The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Dietary Patterns
3.1. Mediterranean Diet
3.2. DASH Diet
3.3. Vegetarian Diet
3.4. Caloric Restriction
3.5. Low-Carbohydrate Diet
3.6. Low-Fat Diet
3.7. Western Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AASIx | Ambulatory arterial stiffness index |
ADF | Alternate day fasting |
ADF-HF | Alternate day fasting high fat |
ADF-LF | Alternate day fasting low fat |
AIx | Augmentation index |
ALCD | Atkins low-carbohydrate diet |
aMED | Alternative Mediterranean diet |
AMPK | AMP-activated protein kinase |
AO | Abdominal obesity |
baFMD | Brachial artery flow-mediated dilatation |
baPWV | Brachial–ankle pulse wave velocity |
BMI | Body mass index |
BP | Blood pressure |
cAIx | Central augmentation index |
cAIx75 | Central Augmentation Index75 |
CD | Control diet |
cfPWV | Carotid–femoral pulse wave velocity |
CHD | Coronary heart disease |
CHF | Chronic heart failure |
cIMT | Carotid intima-media thickness |
C-LIFE | Center-based lifestyle intervention |
CO | Crossover |
CR | Caloric restriction |
CRD | Carbohydrate-restricted diet |
CREX | Calorie restriction combined with endurance exercise |
CS | Cross-sectional |
CT | Clinical trial |
CVD | Cardiovascular disease |
DASH-A | DASH diet alone |
DASH-WM | DASH diet with behavioral weight management program |
EF | Endothelial function |
EVA | Early vascular aging |
EVOO | Extra-virgin olive oil |
ΕΧ | Exercise program |
faPWV | Femoral–ankle pulse wave velocity |
FMD | Flow-mediated dilatation |
HD | Hypocaloric diet |
HFD | High-fat diet |
HFM | High-fat meal |
HMD | Hypocaloric |
HTN | Hypertension |
ILI | Intensive lifestyle intervention program |
IR | Insulin resistance |
KIDMED | Mediterranean Diet Quality Index for Children and Adolescents |
LCaD | Low-carbohydrate diet |
LCD | Low-calorie diet |
LFD | Low-fat diet |
LFM | Low-fat meal |
LIRET | Low-intensity resistance exercise training program |
MA | Meta-analysis |
MAD | Modified Atkins diet |
MAST | Memory and attention supplement trial |
MD | Mediterranean diet |
MEDAS | Mediterranean diet adherence screener |
MedS | Mediterranean diet adherence score |
MetS | Metabolic syndrome |
MHD | Mediterranean hypocaloric diet |
MIND | Mediterranean-DASH Intervention for Neurodegenerative Delay |
MO | Morbid obesity |
MRC | Medical Research Council |
mTOR | Mammalian target of rapamycin |
MUFA | Monounsaturated fatty acid |
NHSD | National Survey of Health and Development |
NID | Nitroglycerine-induced vasodilation |
NMD | Nitrate-mediated dilatation |
nRCT | Non-randomized controlled trial |
OB | Obesity |
OmnD | Omnivore diet |
OW | Overweight |
P | Participants |
PC | Principal component |
PCA | Principal component analysis |
PM | Post-menopausal |
PWV | Pulse wave velocity |
RAAS | Renin–angiotensin–aldosterone system |
rAIx75 | Radial Augmentation Index75 |
RCT | Randomized controlled trial |
RF | Ramadan fasting |
RHI | Reactive hyperemia index |
RNF | Ramadan non-fasting |
RTCR | Resistance training caloric restriction |
SEPA | Standardized Education and Physician Advice |
SFA | Saturated fatty acid |
sICAM | Soluble intercellular adhesion molecule |
SIRT−1 | Sirtuin−1 |
SMD | Standardized mean difference |
SMIRT | Supervised moderate-intensity resistance training |
SNP | Sodium nitroprusside |
SR | Systematic review |
T2DM | Type 2 diabetes mellitus |
UC | Usual care |
VAI | Vascular arterial index |
VegD | Vegetarian diet |
VgD | Vegan diet |
VLCD | Very-low-caloric diet |
VLED | Very-low-energy diet |
WTD | Western-type diet |
References
- Liu, Z.; Chen, X.; Gill, T.M.; Ma, C.; Crimmins, E.M.; Levine, M.E. Associations of Genetics, Behaviors, and Life Course Circumstances with a Novel Aging and Healthspan Measure: Evidence from the Health and Retirement Study. PLoS Med. 2019, 16, 1002827. [Google Scholar] [CrossRef]
- World Health Organization Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 8 December 2023).
- Watson, A.M.D.; Chen, Y.C.; Peter, K. Vascular Aging and Vascular Disease Have Much in Common! Arter. Thromb. Vasc. Biol. 2022, 42, 1077–1080. [Google Scholar] [CrossRef]
- Jani, B.; Rajkumar, C. Ageing and Vascular Ageing. Postgrad. Med. J. 2006, 82, 357. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.; Boutouyrie, P.; Laurent, S. Vascular Aging a Tale of EVA and ADAM in Cardiovascular Risk Assessment and Prevention. Hypertension 2009, 54, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.M. Early Vascular Aging (EVA): Consequences and Prevention. Vasc. Health Risk Manag. 2008, 4, 547. [Google Scholar] [CrossRef] [PubMed]
- Saz-Lara, A.; Cavero-Redondo, I.; Pascual-Morena, C.; Martínez-García, I.; Rodríguez-Gutiérrez, E.; Lucerón-Lucas-Torres, M.; Bizzozero-Peroni, B.; Moreno-Herráiz, N.; Martínez-Rodrigo, A. Early Vascular Aging as an Index of Cardiovascular Risk in Healthy Adults: Confirmatory Factor Analysis from the EVasCu Study. Cardiovasc. Diabetol. 2023, 22, 209. [Google Scholar] [CrossRef] [PubMed]
- Rossman, M.J.; LaRocca, T.J.; Martens, C.R.; Seals, D.R. Vascular Aging: Healthy Lifestyle-Based Approaches for Successful Vascular Aging. J. Appl. Physiol. 2018, 125, 1888. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Berendsen, A.M.; De Groot, L.C.P.G.M.; Feskens, E.J.M.; Brzozowska, A.; Sicinska, E.; Pietruszka, B.; Meunier, N.; Caumon, E.; Malpuech-Brugère, C.; et al. Mediterranean-Style Diet Improves Systolic Blood Pressure and Arterial Stiffness in Older Adults. Hypertension 2019, 73, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Bolaji, O.; Nguyen, J.D.K.; Bilchick, K.; Ekambarapu, L.; Breathett, K.; Mehta, N.; Ilonze, O.; Kwon, Y.; Lin, E.; Mazimba, S. The Dash Diet and Its Impact on Arterial Stiffness: A Post Hoc Secondary Analysis of The Dash Trial. J. Card. Fail. 2024, 30, 267. [Google Scholar] [CrossRef]
- Ramezan, M.; Asghari, G.; Mirmiran, P.; Tahmasebinejad, Z.; Azizi, F. Mediterranean Dietary Patterns and Risk of Type 2 Diabetes in the Islamic Republic of Iran. East. Mediterr. Health J. 2019, 25, 896–904. [Google Scholar] [CrossRef]
- Arós, F.; Estruch, R. Mediterranean Diet and Cardiovascular Prevention. Rev. Esp. Cardiol. (Engl. Ed.) 2013, 66, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Hershey, M.S.; Sotos-Prieto, M.; Ruiz-Canela, M.; Christophi, C.A.; Moffatt, S.; Martínez-González, M.Á.; Kales, S.N. The Mediterranean Lifestyle (MEDLIFE) Index and Metabolic Syndrome in a Non-Mediterranean Working Population. Clin. Nutr. 2021, 40, 2494–2503. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and Vascular Effect of the Mediterranean Diet. Int. J. Mol. Sci. 2019, 20, 4716. [Google Scholar] [CrossRef] [PubMed]
- Capurso, C.; Bellanti, F.; Buglio, A.L.; Vendemiale, G. The Mediterranean Diet Slows Down the Progression of Aging and Helps to Prevent the Onset of Frailty: A Narrative Review. Nutrients 2019, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet in Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076. [Google Scholar] [CrossRef] [PubMed]
- Cesari, F.; Sofi, F.; Molino Lova, R.; Vannetti, F.; Pasquini, G.; Cecchi, F.; Marcucci, R.; Gori, A.M.; Macchi, C.; Boni, R.; et al. Aging Process, Adherence to Mediterranean Diet and Nutritional Status in a Large Cohort of Nonagenarians: Effects on Endothelial Progenitor Cells. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 84–90. [Google Scholar] [CrossRef]
- Marin, C.; Ramirez, R.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Perez-Martinez, P.; Carracedo, J.; Garcia-Rios, A.; Rodriguez, F.; Gutierrez-Mariscal, F.M.; Gomez, P.; et al. Mediterranean Diet Reduces Endothelial Damage and Improves the Regenerative Capacity of Endothelium. Am. J. Clin. Nutr. 2011, 93, 267–274. [Google Scholar] [CrossRef]
- Klonizakis, M.; Alkhatib, A.; Middleton, G.; Smith, M.F. Mediterranean Diet- and Exercise-Induced Improvement in Age-Dependent Vascular Activity. Clin. Sci. 2013, 124, 579–587. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean Diet and Health Status: Active Ingredients and Pharmacological Mechanisms. Br. J. Pharmacol. 2020, 177, 1241–1257. [Google Scholar] [CrossRef]
- Lobene, A.J.; Smiljanec, K.; Axler, M.R.; Ramos-Gonzalez, M.; Lennon, S.L. Greater Adherence to Healthy Dietary Patterns Is Associated with Lower Diastolic Blood Pressure and Augmentation Index in Healthy, Young Adults. Nutr. Res. 2022, 106, 60–71. [Google Scholar] [CrossRef]
- García-Ortiz, L.; Recio-Rodríguez, J.I.; Martín-Cantera, C.; Cabrejas-Snchez, A.; Gámez-Arranz, A.; Gonzlez-Viejo, N.; Nicols, E.I.S.; Patino-Alonso, M.C.; Gámez-Marcos, M.A. Physical Exercise, Fitness and Dietary Pattern and Their Relationship with Circadian Blood Pressure Pattern, Augmentation Index and Endothelial Dysfunction Biological Markers: EVIDENT Study Protocol. BMC Public Health 2010, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Martínez-Vizcaíno, V.; Gomez-Marcos, M.Á.; Cavero-Redondo, I.; Recio-Rodriguez, J.I.; García-Ortiz, L. Ideal Cardiovascular Health and Arterial Stiffness in Spanish Adults-The EVIDENT Study. J. Stroke Cerebrovasc. Dis. 2018, 27, 1386–1394. [Google Scholar] [CrossRef]
- Rodríguez-Martin, C.; Alonso-Domínguez, R.; Patino-Alonso, M.C.; Gómez-Marcos, M.A.; Maderuelo-Fernández, J.A.; Martin-Cantera, C.; García-Ortiz, L.; Recio-Rodríguez, J.I. The EVIDENT Diet Quality Index Is Associated with Cardiovascular Risk and Arterial Stiffness in Adults. BMC Public Health 2017, 17, 305. [Google Scholar] [CrossRef] [PubMed]
- Rallidis, L.S.; Lekakis, J.; Kolomvotsou, A.; Zampelas, A.; Vamvakou, G.; Efstathiou, S.; Dimitriadis, G.; Raptis, S.A.; Kremastinos, D.T. Close Adherence to a Mediterranean Diet Improves Endothelial Function in Subjects with Abdominal Obesity. Am. J. Clin. Nutr. 2009, 90, 263–268. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Fernandez-Gandara, C.; Garcia-Rios, A.; Rangel-Zuñiga, O.A.; Gutierrez-Mariscal, F.M.; Torres-Peña, J.D.; Marin, C.; Lopez-Moreno, J.; Castaño, J.P.; Delgado-Lista, J.; et al. Mediterranean Diet and Endothelial Function in Patients with Coronary Heart Disease: An Analysis of the CORDIOPREV Randomized Controlled Trial. PLoS Med. 2020, 17, e1003282. [Google Scholar] [CrossRef]
- Torres-Peña, J.D.; Garcia-Rios, A.; Delgado-Casado, N.; Gomez-Luna, P.; Alcala-Diaz, J.F.; Yubero-Serrano, E.M.; Gomez-Delgado, F.; Leon-Acuña, A.; Lopez-Moreno, J.; Camargo, A.; et al. Mediterranean Diet Improves Endothelial Function in Patients with Diabetes and Prediabetes: A Report from the CORDIOPREV Study. Atherosclerosis 2018, 269, 50–56. [Google Scholar] [CrossRef]
- Gómez-Sánchez, L.; Rodríguez-Sánchez, E.; Ramos, R.; Marti-Lluch, R.; Gómez-Sánchez, M.; Lugones-Sánchez, C.; Tamayo-Morales, O.; Llamas-Ramos, I.; Rigo, F.; García-Ortiz, L.; et al. The Association of Dietary Intake with Arterial Stiffness and Vascular Ageing in a Population with Intermediate Cardiovascular Risk-A MARK Study. Nutrients 2022, 14, 244. [Google Scholar] [CrossRef]
- Sánchez, M.G.; Sánchez, L.G.; Patino-Alonso, M.C.; Alonso-Domínguez, R.; Sánchez-Aguadero, N.; Lugones-Sánchez, C.; Sánchez, E.R.; Ortiz, L.G.; Gómez-Marcos, M.A. Adherence to the Mediterranean Diet in Spanish Population and Its Relationship with Early Vascular Aging According to Sex and Age: EVA Study. Nutrients 2020, 12, 1025. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Bellastella, G.; Petrizzo, M.; Gicchino, M.; Caputo, M.; Giugliano, D.; Esposito, K. Effect of a Mediterranean Diet on Endothelial Progenitor Cells and Carotid Intima-Media Thickness in Type 2 Diabetes: Follow-up of a Randomized Trial. Eur. J. Prev. Cardiol. 2017, 24, 399–408. [Google Scholar] [CrossRef]
- Santoro, A.; Pini, E.; Scurti, M.; Palmas, G.; Berendsen, A.; Brzozowska, A.; Pietruszka, B.; Szczecinska, A.; Cano, N.; Meunier, N.; et al. Combating Inflammaging through a Mediterranean Whole Diet Approach: The NU-AGE Project’s Conceptual Framework and Design. Mech. Ageing Dev. 2014, 136–137, 3–13. [Google Scholar] [CrossRef]
- Gianfagna, F.; Veronesi, G.; Bertù, L.; Tozzi, M.; Tarallo, A.; Ferrario, M.M.; Castelli, P.; Mara, L.; Montonati, A.; Franchin, M.; et al. Prevalence of Abdominal Aortic Aneurysms and Its Relation with Cardiovascular Risk Stratification: Protocol of the Risk of Cardiovascular Diseases and Abdominal Aortic Aneurysm in Varese (RoCAV) Population Based Study. BMC Cardiovasc. Disord. 2016, 16, 243. [Google Scholar] [CrossRef]
- Lasalvia, P.; Gianfagna, F.; Veronesi, G.; Franchin, M.; Tozzi, M.; Castelli, P.; Grandi, A.M.; Zambon, A.; Iacoviello, L.; Ferrario, M.M. Identification of Dietary Patterns in a General Population of North Italian Adults and Their Association with Arterial Stiffness. The RoCAV Study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 44–51. [Google Scholar] [CrossRef]
- Angelis, A.; Chrysohoou, C.; Tzorovili, E.; Laina, A.; Xydis, P.; Terzis, I.; Ioakeimidis, N.; Aznaouridis, K.; Vlachopoulos, C.; Tsioufis, K. The Mediterranean Diet Benefit on Cardiovascular Hemodynamics and Erectile Function in Chronic Heart Failure Male Patients by Decoding Central and Peripheral Vessel Rheology. Nutrients 2020, 13, 108. [Google Scholar] [CrossRef]
- Lee, J.; Pase, M.; Pipingas, A.; Raubenheimer, J.; Thurgood, M.; Villalon, L.; Macpherson, H.; Gibbs, A.; Scholey, A. Switching to a 10-Day Mediterranean-Style Diet Improves Mood and Cardiovascular Function in a Controlled Crossover Study. Nutrition 2015, 31, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.R.; Hodgson, J.M.; Woodman, R.; Bryan, J.; Wilson, C.; Murphy, K.J. A Mediterranean Diet Lowers Blood Pressure and Improves Endothelial Function: Results from the MedLey Randomized Intervention Trial. Am. J. Clin. Nutr. 2017, 105, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Murie-Fernandez, M.; Irimia, P.; Toledo, E.; Martínez-Vila, E.; Buil-Cosiales, P.; Serrano-Martínez, M.; Ruiz-Gutiérrez, V.; Ros, E.; Estruch, R.; Martínez-González, M. ángel Carotid Intima-Media Thickness Changes with Mediterranean Diet: A Randomized Trial (PREDIMED-Navarra). Atherosclerosis 2011, 219, 158–162. [Google Scholar] [CrossRef]
- Shannon, O.M.; Mendes, I.; Köchl, C.; Mazidi, M.; Ashor, A.W.; Rubele, S.; Minihane, A.M.; Mathers, J.C.; Siervo, M. Mediterranean Diet Increases Endothelial Function in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2020, 150, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Lydakis, C.; Stefanaki, E.; Stefanaki, S.; Thalassinos, E.; Kavousanaki, M.; Lydaki, D. Correlation of Blood Pressure, Obesity, and Adherence to the Mediterranean Diet with Indices of Arterial Stiffness in Children. Eur. J. Pediatr. 2012, 171, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Shoaibinobarian, N.; Danehchin, L.; Mozafarinia, M.; Hekmatdoost, A.; Eghtesad, S.; Masoudi, S.; Mohammadi, Z.; Mard, A.; Paridar, Y.; Abolnezhadian, F.; et al. The Association between DASH Diet Adherence and Cardiovascular Risk Factors. Int. J. Prev. Med. 2023, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Belanger, M.J.; Kovell, L.C.; Turkson-Ocran, R.A.; Mukamal, K.J.; Liu, X.; Appel, L.J.; Miller, E.R.; Sacks, F.M.; Christenson, R.H.; Rebuck, H.; et al. Effects of the Dietary Approaches to Stop Hypertension Diet on Change in Cardiac Biomarkers Over Time: Results from the DASH-Sodium Trial. J. Am. Heart Assoc. 2023, 12, e026684. [Google Scholar] [CrossRef] [PubMed]
- Critselis, E.; Kontogianni, M.D.; Georgousopoulou, E.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C.; Panagiotakos, D.B. Comparison of the Mediterranean Diet and the Dietary Approach Stop Hypertension in Reducing the Risk of 10-Year Fatal and Non-Fatal CVD Events in Healthy Adults: The ATTICA Study (2002–2012). Public Health Nutr. 2021, 24, 2746–2757. [Google Scholar] [CrossRef]
- LaRocca, T.J.; Martens, C.R.; Seals, D.R. Nutrition and Other Lifestyle Influences on Arterial Aging. Ageing Res. Rev. 2017, 39, 106–119. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Blumenthal, J.A.; Babyak, M.A.; Hinderliter, A.; Watkins, L.L.; Craighead, L.; Lin, P.H.; Caccia, C.; Johnson, J.; Waugh, R.; Sherwood, A. Effects of the DASH Diet Alone and in Combination with Exercise and Weight Loss on Blood Pressure and Cardiovascular Biomarkers in Men and Women with High Blood Pressure: The ENCORE Study. Arch. Intern. Med. 2010, 170, 126–135. [Google Scholar] [CrossRef]
- Gauci, S.; Young, L.M.; Arnoldy, L.; Scholey, A.; White, D.J.; Lassemillante, A.C.; Meyer, D.; Pipingas, A. The Association Between Diet and Cardio-Metabolic Risk on Cognitive Performance: A Cross-Sectional Study of Middle-Aged Australian Adults. Front. Nutr. 2022, 9, 862475. [Google Scholar] [CrossRef]
- Maddock, J.; Ziauddeen, N.; Ambrosini, G.L.; Wong, A.; Hardy, R.; Ray, S. Adherence to a Dietary Approaches to Stop Hypertension (DASH)-Type Diet over the Life Course and Associated Vascular Function: A Study Based on the MRC 1946 British Cohort. Br. J. Nutr. 2018, 119, 581. [Google Scholar] [CrossRef]
- Blumenthal, J.A.; Hinderliter, A.L.; Smith, P.J.; Mabe, S.; Watkins, L.L.; Craighead, L.; Ingle, K.; Tyson, C.; Lin, P.H.; Kraus, W.E.; et al. Effects of Lifestyle Modification on Patients with Resistant Hypertension: Results of the TRIUMPH Randomized Clinical Trial. Circulation 2021, 144, 1212–1226. [Google Scholar] [CrossRef]
- Lin, P.H.; Allen, J.D.; Li, Y.J.; Yu, M.; Lien, L.F.; Svetkey, L.P. Blood Pressure-Lowering Mechanisms of the DASH Dietary Pattern. J. Nutr. Metab. 2012, 2012, 472396. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.R.; Zuelch, M.L.; Smiljanec, K.; Mbakwe, A.U.; Axler, M.R.; Witman, M.A.; Lennon, S.L. Arterial Stiffness and Endothelial Function Are Comparable in Young Healthy Vegetarians and Omnivores. Nutr. Res. 2022, 105, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Mayra, S.T.; Johnston, C.S. Arterial Stiffness and Cardiometabolic Health in Omnivores and Vegetarians: A Cross-Sectional Pilot Study. BMC Res. Notes 2022, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Chen, P.Y.; Su, Y.C.; Hsiao, C.L.; Yang, F.Y.; Hsu, P.J.; Lin, S.K. Vascular, Cognitive, and Psychomental Survey on Elderly Recycling Volunteers in Northern Taiwan. Front. Neurol. 2019, 9, 1176. [Google Scholar] [CrossRef]
- Page, J.; Erskine, R.M.; Hopkins, N.D. Skeletal Muscle Properties and Vascular Function Do Not Differ between Healthy, Young Vegan and Omnivorous Men. Eur. J. Sport. Sci. 2022, 22, 559–568. [Google Scholar] [CrossRef]
- Balasubramanian, P.; DelFavero, J.; Ungvari, A.; Papp, M.; Tarantini, A.; Price, N.; de Cabo, R.; Tarantini, S. Time-Restricted Feeding (TRF) for Prevention of Age-Related Vascular Cognitive Impairment and Dementia. Ageing Res. Rev. 2020, 64, 101189. [Google Scholar] [CrossRef]
- Varady, K.A.; Cienfuegos, S.; Ezpeleta, M.; Gabel, K. Clinical Application of Intermittent Fasting for Weight Loss: Progress and Future Directions. Nat. Rev. Endocrinol. 2022, 18, 309–321. [Google Scholar] [CrossRef]
- Joris, P.J.; Zeegers, M.P.; Mensink, R.P. Weight Loss Improves Fasting Flow-Mediated Vasodilation in Adults: A Meta-Analysis of Intervention Studies. Atherosclerosis 2015, 239, 21–30. [Google Scholar] [CrossRef]
- Katsarou, A.L.; Katsilambros, N.L.; Koliaki, C.C. Intermittent Energy Restriction, Weight Loss and Cardiometabolic Risk: A Critical Appraisal of Evidence in Humans. Healthcare 2021, 9, 495. [Google Scholar] [CrossRef]
- Alinezhad-Namaghi, M.; Eslami, S.; Nematy, M.; Rezvani, R.; Khoshnasab, A.; Bonakdaran, S.; Philippou, E.; Norouzy, A. Association of Time-restricted Feeding, Arterial Age, and Arterial Stiffness in Adults with Metabolic Syndrome. Health Sci. Rep. 2023, 6, e1385. [Google Scholar] [CrossRef]
- Headland, M.L.; Clifton, P.M.; Keogh, J.B. Effect of Intermittent Energy Restriction on Flow Mediated Dilatation, a Measure of Endothelial Function: A Short Report. Int. J. Environ. Res. Public Health 2018, 15, 1166. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, M.E.; Nicklas, B.J.; Chmelo, E.A.; Crotts, C.I.; Shaltout, H.A.; Diz, D.I.; Marsh, A.P.; Brinkley, T.E. Effects of Resistance Training with and without Caloric Restriction on Arterial Stiffness in Overweight and Obese Older Adults. Am. J. Hypertens. 2016, 29, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Raitakari, M.; Ilvonen, T.; Ahotupa, M.; Lehtimäki, T.; Harmoinen, A.; Suominen, P.; Elo, J.; Hartiala, J.; Raitakari, O.T. Weight Reduction with Very-Low-Caloric Diet and Endothelial Function in Overweight Adults: Role of Plasma Glucose. Arter. Thromb. Vasc. Biol. 2004, 24, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Gonçalinho, G.H.F.; Kuwabara, K.L.; de Oliveira Faria, N.F.; Goes, M.F.d.S.; Roggerio, A.; Avakian, S.D.; Strunz, C.M.C.; Mansur, A.d.P. Sirtuin 1 and Vascular Function in Healthy Women and Men: A Randomized Clinical Trial Comparing the Effects of Energy Restriction and Resveratrol. Nutrients 2023, 15, 2949. [Google Scholar] [CrossRef]
- Petersen, K.S.; Blanch, N.; Keogh, J.B.; Clifton, P.M. Effect of Weight Loss on Pulse Wave Velocity: Systematic Review and Meta-Analysis. Arter. Thromb. Vasc. Biol. 2015, 35, 243–252. [Google Scholar] [CrossRef]
- Klempel, M.C.; Kroeger, C.M.; Varady, K.A. Alternate Day Fasting (ADF) with a High-Fat Diet Produces Similar Weight Loss and Cardio-Protection as ADF with a Low-Fat Diet. Metabolism 2013, 62, 137–143. [Google Scholar] [CrossRef]
- Klempel, M.C.; Kroeger, C.M.; Norkeviciute, E.; Goslawski, M.; Phillips, S.A.; Varady, K.A. Benefit of a Low-Fat over High-Fat Diet on Vascular Health during Alternate Day Fasting. Nutr. Diabetes 2013, 3, e71. [Google Scholar] [CrossRef] [PubMed]
- Weiss, E.P.; Albert, S.G.; Reeds, D.N.; Kress, K.S.; McDaniel, J.L.; Klein, S.; Villareal, D.T. Effects of Matched Weight Loss from Calorie Restriction, Exercise, or Both on Cardiovascular Disease Risk Factors: A Randomized Intervention Trial. Am. J. Clin. Nutr. 2016, 104, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Nordstrand, N.; Gjevestad, E.; Hertel, J.K.; Johnson, L.K.; Saltvedt, E.; Røislien, J.; Hjelmesæth, J. Arterial Stiffness, Lifestyle Intervention and a Low-Calorie Diet in Morbidly Obese Patients-a Nonrandomized Clinical Trial. Obesity 2013, 21, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, A.; Vicil, F.; Sanchez-Gonzalez, M.A.; Wong, A.; Ormsbee, M.J.; Hooshmand, S.; Daggy, B. Effects of Diet and/or Low-Intensity Resistance Exercise Training on Arterial Stiffness, Adiposity, and Lean Mass in Obese Postmenopausal Women. Am. J. Hypertens. 2013, 26, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Ballard, K.D.; Silvestre, R.; Judelson, D.A.; Quann, E.E.; Forsythe, C.E.; Fernandez, M.L.; Kraemer, W.J. Effects of Dietary Carbohydrate Restriction versus Low-Fat Diet on Flow-Mediated Dilation. Metabolism 2009, 58, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Verga, S.; Tranchina, M.R.; Cottone, S.; Cerasola, G. Effects of Hypocaloric Very-Low-Carbohydrate Diet vs. Mediterranean Diet on Endothelial Function in Obese Women. Eur. J. Clin. Investig. 2009, 39, 339–347. [Google Scholar] [CrossRef]
- Gonçalinho, G.H.F.; Roggerio, A.; da Silva Goes, M.F.; Avakian, S.D.; Leal, D.P.; Strunz, C.M.C.; Mansur, A.d.P. Comparison of Resveratrol Supplementation and Energy Restriction Effects on Sympathetic Nervous System Activity and Vascular Reactivity: A Randomized Clinical Trial. Molecules 2021, 26, 3168. [Google Scholar] [CrossRef]
- Stanek, A.; Grygiel-Górniak, B.; Brożyna-Tkaczyk, K.; Myśliński, W.; Cholewka, A.; Zolghadri, S. The Influence of Dietary Interventions on Arterial Stiffness in Overweight and Obese Subjects. Nutrients 2023, 15, 1440. [Google Scholar] [CrossRef]
- Kobayashi, R.; Sakazaki, M.; Nagai, Y.; Asaki, K.; Hashiguchi, T.; Negoro, H. Effects of Different Types of Carbohydrates on Arterial Stiffness: A Comparison of Isomaltulose and Sucrose. Nutrients 2021, 13, 4493. [Google Scholar] [CrossRef]
- Gram-Kampmann, E.M.; Olesen, T.B.; Hansen, C.D.; Hugger, M.B.; Jensen, J.M.; Handberg, A.; Beck-Nielsen, H.; Krag, A.; Olsen, M.H.; Højlund, K. A Six-Month Low-Carbohydrate Diet High in Fat Does Not Adversely Affect Endothelial Function or Markers of Low-Grade Inflammation in Patients with Type 2 Diabetes: An Open-Label Randomized Controlled Trial. Cardiovasc. Diabetol. 2023, 22, 212. [Google Scholar] [CrossRef]
- Athinarayanan, S.J.; Hallberg, S.J.; McKenzie, A.L.; Lechner, K.; King, S.; McCarter, J.P.; Volek, J.S.; Phinney, S.D.; Krauss, R.M. Impact of a 2-Year Trial of Nutritional Ketosis on Indices of Cardiovascular Disease Risk in Patients with Type 2 Diabetes. Cardiovasc. Diabetol. 2020, 19, 208. [Google Scholar] [CrossRef]
- Hwang, C.L.; Ranieri, C.; Szczurek, M.R.; Ellythy, A.M.; Elokda, A.; Mahmoud, A.M.; Phillips, S.A. The Effect of Low-Carbohydrate Diet on Macrovascular and Microvascular Endothelial Function Is Not Affected by the Provision of Caloric Restriction in Women with Obesity: A Randomized Study. Nutrients 2020, 12, 1649. [Google Scholar] [CrossRef] [PubMed]
- Syed-Abdul, M.M.; Hu, Q.; Jacome-Sosa, M.; Padilla, J.; Manrique-Acevedo, C.; Heimowitz, C.; Parks, E.J. Effect of Carbohydrate Restriction-Induced Weight Loss on Aortic Pulse Wave Velocity in Overweight Men and Women. Appl. Physiol. Nutr. Metab. 2018, 43, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- McDonald, T.J.W.; Ratchford, E.V.; Henry-Barron, B.J.; Kossoff, E.H.; Cervenka, M.C. Impact of the Modified Atkins Diet on Cardiovascular Health in Adults with Epilepsy. Epilepsy Behav. 2018, 79, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Keogh, J.B.; Brinkworth, G.D.; Noakes, M.; Belobrajdic, D.P.; Buckley, J.D.; Clifton, P.M. Effects of Weight Loss from a Very-Low-Carbohydrate Diet on Endothelial Function and Markers of Cardiovascular Disease Risk in Subjects with Abdominal Obesity. Am. J. Clin. Nutr. 2008, 87, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Fryer, S.; Stone, K.; Paterson, C.; Brown, M.; Faulkner, J.; Lambrick, D.; Credeur, D.; Zieff, G.; Martínez Aguirre-Betolaza, A.; Stoner, L. Central and Peripheral Arterial Stiffness Responses to Uninterrupted Prolonged Sitting Combined with a High-Fat Meal: A Randomized Controlled Crossover Trial. Hypertens. Res. 2021, 44, 1332–1340. [Google Scholar] [CrossRef] [PubMed]
- Mohler, E.R.; Sibley, A.A.; Stein, R.; Davila-Roman, V.; Wyatt, H.; Badellino, K.; Rader, D.J.; Klein, S.; Foster, G.D. Endothelial Function and Weight Loss: Comparison of Low-Carbohydrate and Low-Fat Diets. Obesity 2013, 21, 504–509. [Google Scholar] [CrossRef]
- Davis, N.J.; Crandall, J.P.; Gajavelli, S.; Berman, J.W.; Tomuta, N.; Wylie-Rosett, J.; Katz, S.D. Differential Effects of Low-Carbohydrate and Low-Fat Diets on Inflammation and Endothelial Function in Diabetes. J. Diabetes Its Complicat. 2011, 25, 371–376. [Google Scholar] [CrossRef]
- Varady, K.A.; Bhutani, S.; Klempel, M.C.; Phillips, S.A. Improvements in Vascular Health by a Low-Fat Diet, but Not a High-Fat Diet, Are Mediated by Changes in Adipocyte Biology. Nutr. J. 2011, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Lambert, E.A.; Phillips, S.; Belski, R.; Tursunalieva, A.; Eikelis, N.; Sari, C.I.; Dixon, J.B.; Straznicky, N.; Grima, M.; Head, G.A.; et al. Endothelial Function in Healthy Young Individuals Is Associated with Dietary Consumption of Saturated Fat. Front. Physiol. 2017, 8, 876. [Google Scholar] [CrossRef] [PubMed]
- Bender, S.B.; Castorena-Gonzalez, J.A.; Garro, M.; Reyes-Aldasoro, C.C.; Sowers, J.R.; Demarco, V.G.; Martinez-Lemus, L.A. Regional Variation in Arterial Stiffening and Dysfunction in Western Diet-Induced Obesity. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H574–H582. [Google Scholar] [CrossRef]
- Padilla, J.; Ramirez-Perez, F.I.; Habibi, J.; Bostick, B.; Aroor, A.R.; Hayden, M.R.; Jia, G.; Garro, M.; Demarco, V.G.; Manrique, C.; et al. Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice. Hypertension 2016, 68, 1236–1244. [Google Scholar] [CrossRef]
- Greenland, P. Dietary Adherence in a Clinical Trial of a Nutritional and Behavioral Intervention. JAMA 2019, 322, 1500. [Google Scholar] [CrossRef]
- Gibson, A.A.; Sainsbury, A. Strategies to Improve Adherence to Dietary Weight Loss Interventions in Research and Real-World Settings. Behav. Sci. 2017, 7, 44. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Design | Population | Interventions | Outcomes | Findings * |
---|---|---|---|---|---|
Shannon et al., 2020 [38] | SR and MA of RCTs | 14 RCTs (n = 1930) | Arm 1: MD Arm 2: Control | EF and FMD | MD ⭢ ⭡ EF andFMD |
Rallidis et al., 2009 [25] | RCT | P with AO without CVD or T2DM (n = 99) | Arm 1: MD supervised by a dietitian Arm 2: MD | FMD | MD with supervision ⭢ ⭡ FMD |
Murie-Fernandez et al., 2011 [37] | RCT | High CVD risk adults (n = 187) | Arm 1: MD + EVOO Arm 2: MD + Nuts Arm 3: Control diet | cIMT | Arms 1 and 2 (alone or merged) ⭢ ⭣ cIMT when cIMT ≥ 0.9 mm and ⭤ cIMT when cIMT < 0.9 mm |
Klonizakis et al., 2013 [19] | RCT | Healthy adults (n = 22) | Arm 1: MD + Exercise Arm 2: Exercise | SNP | MD ⭢ ⭤ SNP compared to exercise alone |
Lee at al., 2015 [35] | RCT CO | Healthy women (n = 24) | Arm 1: MD Arm 2: Habitual diet | AIx | MD ⭢ ⭤ AIx |
Davis et al., 2017 [36] | RCT | Healthy older adults (n = 152) | Arm1: MD Arm 2: Habitual diet | FMD | MD ⭢ ⭡ FMD |
Maiorino et al., 2017 [30] | RCT | Newly diagnosed T2DM (n = 215) | Arm 1: MD Arm 2: LFD | cIMT | MD ⭢ ⭣ cIMT compared to LFD |
Torres-Peña et al., 2018 [27] | RCT | P with CHD (n = 805) | Arm 1: MD Arm 2: LFD | FMD | MD ⭢ ⭡ FMD in patients with CHD and T2DM compared to LFD |
Jennings et al., 2019 [9] | RCT | Older adults (n = 1250) | Arm 1: Personalized MD Arm 2: Habitual diet | AIx and PWV | MD ⭢ ⭡ AIx MD ⭢ ⭤ PWV |
Yubero- Serrano et al., 2020 [26] | RCT | P with CHD (n = 805) | Arm 1: MD Arm 2: LFD | FMD | MD ⭢ ⭡ FMD compared to LFD LFD ⭢ ⭤ FMD |
Lydakis et al., 2012 [39] | CS | Healthy children (n = 277) | Adherence to MD (KIDMED) | AIx | 1 point ⭡ in the KIDMED ⭢ ⭣ AIx |
Rodríguez-Martin et al., 2017 [24] | CS | P without CVD (n = 1553) | Adherence (EVIDENT diet index) | PWV | 1 point ⭡ in the EVIDENT index ⭢ ⭣ PWV |
García-Hermoso et al., 2018 [23] | CS | Adults (n = 1365) | Adherence (MEDAS test) | AASIx, cAIx75, PWV, rAIx75 | ⭡ in the MEDAS test ⭢ ⭤ CAIx75 and AASIx ⭡ in the MEDAS test ⭢ ⭣ PWV and rAIx75 |
Sánchez et al., 2020 [29] | CS | P without CVD (n = 501) | Adherence (MEDAS test) | VAI (incidence of EVA) | ⭡ in the MEDAS test ⭢ ⭣ incidence of EVA |
Angelis et al., 2021 [34] | CS | Males with CHF (n = 150) | Adherence (MedDietScore) | AIx, cIMT, PWV | ⭡ in the MedDietScore ⭢ ⭣ AIx and cIMT ⭡ in the MedDietScore ⭢ ⭤ PWV |
Lasalvia et al., 2021 [33] | CS | Healthy adults (n = 3777) | Adherence (PCA and MedS) | cfPWV | Adherence to the MD ⭢ ⭤ cfPWV in any model |
Gómez-Sánchez et al., 2022 [28] | CS | P with moderate CVD risk (n = 2475) | Adherence to MD | baPWV and VAI | 1 point ⭡ in the MD adherence ⭢ ⭣ baPWV ⭡ in the MD adherence ⭢ ⭣ incidence of EVA |
Lobene et al., 2022 [21] | CS | Healthy young adults (n = 56) | Adherence (aMED Score) | AIx, FMD, PWV | 1 point ⭡ in the MD adherence ⭢ ⭣ AIx 1 point ⭡ in the MD adherence ⭢ ⭤ FMD and PWV |
Reference | Study Design | Population | Interventions | Outcomes | Findings * |
---|---|---|---|---|---|
Blumenthal et al., 2010 [45] | RCT (ENCORE Study) | Overweight or obese unmedicated outpatients with high BP (n = 144) | Arm 1: DASH-A Arm 2: DASH-WM Arm 3: Habitual diet | FMD and PWV | DASH-A and DASH-WM ⭢ ⭣ PWV DASH-WM ⭢ ⭣ PWV compared to DASH-A DASH-A and DASH-WM ⭢ ⭤ FMD |
Lin et al., 2012 [49] | RCT | P with unmedicated stage 1 HTN (n = 20) | Arm 1: DASH Diet Arm 2: Control diet | AIx, baFMD, PWV | DASH ⭢ ⭤ AIx and baFMD DASH ⭢ ⭣ PWV over time |
Blumenthal et al., 2021 [48] | RCT (TRIUMPH Study) | P with resistant HTN (n = 1040) | Arm 1: C-LIFE + DASH diet Arm 2: SEPA + DASH diet | FMD and PWV | C-LIFE ⭢ ⭤ FMD and PWV SEPA ⭢ ⭣ FMD |
Gauci et al., 2022 [46] | CS | Middle-aged adults (n = 141) | Adherence (Folsom DASH score) | AIx and PWV | 1 point ⭡ in the DASH diet adherence ⭢ ⭣ AIx Adherence to the DASH diet ⭢ ⭤ PWV |
Lobene et al., 2022 [21] | CS | Healthy young adults (n = 56) | Adherence (Fung DASH score and Mellen DASH score) | AIx, FMD, PWV | Adherence to the DASH diet ⭢ ⭤ AIx, FMD, PWV |
Maddock et al., 2018 [47] | Cohort | Participants (n = 1409) | Adherence (Fung DASH score) | cIMT and PWV | ⭡ in the DASH diet adherence ⭢ ⭣ scIMT ⭡ in the DASH diet adherence ⭢ ⭣ sPWV |
Reference | Study Design | Population | Interventions | Outcomes | Findings * |
---|---|---|---|---|---|
Gonzalez et al., 2022 [50] | CS | Normotensive young healthy adults (n = 58) | Arm 1: VegD Arm 2: OmnD | AIx, baFMD, PWV | ⭤ AIx, baFMD and PWV between the two groups |
Mayra et al., 2022 [51] | CS | Healthy non-smoking adults (n = 55) | Arm 1: VegD/VgD Arm 2: Omn-D | cfPWV | ⭤ cfPWV between the two groups |
Page et al., 2022 [53] | CS | Young healthy men (n = 25) | Arm 1: VgD Arm 2: OmnD | baFMD and cIMT | ⭤ baFMD and cIMT between the two dietary patterns |
Chen et al., 2019 [52] | Prospective | Participants (52% vegetarians) (n = 985) | - | cIMT | Vegetarians ⭢ ⭣ cIMT compared to the rest |
Reference | Study Design | Population | Interventions | Outcomes | Findings * |
---|---|---|---|---|---|
Petersen et al., 2015 [63] | SR and MA | 20 studies, n = 1259 | Diet for weight loss ± Exercise ± Drugs | PWV, baPWV, cfPWV | Diet for weight loss ± Exercise ± Drugs ⭢ ⭣ PWV |
Buscemi et al., 2009 [70] | RCT | Women with OW or OB (n = 28) | Arm 1: ALCD Arm 2: MHD | baFMD | MHD ⭢ ⭡ FMD compared to ALCD at T5 MHD ⭤ FMD compared to ALCD at T60 |
Volek et al., 2009 [69] | RCT | Adults with OW and AD (n = 40) | Arm 1: CRD Arm 2: LFD | FMD | CRD ⭢ ⭡ FMD ⭣ FMD ⭢ in the LFD group |
Figueroa et al., 2013 [68] | RCT | PM women with OW or OB (n = 41) | Arm 1: HD Arm 2: LIRET Arm 3: HD + LIRET | baPWV and PWV | HD ⭢ ⭣ baPWV HD + LIRET ⭢ ⭣ baPWV LIRET ⭢ ⭤ baPWV |
Klempel et al., 2013 [64] | RCT | P with obesity (n = 32) | Arm 1: ADF-HF (45% fat) Arm 2: ADF-LF diet (25% fat) | baFMD | ADF-LF ⭢ ⭡ FMD compared to ADF-HF |
Gonçalinho et al., 2021 [71] | RCT | Healthy adults (n = 48) | Arm 1: Resveratrol supplement Arm 2: LCD | FMD and NMD | ⭤ FMD and NMD between groups |
Jefferson, 2016 [60] | RCT | Older adults with OW or OB (n = 32) | Arm 1: SMIRT Arm 2: RTCR | baPWV | ⭤ baPWV within groups |
Weiss et al., 2016 [66] | RCT | OW and sedentary adults (n = 52) | Arm 1: CR program Arm 2: EX program Arm 3: CREX | AIx and PWV | ⭤ AIx and PWV between and within groups |
Headland et al., 2018 [59] | RCT CO | Healthy adults (n = 35) | 2 days VLED/ 5 days habitual eating | FMD | ⭤ FMD |
Nordstrand et al., 2013 [67] | nRCT | P with MO (n = 179) | Arm 1: LCD Arm 2: ILI | PWV | ILI ⭢ ⭣ PWV compared to LCD LCD ⭢ ⭤ PWV |
Raitakari et al., 2004 [61] | CT | Adults with OW (n = 67) | LCD | FMD and NMD | LCD ⭢ ⭡ FMD and NMD |
Alinezhad-Namaghi et al., 2023 [58] | Cohort | Adults with MetS (n = 95) | Arm 1: RF Arm 2: RNF | Arterial age, cAlx (%), cAIx, cAP, PVW | RF ⭢ ⭣ arterial age and cAP compared to RNF RF ⭢ ⭤ cAIx (%), cAIx, PWV compared to RNF |
Reference | Study Design | Population | Interventions | Outcomes | Findings * |
---|---|---|---|---|---|
Keogh et al., 2008 ** [79] | RCT | P with AO (n = 99) | Arm 1:VLCHSFD Arm 2: HCLSFD | AIx, baFMD, PWV | ⭤ AIx, baFMD within groups ⭣ PWV within groups |
Hwang et al., 2020 [76] | RCT | Healthy women with obesity (n = 21) | Arm 1: LCaD + CR Arm 2: LCaD w/o CR | baFMD and NID | ⭤ baFMD and NID |
Gram-Kampmann et al., 2023 [74] | RCT | P with T2DM (n = 71) | Arm 1: LCaD Arm 2: CD | FMD and NID | ⭤ FMD and NID between and within groups |
Athinarayanan et al., 2020 [75] | nRCT | P with T2DM (n = 262) | Arm 1: LCaD Arm 2: UC | cIMT | ⭤ cIMT |
McDonald et al., 2018 [78] | nRCT | P with epilepsy (n = 41) | Arm 1: MAD for >1 year Arm 2: Naïve to MAD | cIMT | ⭤ cIMT between groups |
Syed-Abdul et al., 2018 ** [77] | CT | P with characteristics of IR and MetS (n = 20) | LCaD | cfPWV | LCaD ⭢ ⭣ PWV in women not men |
Reference | Study Design | Population | Interventions | Outcomes | Findings * |
---|---|---|---|---|---|
Davis et al., 2011 ** [82] | RCT | P with T2DM (n = 27) | Arm 1: LCaD Arm 2: LFD | E-selectin and sICAM | LCaD ⭢ ⭣ E-selectin and sICAM LFD ⭢ ⭤ E-selectin and sICAM |
Varady et al., 2011 ** [83] | RCT | P with OB (n = 17) | Arm 1: LFD Arm 2: HFD | baFMD | LFD ⭢ ⭡ baFMD HFD ⭢ ⭣ baFMD |
Mohler 3rd et al., 2013 ** [81] | RCT | P with OB (n = 121) | Arm 1: LCaD Arm 2: LFD | FMD | ⭤ FMD between and within groups |
Fryer et al., 2021 [80] | RCT CO | Healthy males (n = 13) | Arm 1: HFM Arm 2: LFM | cfPWV and faPWV | HFM ⭢ ⭡ cfPWV compared to LFM ⭤ faPWV |
Lambert et al., 2017 [84] | Observational | P with OW | Tertiles of saturated fat/total fat | RHI | High tertile ⭢ ⭣ RHI compared to lower tertiles |
Reference | Study Design | Population | Interventions | Outcomes | Findings |
---|---|---|---|---|---|
Lasalvia et al., 2021 [33] | CS | P with chronic diseases (n = 3777) | Arm 1: WTD (PC1) Arm 2: MD (PC2) | cfPWV | WTD ⭢ ⭡ cfPWV in all models |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodoridis, X.; Chourdakis, M.; Papaemmanouil, A.; Chaloulakou, S.; Georgakou, A.V.; Chatzis, G.; Triantafyllou, A. The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature. Life 2024, 14, 267. https://doi.org/10.3390/life14020267
Theodoridis X, Chourdakis M, Papaemmanouil A, Chaloulakou S, Georgakou AV, Chatzis G, Triantafyllou A. The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature. Life. 2024; 14(2):267. https://doi.org/10.3390/life14020267
Chicago/Turabian StyleTheodoridis, Xenophon, Michail Chourdakis, Androniki Papaemmanouil, Stavroula Chaloulakou, Athina Vasiliki Georgakou, Georgios Chatzis, and Areti Triantafyllou. 2024. "The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature" Life 14, no. 2: 267. https://doi.org/10.3390/life14020267
APA StyleTheodoridis, X., Chourdakis, M., Papaemmanouil, A., Chaloulakou, S., Georgakou, A. V., Chatzis, G., & Triantafyllou, A. (2024). The Effect of Diet on Vascular Aging: A Narrative Review of the Available Literature. Life, 14(2), 267. https://doi.org/10.3390/life14020267