaHsfA1 Defines a Dynamic ON/OFF Molecular Switch for the Heat Stress Response in Wheat. Plant Cell 2023, 35, 3889–3910. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Chen, J.; Yue, X.; Chai, S.; Liu, W.; Li, C.; Yang, F.; Gao, Y.; Gutiérrez Rodríguez, L.; Resco de Dios, V.; et al. The Heat Response Regulators HSFA1s Promote Arabidopsis Thermomorphogenesis via Stabilizing PIF4 during the Day. Sci. Adv. 2023, 9, eadh1738. [Google Scholar] [CrossRef]
- Li, B.; Jiang, S.; Gao, L.; Wang, W.; Luo, H.; Dong, Y.; Gao, Z.; Zheng, S.; Liu, X.; Tang, W. Heat Shock Factor A1s Are Required for Phytochrome-Interacting Factor 4-Mediated Thermomorphogenesis in Arabidopsis. J. Integr. Plant Biol. 2024, 66, 20–35. [Google Scholar] [CrossRef]
- Li, H.-G.; Yang, Y.; Liu, M.; Zhu, Y.; Wang, H.-L.; Feng, C.-H.; Niu, M.-X.; Liu, C.; Yin, W.; Xia, X. The in Vivo Performance of a Heat Shock Transcription Factor from Populus euphratica, PeHSFA2, Promises a Prospective Strategy to Alleviate Heat Stress Damage in Poplar. Environ. Exp. Bot. 2022, 201, 104940. [Google Scholar] [CrossRef]
- Li, B.; Gao, K.; Ren, H.; Tang, W. Molecular Mechanisms Governing Plant Responses to High Temperatures. J. Integr. Plant Biol. 2018, 60, 757–779. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Li, S.; Lecourieux, D.; Duan, W.; Fan, P.; Liang, Z.; Wang, L. Natural Variations of HSFA2 Enhance Ther-motolerance in Grapevine. Hortic. Res. 2023, 10, uhac250. [Google Scholar] [CrossRef]
- Bohn, L.; Huang, J.; Weidig, S.; Yang, Z.; Heidersberger, C.; Genty, B.; Falter-Braun, P.; Christmann, A.; Grill, E. The Temper-ature Sensor TWA1 Is Required for Thermotolerance in Arabidopsis. Nature 2024, 629, 1126–1132. [Google Scholar] [CrossRef]
- Friedrich, T.; Oberkofler, V.; Trindade, I.; Altmann, S.; Brzezinka, K.; Lämke, J.; Gorka, M.; Kappel, C.; Sokolowska, E.; Skirycz, A.; et al. Heteromeric HSFA2/HSFA3 Complexes Drive Transcriptional Memory after Heat Stress in Arabidopsis. Nat. Commun. 2021, 12, 3426. [Google Scholar] [CrossRef]
- Poonia, A.K.; Mishra, S.K.; Sirohi, P.; Chaudhary, R.; Kanwar, M.; Germain, H.; Chauhan, H. Overexpression of Wheat Transcription Factor (TaHsfA6b) Provides Thermotolerance in Barley. Planta 2020, 252, 53. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Niu, C.-Y.; Yang, C.-R.; Jinn, T.-L. The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses. Plant Physiol. 2016, 172, 1182–1199. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Das, J.R.; Balyan, S.; Verma, R.; Mathur, S. Cultivar-Biased Regulation of HSFA7 and HSFB4a Govern High-Temperature Tolerance in Tomato. Planta 2022, 255, 31. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.-P.; Drenth, J.; McIntyre, C.L. TaHsfA6f Is a Transcriptional Activator That Regulates a Suite of Heat Stress Protection Genes in Wheat (Triticum aestivum L.) Including Previously Unknown Hsf Targets. J. Exp. Bot. 2015, 66, 1025–1039. [Google Scholar] [CrossRef]
- Mesihovic, A.; Ullrich, S.; Rosenkranz, R.R.E.; Gebhardt, P.; Bublak, D.; Eich, H.; Weber, D.; Berberich, T.; Scharf, K.-D.; Schleiff, E.; et al. HsfA7 Coordinates the Transition from Mild to Strong Heat Stress Response by Controlling the Activity of the Master Regulator HsfA1a in Tomato. Cell Rep. 2022, 38, 110224. [Google Scholar] [CrossRef]
- Baniwal, S.K.; Chan, K.Y.; Scharf, K.D.; Nover, L. Role of Heat Stress Transcription Factor HsfA5 as Specific Repressor of HsfA4. J. Biol. Chem. 2007, 282, 3605–3613. [Google Scholar] [CrossRef]
- Ikeda, M.; Mitsuda, N.; Ohme-Takagi, M. Arabidopsis HsfB1 and HsfB2b Act as Repressors of the Expression of Heat-Inducible Hsfs but Positively Regulate the Acquired Thermotolerance. Plant Physiol. 2011, 157, 1243–1254. [Google Scholar] [CrossRef]
- Qin, Q.; Zhao, Y.; Zhang, J.; Chen, L.; Si, W.; Jiang, H. A Maize Heat Shock Factor ZmHsf11 Negatively Regulates Heat Stress Tolerance in Transgenic Plants. BMC Plant Biol. 2022, 22, 406. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Ding, L.; Wang, C.; Teng, R.; Xu, S.; Cao, X.; Teng, N. Lily LlHSFC2 Coordinates with HSFAs to Balance Heat Stress Response and Improve Thermotolerance. New Phytol. 2024, 241, 2124–2142. [Google Scholar] [CrossRef]
- Zinsmeister, J.; Berriri, S.; Basso, D.P.; Ly-Vu, B.; Dang, T.-T.; Lalanne, D.; da Silva, E.A.A.; Leprince, O.; Buitink, J. The Seed-Specific Heat Shock Factor A9 Regulates the Depth of Dormancy in Medicago truncatula Seeds via ABA Signalling. Plant Cell Environ. 2020, 43, 2508–2522. [Google Scholar] [CrossRef]
- Kotak, S.; Vierling, E.; Bäumlein, H.; von Koskull-Döring, P. A Novel Transcriptional Cascade Regulating Expression of Heat Stress Proteins during Seed Development of Arabidopsis. Plant Cell 2007, 19, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tian, Y.; Zhao, W.; Xu, J.; Wang, L.; Peng, R.; Yao, Q. Functional Characterization of a Grape Heat Stress Transcription Factor VvHsfA9 in Transgenic Arabidopsis. Acta Physiol. Plant. 2015, 37, 133. [Google Scholar] [CrossRef]
- Almoguera, C.; Prieto-Dapena, P.; Diaz-Martin, J.; Espinosa, J.M.; Carranco, R.; Jordano, J. The HaDREB2 Transcription Factor Enhances Basal Thermotolerance and Longevity of Seeds through Functional Interaction with HaHSFA9. BMC Plant Biol. 2009, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Personat, J.-M.; Tejedor-Cano, J.; Prieto-Dapena, P.; Almoguera, C.; Jordano, J. Co-Overexpression of Two Heat Shock Factors Results in Enhanced Seed Longevity and in Synergistic Effects on Seedling Tolerance to Severe Dehydration and Oxidative Stress. BMC Plant Biol. 2014, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Verdier, J.; Lalanne, D.; Pelletier, S.; Torres-Jerez, I.; Righetti, K.; Bandyopadhyay, K.; Leprince, O.; Chatelain, E.; Vu, B.L.; Gouzy, J.; et al. A Regulatory Network-Based Approach Dissects Late Maturation Processes Related to the Acquisition of Desiccation Tolerance and Longevity of Medicago truncatula Seeds. Plant Physiol. 2013, 163, 757–774. [Google Scholar] [CrossRef]
- Carranco, R.; Prieto-Dapena, P.; Almoguera, C.; Jordano, J. SUMO-Dependent Synergism Involving Heat Shock Transcription Factors with Functions Linked to Seed Longevity and Desiccation Tolerance. Front. Plant Sci. 2017, 8, 974. [Google Scholar] [CrossRef]
- Prieto-Dapena, P.; Almoguera, C.; Personat, J.-M.; Merchan, F.; Jordano, J. Seed-Specific Transcription Factor HSFA9 Links Late Embryogenesis and Early Photomorphogenesis. J. Exp. Bot. 2017, 68, 1097–1108. [Google Scholar] [CrossRef]
- Almoguera, C.; Prieto-Dapena, P.; Carranco, R.; Ruiz, J.L.; Jordano, J. Heat Stress Factors Expressed during Seed Maturation Differentially Regulate Seed Longevity and Seedling Greening. Plants 2020, 9, 335. [Google Scholar] [CrossRef]
- Almoguera, C.; Prieto-Dapena, P.; Personat, J.-M.; Tejedor-Cano, J.; Lindahl, M.; Diaz-Espejo, A.; Jordano, J. Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco. PLoS ONE 2012, 7, e51443. [Google Scholar] [CrossRef]
- Carranco, R.; Prieto-Dapena, P.; Almoguera, C.; Jordano, J. A Seed-Specific Transcription Factor, HSFA9, Anticipates UV-B Light Responses by Mimicking the Activation of the UV-B Receptor in Tobacco. Plant J. 2022, 111, 1439–1452. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Tang, L.; Wang, Y.; Sun, R.; Deng, X. Arabidopsis HSFA9 Acts as a Regulator of Heat Response Gene Ex-pression and the Acquisition of Thermotolerance and Seed Longevity. Plant Cell Physiol. 2024, 65, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-G.; Yang, L.; Fang, Y.; Wang, G.; Lyu, S.; Deng, S. A Genome-Wide-Level Insight into HSF Gene Family of Rhodomyrtus tomentosa and the Functional Characterization of RtHSFA2s Genes in Thermal Adaption. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-Friendly Tool for Maximum Likelihood Phylogenetic Inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T.-Y. GGTREE: An R Package for Visualization and Annotation of Phylogenetic Trees with Their Covariates and Other Associated Data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral Dip: A Simplified Method for Agrobacterium-Mediated Transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef]
- White, E.J.; Venter, M.; Hiten, N.F.; Burger, J.T. Modified Cetyltrimethylammonium Bromide Method Improves Robustness and Versatility: The Benchmark for Plant RNA Extraction. Biotechnol. J. 2008, 3, 1424–1428. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- He, S.-M.; Wang, X.; Yang, S.-C.; Dong, Y.; Zhao, Q.-M.; Yang, J.-L.; Cong, K.; Zhang, J.-J.; Zhang, G.-H.; Wang, Y.; et al. De Novo Transcriptome Characterization of Rhodomyrtus tomentosa Leaves and Identification of Genes Involved in α/β-Pinene and β-Caryophyllene Biosynthesis. Front. Plant Sci. 2018, 9, 1231. [Google Scholar] [CrossRef]
- Rathor, P.; Borza, T.; Stone, S.; Tonon, T.; Yurgel, S.; Potin, P.; Prithiviraj, B. A Novel Protein from Ectocarpus Sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 1971. [Google Scholar] [CrossRef]
- Song, N.; Wang, J.; Qin, Q.; Su, A.; Cheng, Y.; Si, W.; Cheng, B.; Fan, J.; Jiang, H. ZmHSFA2B Self-Regulatory Loop Is Critical for Heat Tolerance in Maize. Plant Biotechnol. J. 2024. [Google Scholar] [CrossRef]
- Rising, J.; Tedesco, M.; Piontek, F.; Stainforth, D.A. The Missing Risks of Climate Change. Nature 2022, 610, 643–651. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global Forest Fragmentation Change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef] [PubMed]
- Opoku, E.E.O.; Aluko, O.A. Heterogeneous Effects of Industrialization on the Environment: Evidence from Panel Quantile Regression. Struct. Change Econ. Dyn. 2021, 59, 174–184. [Google Scholar] [CrossRef]
- Li, B.V.; Wu, S.; Hua, F.; Mi, X. The Past and Future of Ecosystem Restoration in China. Curr. Biol. 2024, 34, R379–R387. [Google Scholar] [CrossRef]
- Cai, W.; He, N.; Li, M.; Xu, L.; Wang, L.; Zhu, J.; Zeng, N.; Yan, P.; Si, G.; Zhang, X.; et al. Carbon Sequestration of Chinese Forests from 2010 to 2060: Spatiotemporal Dynamics and Its Regulatory Strategies. Sci. Bull. 2022, 67, 836–843. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Ji, Y.; Wang, C.; Wang, S.; Shi, Y.; Le, J.; Zhang, M. The Heat Shock Factor 20-HSF4-Cellulose Synthase A2 Module Regulates Heat Stress Tolerance in Maize. Plant Cell 2024, 36, koae106. [Google Scholar] [CrossRef]
- Li, Z.; Tang, J.; Srivastava, R.; Bassham, D.C.; Howell, S.H. The Transcription Factor bZIP60 Links the Unfolded Protein Re-sponse to the Heat Stress Response in Maize. Plant Cell 2020, 32, 3559–3575. [Google Scholar] [CrossRef]
- Prieto-Dapena, P.; Castano, R.; Almoguera, C.; Jordano, J. The Ectopic Overexpression of a Seed-Specific Transcription Factor, HaHSFA9, Confers Tolerance to Severe Dehydration in Vegetative Organs. Plant J. 2008, 54, 1004–1014. [Google Scholar] [CrossRef]
- Almoguera, C.; Rojas, A.; Díaz-Martín, J.; Prieto-Dapena, P.; Carranco, R.; Jordano, J. A Seed-Specific Heat-Shock Transcrip-tion Factor Involved in Developmental Regulation during Embryogenesis in Sunflower. J. Biol. Chem. 2002, 277, 43866–43872. [Google Scholar] [CrossRef]
- Yang, L.; Jin, J.; Lyu, S.; Zhang, F.; Cao, P.; Qin, Q.; Zhang, G.; Feng, C.; Lu, P.; Li, H.; et al. Genomic Analysis Based on Chromosome-Level Genome Assembly Reveals Myrtaceae Evolution and Terpene Biosynthesis of Rose Myrtle. BMC Genom. 2024, 25, 578. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Dang, H.; Zhou, L.; Hu, J.; Jin, X.; Han, Y.; Wang, S. Genome-Wide Identification and Expression Analysis of the HSF Gene Family in Poplar. Forests 2023, 14, 510. [Google Scholar] [CrossRef]
- Mittal, D.; Chakrabarti, S.; Sarkar, A.; Singh, A.; Grover, A. Heat Shock Factor Gene Family in Rice: Genomic Organization and Transcript Expression Profiling in Response to High Temperature, Low Temperature and Oxidative Stresses. Plant Physiol. Biochem. 2009, 47, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Scharf, K.-D.; Berberich, T.; Ebersberger, I.; Nover, L. The Plant Heat Stress Transcription Factor (Hsf) Family: Structure, Function and Evolution. Biochim. Biophys. Acta 2012, 1819, 104–119. [Google Scholar] [CrossRef]
- Yuan, T.; Liang, J.; Dai, J.; Zhou, X.-R.; Liao, W.; Guo, M.; Aslam, M.; Li, S.; Cao, G.; Cao, S. Genome-Wide Identification of Eucalyptus Heat Shock Transcription Factor Family and Their Transcriptional Analysis under Salt and Temperature Stresses. Int. J. Mol. Sci. 2022, 23, 8044. [Google Scholar] [CrossRef]
- Myburg, A.A.; Grattapaglia, D.; Tuskan, G.A.; Hellsten, U.; Hayes, R.D.; Grimwood, J.; Jenkins, J.; Lindquist, E.; Tice, H.; Bauer, D.; et al. The Genome of Eucalyptus grandis. Nature 2014, 510, 356–362. [Google Scholar] [CrossRef]
- Zhao, D.; Qi, X.; Zhang, Y.; Zhang, R.; Wang, C.; Sun, T.; Zheng, J.; Lu, Y. Genome-Wide Analysis of the Heat Shock Tran-scription Factor Gene Family in Sorbus pohuashanensis (Hance) Hedl Identifies Potential Candidates for Resistance to Abiotic Stresses. Plant Physiol. Biochem. 2022, 175, 68–80. [Google Scholar] [CrossRef]
- Dossa, K.; Diouf, D.; Cisse, N. Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Ex-pansion and Their Active Role in Drought Stress Response. Front. Plant Sci. 2016, 7, 1522. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, C.; Zhang, L.; Liu, H.; Yu, J.; Hu, Z.; Hua, W. Systematic Analysis of Hsf Family Genes in the Brassica napus Genome Reveals Novel Responses to Heat, Drought and High CO2 Stresses. Front. Plant Sci. 2017, 8, 1174. [Google Scholar] [CrossRef]
- Waters, E.R.; Vierling, E. Plant Small Heat Shock Proteins—Evolutionary and Functional Diversity. New Phytol. 2020, 227, 24–37. [Google Scholar] [CrossRef]
- Merino, I.; Contreras, A.; Jing, Z.-P.; Gallardo, F.; Cánovas, F.M.; Gómez, L. Plantation Forestry under Global Warming: Hybrid Poplars with Improved Thermotolerance Provide New Insights on the in Vivo Function of Small Heat Shock Protein Chaper-ones. Plant Physiol. 2014, 164, 978–991. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Xia, X.; Su, J.; Wei, M.; Wu, Y.; Tao, J. Overexpression of Herbaceous peony HSP70 Confers High Temperature Tol-erance. BMC Genom. 2019, 20, 70. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xuan, H.; Yang, C.; Guo, N.; Wang, H.; Zhao, J.; Xing, H. GmHsp90A2 Is Involved in Soybean Heat Stress as a Positive Regulator. Plant Sci. 2019, 285, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.-H.; Zhang, H.-X.; Ali, M.; Gai, W.-X.; Cheng, G.-X.; Yu, Q.-H.; Yang, S.-B.; Li, X.-X.; Gong, Z.-H. A Small Heat Shock Protein CaHsp25.9 Positively Regulates Heat, Salt, and Drought Stress Tolerance in Pepper (Capsicum annuum L.). Plant Physiol. Biochem. 2019, 142, 151–162. [Google Scholar] [CrossRef]
- Li, D.; Wu, S.; Liu, L.; Zhang, Y.; Li, S. Vulnerability of the Global Terrestrial Ecosystems to Climate Change. Glob. Change Biol. 2018, 24, 4095–4106. [Google Scholar] [CrossRef]
- Otto, C.; Kuhla, K.; Geiger, T.; Schewe, J.; Frieler, K. Better Insurance Could Effectively Mitigate the Increase in Economic Growth Losses from U.S. Hurricanes under Global Warming. Sci. Adv. 2023, 9, eadd6616. [Google Scholar] [CrossRef]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef]
- Li, L.; Chakraborty, P. Slower Decay of Landfalling Hurricanes in a Warming World. Nature 2020, 587, 230–234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, L.; Fang, Y.; Wang, G.; Liu, T. RtHSFA9s of Rhodomyrtus tomentosa Positively Regulate Thermotolerance by Transcriptionally Activating RtHSFA2s and RtHSPs. Life 2024, 14, 1591. https://doi.org/10.3390/life14121591
Li H, Yang L, Fang Y, Wang G, Liu T. RtHSFA9s of Rhodomyrtus tomentosa Positively Regulate Thermotolerance by Transcriptionally Activating RtHSFA2s and RtHSPs. Life. 2024; 14(12):1591. https://doi.org/10.3390/life14121591
Chicago/Turabian StyleLi, Huiguang, Ling Yang, Yujie Fang, Gui Wang, and Tingting Liu. 2024. "RtHSFA9s of Rhodomyrtus tomentosa Positively Regulate Thermotolerance by Transcriptionally Activating RtHSFA2s and RtHSPs" Life 14, no. 12: 1591. https://doi.org/10.3390/life14121591
APA StyleLi, H., Yang, L., Fang, Y., Wang, G., & Liu, T. (2024). RtHSFA9s of Rhodomyrtus tomentosa Positively Regulate Thermotolerance by Transcriptionally Activating RtHSFA2s and RtHSPs. Life, 14(12), 1591. https://doi.org/10.3390/life14121591