Fertilization for Growth or Feeding the Weeds? A Deep Dive into Nitrogen’s Role in Rice Dynamics in Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Study Period
2.2. Treatments in Study
2.3. Experimental Design
2.4. Management of the Trial
2.5. Evaluation of Study Variables
2.6. Data Analysis
3. Results
3.1. Levels of Weed Incidence
3.2. Effects of Nitrogen Levels on Rice Plants
3.2.1. Non-Parametric ANOVA
3.2.2. Debiased Sparse Partial Correlation (DSPC) Network
3.2.3. Principal Component Analysis (PCA)
4. Discussion
4.1. Levels of Weed Incidence
4.2. Effects of Nitrogen Levels on Rice Plants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Location | Treatment | Herbicide Toxicity | Weeds at 25 Days | Weeds at Harvest | ||
---|---|---|---|---|---|---|
ND | Var | PD | ||||
Los Ríos | 80 | INIAP | 20 × 30 | 0 | 0 | 0 |
80 | INIAP | 25 × 30 | 0 | 0 | 0 | |
80 | INIAP | 30 × 30 | 0 | 0 | 0 | |
80 | SFL-11 | 20 × 30 | 0 | 0 | 0 | |
80 | SFL-11 | 25 × 30 | 0 | 0 | 0 | |
80 | SFL-11 | 30 × 30 | 0 | 0 | 0 | |
120 | INIAP | 20 × 30 | 0 | 0 | 0 | |
120 | INIAP | 25 × 30 | 0 | 0 | 0 | |
120 | INIAP | 30 × 30 | 0 | 0 | 0 | |
120 | SFL-11 | 20 × 30 | 0 | 0 | 0 | |
120 | SFL-11 | 25 × 30 | 0 | 0 | 0 | |
120 | SFL-11 | 30 × 30 | 0 | 0 | 0 | |
Guayas | 80 | INIAP | 20 × 30 | 0 | 0 | 0 |
80 | INIAP | 25 × 30 | 0 | 0 | 0 | |
80 | INIAP | 30 × 30 | 0 | 0 | 0 | |
80 | SFL-11 | 20 × 30 | 0 | 0 | 0 | |
80 | SFL-11 | 25 × 30 | 0 | 0 | 0 | |
80 | SFL-11 | 30 × 30 | 0 | 0 | 0 | |
120 | INIAP | 20 × 30 | 0 | 0 | 0 | |
120 | INIAP | 25 × 30 | 0 | 0 | 0 | |
120 | INIAP | 30 × 30 | 0 | 0 | 0 | |
120 | SFL-11 | 20 × 30 | 0 | 0 | 0 | |
120 | SFL-11 | 25 × 30 | 0 | 0 | 0 | |
120 | SFL-11 | 30 × 30 | 0 | 25 | 25 |
References
- Pérez-Almeida, I.; Celi-Herán, R.; Sánchez-Mora, F.; Paz-Carrasco, L.; Ramos-Viteri, B. Assessment of molecular genetic diversity of Ecuadorian rice cultivars using simple sequence repeat markers. Bioagro 2020, 31, 3–12. Available online: https://revistas.uclave.org/index.php/bioagro/article/view/2607 (accessed on 24 November 2024).
- Marin, D.; Orrego-Varon, M.; Yanez, F.; Mendoza, L.; Garcia, M.A.; Twyman, J.; Andrade, R.; Labarta, R. Household survey data of adoption of improved varieties and management practices in rice production, Ecuador. Data Brief. 2018, 18, 1252–1256. [Google Scholar] [CrossRef] [PubMed]
- Sistema de Información Pública Agropecuaria del Ecuador (SIPA). Boletín Situacional del Cultivo de Arroz; SIPA: New Canaan, CT, USA, 2022; Volume 21. [Google Scholar]
- Lyu, Y.; Raugei, M.; Zhang, X.; Mellino, S.; Ulgiati, S. Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and life cycle assessment. Renew. Sustain. Energy Rev. 2021, 151, 111604. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Moudrý, J.; Konvalina, P.; Hörtenhuber, S.J.; Ghorbani, M.; Neugschwandtner, R.W.; Jiang, Z.; Krexner, T.; Kopecký, M. Environmental life cycle assessment in organic and conventional rice farming systems: Using a cradle to farm gate approach. Sustainability 2022, 14, 15870. [Google Scholar] [CrossRef]
- Humbert, J.-Y.; Dwyer, J.M.; Andrey, A.; Arlettaz, R. Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: A systematic review. Glob. Chang. Biol. 2016, 22, 110–120. [Google Scholar] [CrossRef]
- Cadena Piedrahita, D.; Helfgott Lerner, S.; Espinoza Espinoza, F.; Valarezo Beltrón, C.; Sánchez Vásquez, V.; García Vásquez, G. Control químico de malezas en fincas de arroz (Oryza sativa L.), en el sistema de riego y drenaje Babahoyo, Ecuador. J. Sci. Res. 2020, 5, 66–79. [Google Scholar] [CrossRef]
- Lal, B.; Gautam, P.; Raja, R.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Bhattacharyya, P.; Mohanty, S.; Puri, C.; Kumar, A.; et al. Weed community composition after 43 years of long-term fertilization in tropical rice–rice system. Agric. Ecosyst. Environ. 2014, 197, 301–308. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, L.; Fu, S. Effects of long-term fertilization treatments on the weed seed bank in a wheat-soybean rotation system. Glob. Ecol. Conserv. 2020, 21, e00870. [Google Scholar] [CrossRef]
- Ghosh, D.; Brahmachari, K.; Skalický, M.; Roy, D.; Das, A.; Sarkar, S.; Moulick, D.; Brestič, M.; Hejnak, V.; Vachova, P.; et al. The combination of organic and inorganic fertilizers influences the weed growth, productivity and soil fertility of monsoon rice. PLoS ONE 2022, 17, e0262586. [Google Scholar] [CrossRef]
- Mishra, J.S.; Kumar, R.; Mondal, S.; Poonia, S.P.; Rao, K.K.; Dubey, R.; Kumar Raman, R.; Dwivedi, S.K.; Kumar, R.; Saurabh, K.; et al. Tillage and crop establishment effects on weeds and productivity of a rice-wheat-mungbean rotation. Field Crops Res. 2022, 284, 108577. [Google Scholar] [CrossRef]
- Singh, S.K.; Kumar, A.; Sarkar, B.; Mishra, P.K. Mechanized weed management to enhance productivity and productivity and profitability in system of rice intensification. Indian J. Weed Sci. 2019, 51, 232–235. [Google Scholar] [CrossRef]
- Arias-Badilla, J.G.; Esquivel-Segura, E.A.; Campos-Rodríguez, R. Evaluación de la densidad de siembra y nivel de fertilización en arroz, para las variedades Palmar-18, Lazarroz FL y NayuribeB FL, en Parrita (Pacífico Central), Costa Rica. Tecnol. Marcha 2020, 33, 13–24. [Google Scholar] [CrossRef]
- Ariantil, F.D.; Nurwahyuni, E.; Minarsih, S.; Faizal, A. Growth and yield response of rice based on different planting distances in rainfed fields. In Proceedings of the 3rd International Conference on Agribusiness and Rural Development (IConARD 2022), Yogyakarta, Indonesia, 20–21 July 2022; Volume 361, p. 04002. [Google Scholar] [CrossRef]
- Nugroho, B.D.A.; Arif, C.; Nihayah, B.; Hapsari, U.; Suryandika, F. Plant distance effect on rice cultivation system of rice intensification (SRI) method on tillers and yield numbers in east Sumba Regency. IOP Conf. Earth Environ. Sci. 2022, 1038, 012002. [Google Scholar] [CrossRef]
- Bhatt, R.; Oliveira, M.W.; Kumar Garg, A.; Sharma, S.; de Freitas Santos, D.; Gathala, M.K.; Majumder, D.; Ishtiaque, A.; Singh, M.; Verma, K.K.; et al. Mechanical transplanting of rice for reducing water, energy, and labor footprints with improved rice yields in the tropics. AMA 2023, 54, 13253–13288. [Google Scholar]
- Ali, M.; Farooq, H.M.U.; Sattar, S.; Farooq, T.; Bashir, I. Effect of row spacing and weed management practices on the performance of aerobic rice. Cercet. Agron. Mold. 2019, 52, 17–25. [Google Scholar] [CrossRef]
- Kumar, S.M.; Thavaprakaash, N.; Paneerselvam, S.; Jagadeeswaran, R.; Sritharan, N. Effect of high-density planting on light interception, growth, and yield of rice (Oryza sativa L.) under a modified system of rice intensification. Int. J. Agric. Sci. 2019, 11, 8640–8642. [Google Scholar]
- Saju, S.M.; Thavaprakaash, N.; Sakthivel, N.; Malathi, P. Influence of high-density planting on growth and yield of rice (Oryza sativa L.) under a modified system of rice intensification. J. Pharmacogn. Phytochem. 2019, 8, 3376–3380. [Google Scholar]
- Deknock, A.; De Troyer, N.; Houbraken, M.; Dominguez-Granda, L.; Nolivos, I.; Van Echelpoel, W.; Forio, M.A.E.; Spanoghe, P.; Goethals, P. Distribution of agricultural pesticides in the freshwater environment of the Guayas river basin (Ecuador). Sci. Total Environ. 2019, 646, 996–1008. [Google Scholar] [CrossRef]
- Nazir, A.; Anwar Bhat, M.; Ahmad Bhat, T.; Favaz Bhat, S.; Oayoom, S.; Hussain, A.; Ahmad Lone, B.; Jan, B.; Dar, S.A.; Jhon, J. Impact of crop establishment techniques and weed management practices on Oryza sativa L. growth and yield. Agron. J. 2023, 1–15. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, C.; Wan, K.; Li, R.; Wang, D.; Tao, Y.; Pan, J.; Xie, J.; Chen, F. Impact of fertilizing pattern on the biodiversity of a weed community and wheat growth. PLoS ONE 2014, 9, e84370. [Google Scholar] [CrossRef]
- Tang, L.; Wan, K.; Cheng, C.; Li, R.; Wang, D.; Pan, J.; Tao, Y.; Xie, J.; Chen, F. Effect of fertilization patterns on the assemblage of weed communities in an upland winter wheat field. J. Plant Ecol. 2013, 6, 502–512. [Google Scholar] [CrossRef]
- Verma, B.; Ramteke, L.K.; Shahid, M. Effect of plant spacing on growth and yield of rice (Oryza sativa L.) under submerged condition. J. Exp. Agric. Int. 2019, 33, 1–6. [Google Scholar] [CrossRef]
- Das, A.; Layek, J.; Ramkrushna, G.I.; Patel, D.P.; Choudhury, B.U.; Krishnappa, R.; Buragohain, J.; Yadav, G.S. Modified system of rice intensification for higher crop and water productivity in Meghalaya, India: Opportunities for improving livelihoods for resource-poor farmers. Paddy Water Environ. 2018, 16, 23–34. [Google Scholar] [CrossRef]
- Mi, W.; Gao, Q.; Sun, Y.; Zhao, H.; Yang, X.; Guo, X.; Chen, J.; Wu, L. Changes in weed community with different types of nitrogen fertilizers during the fallow season. Crop Prot. 2018, 109, 123–127. [Google Scholar] [CrossRef]
- Chicouène, D. Inventory and mechanisms of cultural control practices for weed management, a review. J. Res. Weed Sci. 2020, 3, 490–528. [Google Scholar] [CrossRef]
- Baltazar, A.M.; De Datta, S.K. Mechanical, cultural, physical, and integrated weed management. In Weed Science and Weed Management in Rice and Cereal-Based Cropping Systems; Baltazar, A.M., Datta, S.K., Eds.; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Elahi, E.; Weijun, C.; Zhang, H.; Nazeer, N. Agricultural intensification and damages to human health about agrochemicals: Application of artificial intelligence. Land Use Policy 2019, 83, 461–474. [Google Scholar] [CrossRef]
- Moeini, N.; Mohammad Reza Dadashi, M.R.; Dastan, S.; Faraji, A. Selecting a smart cropping system: Field trial evidences of rice cultivars in northern Iran. Rom. Agric. Res. 2023, 40, 463–474. [Google Scholar] [CrossRef]
- Daramola, O.S.; Adigun, J.A.; Olorunmaiye, P.M. Challenges of weed management in rice for food security in Africa: A review. Agric. Trop. Subtrop. 2020, 53. [Google Scholar] [CrossRef]
- Berquer, A.; Bretagnolle, V.; Martin, O.; Gaba, S. Disentangling the effect of nitrogen input and weed control on crop–weed competition suggests a potential agronomic trap in conventional farming. Agric. Ecosyst. Environ. 2023, 345, 108232. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.r-project.org (accessed on 24 November 2024).
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Basu, S.; Duren, W.; Evans, C.R.; Burant, C.F.; Michailidis, G.; Karnovsky, A. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics 2017, 33, 1545–1553. [Google Scholar] [CrossRef]
- Olivares, B.O.; Vega, A.; Rueda Calderón, M.A.; Montenegro-Gracia, E.; Araya-Almán, M.; Marys, E. Prediction of Banana production using epidemiological parameters of Black Sigatoka: An application with Random Forest. Sustainability 2022, 14, 14123. [Google Scholar] [CrossRef]
- Olivares, B.; Vega, A.; Calderón, M.A.R.; Rey, J.C.; Lobo, D.; Gómez, J.A.; Landa, B.B. Identification of soil properties associated with the incidence of Banana wilt using supervised methods. Plants 2022, 11, 2070. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.S.; Johnson, D.E. Row spacing and weed control timing affect yield of aerobic rice. Field Crops Res. 2011, 121, 226–231. [Google Scholar] [CrossRef]
- Sharma, P.; Dadheech, P. Modern-age agriculture with artificial intelligence: A review emphasizing crop yield prediction. Evergr. Jt. J. Nov. Carbon Resour. Sci. Green Asia Strategy 2023, 10, 2570–2582. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.A.; Rasool, D.S.; Virendar, K.; Ajeet, S.; Sudhanshu, S. Raising rice productivity and sustainability for smallholders of south Asia under changing climate. Indian J. 2017, 9, 132–144. [Google Scholar] [CrossRef]
- Heredia, M.C.; Kant, J.; Prodhan, M.A.; Dixit, S.; Wissuwa, M. Breeding rice for a changing climate by improving adaptations to water saving technologies. Theor. Appl. Genet. 2022, 135, 17–33. [Google Scholar] [CrossRef]
- Suárez, D.; Durán, C. Aplicación de herbicidas postemergentes para el control de malezas en el cultivo de arroz (Oryza sativa L.). Rev. Científica Ecológica Agropecu. 2023, 2, 5–9. [Google Scholar] [CrossRef]
- Parihar, R.K.; Srivastava, V.K.; Kumar, S.; Kumar, V.; Sanjay, S. Weed dynamics, weed control efficiency and yield of aerobic rice as influenced by different weed management practices in eastern U.P. J. Environ. Biol. 2021, 41, 1735–1740. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Bassoc, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Charles, H.J.G.; Herrero, M.; Howitt, R.E.; Jansseni, S.; et al. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agric. Syst. 2017, 155, 269–288. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, T.; Huang, N.; Shen, X.; Shen, M.; Dai, O. Effect of long-term fertilization on the weed community of a winter wheat field. Sci. Rep. 2018, 8, 4017. [Google Scholar] [CrossRef]
- Ripoche, A.; Barkaoui, K.; Allouch, N.; Christina, M.; Heuclin, B.; Rafenomanjato, A.; Moonen, A.-C.; Autfray, P.; Marnotte, P. Do rotation and fertilization practices shape weed communities and affect rice yield in low input rainfed agroecosystems in the Malagasy highlands? Agric. Ecosyst. Environ. 2024, 373, 109136. [Google Scholar] [CrossRef]
- Juwono, F.H.; Wong, W.K.; Verma, S.; Shekhawat, N.; Lease, B.A.; Apriono, C. Machine learning for weed–plant discrimination in agriculture 5.0: An in-depth review. Artif. Intell. Agric. 2023, 10, 13–25. [Google Scholar] [CrossRef]
- Rathor, A.S.; Choudhury, S.; Sharma, A.; Nautival, P.; Shah, G. Empowering vertical farming through IoT and AI-Driven technologies: A comprehensive review. Heliyon 2024, 10, e34998. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, H.; Liu, L.; Zhang, K.; Zhang, Y.; Li, A.; Bai, Z.; Wang, G.; Liu, X.; Dong, H.; et al. Optimizing crop yields while minimizing environmental impact through deep placement of nitrogen fertilizer. Agric. Ecosyst. Environ. 2024, 372, 109046. [Google Scholar] [CrossRef]
- Yan, H.; Chen, S.; Zhao, J.; Zhang, Z.; Chen, L.; Huang, R.; Liu, Y.; Shi, X.; Zhang, Y. Dynamic changes in weed abundance and biodiversity following different green manure establishment. J. Integr. Agric. 2024; in press. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, K.V.; Kedam, N.; Patel, A.; Rathnayake, U. A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agric. Technol. 2024, 8, 100487. [Google Scholar] [CrossRef]
- Chen, K.; Ma, T.; Ding, J.; Yu, S.; Dai, Y.; He, P.; Ma, T. Effects of straw return with nitrogen fertilizer reduction on rice (Oryza sativa L.) morphology, photosynthetic capacity, yield and water–nitrogen use efficiency traits under fifferent water regimes. Agronomy 2023, 13, 133. [Google Scholar] [CrossRef]
- Sakoda, M.; Mizusawa, M.; Shiotsu, F.; Sakagami, N.; Guo, Y.; Masutomi, Y.; Nishizawa, T. Azoarcus sp. strain KH32C affects rice plant growth and the root-associated soil bacterial community in low nitrogen input paddy fields. Soil Sci. Plant Nutr. 2019, 65, 451–459. [Google Scholar] [CrossRef]
- Ennaji, O.; Vergütz, L.; El Allali, A. Machine learning in nutrient management: A review. Artif. Intell. Agric. 2023, 9, 1–11. [Google Scholar] [CrossRef]
- Syed, L. Smart agriculture using ensemble machine learning techniques in IoT environment. Procedia Comput. Sci. 2024, 235, 2269–2278. [Google Scholar] [CrossRef]
- Anandhi, G.; Iyapparaja, M. Systematic approaches to machine learning models for predicting pesticide toxicity. Heliyon 2024, 10, e28752. [Google Scholar] [CrossRef] [PubMed]
- Ane, T. A review of machine learning applications and their predictive solutions in agriculture. Asian J. Agric. Res. 2024, 24, 80–90. [Google Scholar] [CrossRef]
- Dey, B.; Ferdous, J.; Ahmed, R. Machine learning-based recommendation of agricultural and horticultural crop farming in India under the regime of NPK, soil pH and three climatic variables. Heliyon 2024, 10, e25112. [Google Scholar] [CrossRef]
- Shahid, M.; Shukla, A.K.; Bhattacharyya, P.; Tripathi, R.; Mohanty, S.; Kumar, A.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Micronutrients (Fe, Mn, Zn and Cu) balance under long-term application of fertilizer and manure in a tropical rice-rice system. J. Soils Sediments 2016, 16, 737–747. [Google Scholar] [CrossRef]
- Beltran-Garcia, M.J.; Martínez-Rodríguez, A.; Olmos-Arriaga, I.; Valdes-Salas, B.; Di Mascio, P.; White, J.F. Nitrogen fertilization and stress factors drive shifts in microbial diversity in soils and plants. Symbiosis 2021, 84, 379–390. [Google Scholar] [CrossRef]
- Kiran Reddy, G.; Sharma, S.H.K.; Chandra Shaker, K.; Ravi, P.; Singh, M.; Ravi, W. Long term effect (17 years) of different nutrient management practices on crop yield trends, soil productivity and sustainability in rice-rice cropping system under semi arid tropical climatic condition in an Inceptisol of India. Int. Res. Earch J. Pure Appl. Chem. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Sarkar, M.I.U.; Jahan, A.; Haque, M.M.; Mofijul Islam, S.M.; Ahmed, M.N.; Islam, M.R. Long term effects of integrated plant nutrition system on rice yield, nitrogen dynamics and biochemical properties in soil of rice-rice cropping system. Asian J. Soil Sci. Plant Nutr. 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Rodríguez-Yzquierdo, G.; Olivares, B.O.; Silva-Escobar, O.; González-Ulloa, A.; Soto-Suarez, M.; Betancourt-Vásquez, M. Mapping of the Susceptibility of Colombian Musaceae Lands to a Deadly Disease: Fusarium oxysporum f. sp. Cubense Tropical Race 4. Horticulturae 2023, 9, 757. [Google Scholar] [CrossRef]
- Rodríguez-Yzquierdo, G.; Olivares, B.O.; González-Ulloa, A.; León-Pacheco, R.; Gómez-Correa, J.C.; Yacomelo-Hernández, M.; Carrascal-Pérez, F.; Florez-Cordero, E.; Soto-Suárez, M.; Dita, M.; et al. Soil Predisposing Factors to Fusarium oxysporum f. sp. Cubense Tropical Race 4 on Banana Crops of La Guajira, Colombia. Agronomy 2023, 13, 2588. [Google Scholar] [CrossRef]
Category | Variable | Abbreviation |
---|---|---|
Vegetative Growth | Vegetative cycle (days) | VG |
Days to flowering (days) | DF | |
Plant height (cm) | PH | |
Number of tillers at 55 days (n) | NT55D | |
Number of tillers at harvest (n) | NTH | |
Yield Characteristics | Number of panicles (n) | NP |
Panicle length (cm) | LP | |
Grains per panicle (n) | GP | |
Empty grains (percentage) | KS | |
1000 seed weight (g) | TSB | |
Other Attributes | Moisture at harvest (%) | MH |
Sample biomass (g) | SB | |
Yield per hectare (kg) | YHA |
Weed Type (%) | |||
---|---|---|---|
Location | Poaceae | Cyperaceae | Broadleaf |
Virgen de Fatima, Guayas | 39.22 ± 5.28 bB | 46.27 ± 7.06 aA | 14.61 ± 6.67 cA |
Montalvo, Los Ríos | 55.28 ± 5.56 aA | 34.56 ± 5.61 bB | 10.22 ± 5.28 cA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Sabando, C.F.; Sánchez-Urdaneta, A.B.; Sánchez-Mora, F.D.; Loor-Escobar, G.E.; Olivares, B.O. Fertilization for Growth or Feeding the Weeds? A Deep Dive into Nitrogen’s Role in Rice Dynamics in Ecuador. Life 2024, 14, 1601. https://doi.org/10.3390/life14121601
Sánchez-Sabando CF, Sánchez-Urdaneta AB, Sánchez-Mora FD, Loor-Escobar GE, Olivares BO. Fertilization for Growth or Feeding the Weeds? A Deep Dive into Nitrogen’s Role in Rice Dynamics in Ecuador. Life. 2024; 14(12):1601. https://doi.org/10.3390/life14121601
Chicago/Turabian StyleSánchez-Sabando, Cristhian Fernando, Adriana Beatriz Sánchez-Urdaneta, Fernando David Sánchez-Mora, Gary Eduardo Loor-Escobar, and Barlin O. Olivares. 2024. "Fertilization for Growth or Feeding the Weeds? A Deep Dive into Nitrogen’s Role in Rice Dynamics in Ecuador" Life 14, no. 12: 1601. https://doi.org/10.3390/life14121601
APA StyleSánchez-Sabando, C. F., Sánchez-Urdaneta, A. B., Sánchez-Mora, F. D., Loor-Escobar, G. E., & Olivares, B. O. (2024). Fertilization for Growth or Feeding the Weeds? A Deep Dive into Nitrogen’s Role in Rice Dynamics in Ecuador. Life, 14(12), 1601. https://doi.org/10.3390/life14121601