Distribution and Utilization of Vitamin E in Different Organs of Wild Bats from Different Food Groups
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethical Aspects
2.2. Animals and Sample Collection
2.3. Organ Processing
2.4. Vitamin E Extraction and Assay
2.5. Statistical Analysis
2.6. Correlation
3. Results
3.1. Vitamin E Levels
3.2. Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heard, D.; Buergelt, C.; Snyder, P.; Voges, A.; Dierenfeld, E. Dilated Cardiomyopathy Associated with Hypovitaminosis E in a Captive Collection of Flying Foxes (Pteropus spp.). J. Zoo Wildl. Med. 1996, 27, 149–157. [Google Scholar]
- Hausmann, J.C.; Manasse, J.; Steinberg, H.; Clyde, V.L.; Wallace, R.S. Vitamin C Deficiency-Associated Lesions in a Colony of Common Vampire Bats (Desmorus rotundus) in a Zoo Facility. J. Zoo Wildl. Med. 2021, 52, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.H.T.; Davies, K.T.; Yohe, L.R.; Sanchez, M.K.R.; Rengifo, E.M.; Struebig, M.; Warren, K.; Tsagkogeorga, G.; Lim, B.K.; Dos Reis, M.; et al. Dietary Diversification and Specialization in Neotropical Bats Facilitated by Early Molecular Evolution. Mol. Biol. Evol. 2021, 38, 3864–3883. [Google Scholar] [CrossRef] [PubMed]
- Mena Canata, D.A.; Benfato, M.S.; Pereira, F.D.; Pereira, M.J.R.; Rampelotto, P.H. Vitamin C Levels in Different Organs of Bat Species from Different Food Groups. Life 2022, 12, 2121. [Google Scholar] [CrossRef]
- Ilyina, T.N.; Baishnikova, I.V.; Belkin, V.V. Retinol and α-Tocopherol Content in the Liver and Skeletal Muscle of Bats (Chiroptera) during Hibernation and Summer Activity. J. Evol. Biochem. Physiol. 2022, 58, 1697–1707. [Google Scholar] [CrossRef]
- Pereira, F.D.; Mena Canata, D.A.; Salomon, T.B.; Hackenhaar, F.S.; Pereira, M.J.R.; Benfato, M.S.; Rampelotto, P.H. Oxidative Stress and Antioxidant Defense in the Heart, Liver, and Kidney of Bat Species with Different Feeding Habits. Int. J. Mol. Sci. 2023, 24, 16369. [Google Scholar] [CrossRef]
- Racey, P.A. Ageing and Assessment of Reproductive Status of Pipistrelle bats, Pipistrellus pipistrellus. J. Zool. 1974, 173, 264–271. [Google Scholar] [CrossRef]
- Barbas, C.; Castro, M.; Bonet, B.; Viana, M.; Herrera, E. Simultaneous Determination of Vitamins A and E in Rat Tissues by High-Performance Liquid Chromatography. J. Chromatogr. A 1997, 778, 415–420. [Google Scholar] [CrossRef]
- Lebaka, V.R.; Wee, Y.J.; Ye, W.; Korivi, M. Nutritional Composition and Bioactive Compounds in Three Different Parts of Mango Fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef]
- Schmölz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of Vitamin E Metabolism. World J. Biol. Chem. 2016, 7, 14–43. [Google Scholar] [CrossRef]
- Kuhn, M.J. Review: The Potential Role of Vitamin E Analogs as Adjunctive Antioxidant Supplements for Transition Cows. Dairy 2023, 4, 285–299. [Google Scholar] [CrossRef]
- Dierenfeld, E.S.; Seyjagat, J. Plasma Fat-Soluble Vitamin and Mineral Concentrations in Relation to Diet in Captive Pteropodid Bats. J. Zoo Wildl. Med. 2000, 31, 315–321. [Google Scholar]
- Niu, Y.; Zhang, Q.; Wang, J.; Li, Y.; Wang, X.; Bao, Y. Vitamin E Synthesis and Response in Plants. Front. Plant Sci. 2022, 13, 994058. [Google Scholar] [CrossRef]
- Elsayed, N.M. Antioxidant Mobilization in Response to Oxidative Stress: A Dynamic Environmental-Nutritional Interaction. Nutrition 2001, 17, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Rey, A.I.; López-Bote, C.J.; Litta, G. Effects of Dietary Vitamin E (DL-α-tocopheryl acetate) and Vitamin C Combination on Piglets Oxidative Status and Immune Response at Weaning. J. Anim. Feed. Sci. 2017, 26, 226–235. [Google Scholar] [CrossRef]
- Jensen, M.; Lindholm, A.; Hakkarainen, J. The Vitamin E Distribution in Serum, Liver, Adipose and Muscle Tissues in the Pig during Depletion and Repletion. Acta Vet. Scand. 1990, 31, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jang, Y.D.; Rentfrow, G.K.; Azain, M.J.; Lindemann, M.D. Effects of Dietary Vitamin E and Fat Supplementation in Growing-Finishing Swine Fed to a Heavy Slaughter Weight of 150 kg: II. Tissue Fatty Acid Profile, Vitamin E Concentrations, and Antioxidant Capacity of Plasma and Tissue. J. Anim. Sci. 2022, 100, skac184. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.A.; Schäfer, C.; Litta, G.; Klünter, A.M.; Traber, M.G.; Wyss, A.; Ralla, T.; Eggersdorfer, M.; Bonrath, W. 100 Years of Vitamin E: From Discovery to Commercialization. Eur. J. Org. Chem. 2022, 2022, e202201190. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional Value of Insects and Ways to Manipulate Their Composition. J. Insects Food Feed. 2021, 7, 639–659. [Google Scholar] [CrossRef]
- van Haaften, R.I.; Haenen, G.R.; Evelo, C.T.; Bast, A. Effect of Vitamin E on Glutathione-Dependent Enzymes. Drug Metab. Rev. 2003, 35, 215–253. [Google Scholar] [CrossRef]
- Shang, F.; Lu, M.; Dudek, E.; Reddan, J.; Taylor, A. Vitamin C and Vitamin E Restore the Resistance of GSH-Depleted Lens Cells to H2O2. Free. Radic. Biol. Med. 2003, 34, 521–530. [Google Scholar] [CrossRef]
- Ozden, S.; Catalgol, B.; Gezginci-Oktayoglu, S.; Karatug, A.; Bolkent, S.; Alpertunga, B. Acute Effects of Methiocarb on Oxidative Damage and the Protective Effects of Vitamin E and Taurine in the Liver and Kidney of Wistar Rats. Toxicol. Ind. Health 2013, 29, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J.; Dudash, H.J.; Docherty, M.; Geronilla, K.B.; Baker, B.A.; Haff, G.G.; Cutlip, R.G.; Always, S.E. Vitamin E and C Supplementation Reduces Oxidative Stress, Improves Antioxidant Enzymes and Positive Muscle Work in Chronically Loaded Muscles of Aged Rats. Exp. Gerontol. 2010, 45, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Bergin, P.; Leggett, A.; Cardwell, C.R.; Woodside, J.V.; Thakkinstian, A.; Maxwell, A.P.; McKay, G.J. The Effects of Vitamin E Supplementation on Malondialdehyde as a Biomarker of Oxidative Stress in Haemodialysis Patients: A Systematic Review and Meta-Analysis. BMC Nephrol. 2021, 22, 126. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.K.; Liu, X.; Li, J.; Zhu, X.; Sen, B.; Wang, G. Alpha-Tocopherol Significantly Improved Squalene Production Yield of Aurantiochytrium sp. TWZ-97 through Lowering ROS levels and Up-Regulating Key Genes of Central Carbon Metabolism Pathways. Antioxidants 2023, 12, 1034. [Google Scholar] [CrossRef] [PubMed]
- van Haaften, R.I.; Haenen, G.R.; van Bladeren, P.J.; Bogaards, J.J.; Evelo, C.T.; Bast, A. Inhibition of Various Glutathione S-Transferase Isoenzymes by RRR-Alpha-Tocopherol. Toxicol. In Vitro 2003, 17, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free. Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Omage, S.O.; Börmel, L.; Kluge, S.; Schubert, M.; Wallert, M.; Lorkowski, S. Vitamin E and Metabolic Health: Relevance of Interactions with Other Micronutrients. Antioxidants 2022, 11, 1785. [Google Scholar] [CrossRef]
- Zingg, J.M. Vitamin E Regulatory Roles. IUBMB Life 2019, 71, 409–410. [Google Scholar] [CrossRef]
- Bunout, D. Therapeutic Potential of Vitamin E in Heart Disease. Expert Opin. Investig. Drugs 2000, 9, 2629–2635. [Google Scholar] [CrossRef]
- Baltusnikiene, A.; Staneviciene, I.; Jansen, E. Beneficial and Adverse Effects of Vitamin E on the Kidney. Front. Physiol. 2023, 14, 1145216. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K. Vitamin E and Regression of Hypercholesterolemia-Induced Oxidative Stress in Kidney. Mol. Cell. Biochem. 2014, 385, 17–21. [Google Scholar] [CrossRef] [PubMed]
Bat Species | Feeding Habit | n | Season |
---|---|---|---|
Glossophaga soricina | Nectarivorous | 10 | Autumn (2019) |
Sturnira lilium | Frugivorous | 10 | Winter (2019) |
Molossus molossus | Insectivorous | 10 | Summer (2018) |
Desmodus rotundus | Hematophagous | 9 | Summer (2018) |
Parameters | r | p |
---|---|---|
Carbonyl | 0.03 | 0.9838 |
MDA | −0.13 | 0.4790 |
NO2 and NO3 | −0.11 | 0.5687 |
GSSG/GSH | 0.04 | 0.8608 |
VitC | −0.24 | 0.2425 |
H2O2↓ | −0.09 | 0.6444 |
SOD | −0.01 | 0.9764 |
Fumarase | 0.11 | 0.5529 |
GPx | −0.19 | 0.3219 |
GST | −0.25 | 0.1793 |
Parameters | r | p |
---|---|---|
Carbonyl | −0.32 | 0.0943 |
MDA | −0.65 | 0.0004 * |
NO2 and NO3 | −0.16 | 0.4146 |
GSSG/GSH | 0.48 | 0.0490 |
VitC | 0.19 | 0.3444 * |
H2O2↓ | 0.15 | 0.4412 |
SOD | 0.72 | 0.0001 * |
Fumarase | −0.67 | 0.0001 * |
GPx | 0.42 | 0.0259 * |
GST | −0.75 | 0.0001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena Canata, D.A.; Benfato, M.S.; Pereira, F.D.; Pereira, M.J.R.; Rampelotto, P.H. Distribution and Utilization of Vitamin E in Different Organs of Wild Bats from Different Food Groups. Life 2024, 14, 266. https://doi.org/10.3390/life14020266
Mena Canata DA, Benfato MS, Pereira FD, Pereira MJR, Rampelotto PH. Distribution and Utilization of Vitamin E in Different Organs of Wild Bats from Different Food Groups. Life. 2024; 14(2):266. https://doi.org/10.3390/life14020266
Chicago/Turabian StyleMena Canata, Diego Antonio, Mara Silveira Benfato, Francielly Dias Pereira, María João Ramos Pereira, and Pabulo Henrique Rampelotto. 2024. "Distribution and Utilization of Vitamin E in Different Organs of Wild Bats from Different Food Groups" Life 14, no. 2: 266. https://doi.org/10.3390/life14020266
APA StyleMena Canata, D. A., Benfato, M. S., Pereira, F. D., Pereira, M. J. R., & Rampelotto, P. H. (2024). Distribution and Utilization of Vitamin E in Different Organs of Wild Bats from Different Food Groups. Life, 14(2), 266. https://doi.org/10.3390/life14020266