The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics
2.3. Population
2.4. Statistical Analysis
3. Results
3.1. Baseline Demographics and Evolution of Clinical Courses along Follow-Up
3.2. Predictive Factors Associated with Hospitalization
3.3. Prevalence of OD
3.4. Clinical Features of COVID-19 Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Rothan, H.A.; Byrareddy, S.N. The Epidemiology and Pathogenesis of Coronavirus Disease (COVID-19) Outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef] [PubMed]
- Eliezer, M.; Hautefort, C.; Hamel, A.-L.; Verillaud, B.; Herman, P.; Houdart, E.; Eloit, C. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol.—Head Neck Surg. 2020, 146, 674–675. [Google Scholar] [CrossRef]
- Hopkins, C.; Surda, P.; Kumar, N. Presentation of New Onset Anosmia during the COVID-19 Pandemic. Rhinology 2020, 58, 295–298. [Google Scholar] [CrossRef]
- Mullol, J.; Alobid, I.; Mariño-Sánchez, F.; Izquierdo-Domínguez, A.; Marin, C.; Klimek, L.; Wang, D.-Y.; Liu, Z. The Loss of Smell and Taste in the COVID-19 Outbreak: A Tale of Many Countries. Curr. Allergy Asthma Rep. 2020, 20, 61. [Google Scholar] [CrossRef]
- Lisan, Q.; Fieux, M.; Tran Khai, N.; Nevoux, J.; Papon, J.-F. Prevalence and Characteristics of Altered Sense of Smell/Taste during COVID-19 First Wave: A French Nationwide Cross-Sectional Study. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2021, 139, 9–12. [Google Scholar] [CrossRef]
- Speth, M.M.; Singer-Cornelius, T.; Oberle, M.; Gengler, I.; Brockmeier, S.J.; Sedaghat, A.R. Olfactory Dysfunction and Sinonasal Symptomatology in COVID-19: Prevalence, Severity, Timing, and Associated Characteristics. Otolaryngol.—Head Neck Surg. 2020, 163, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.Y.; Wong, A.; Zhu, D.; Fastenberg, J.H.; Tham, T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-Analysis. Otolaryngol.—Head Neck Surg. 2020, 163, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Molnár, A.; Maihoub, S.; Mavrogeni, P.; Krasznai, M.; Tamás, L.; Kraxner, H. The Correlation between the Results of the Sniffin’ Sticks Test, Demographic Data, and Questionnaire of Olfactory Disorders in a Hungarian Population after a SARS-CoV-2 Infection. J. Clin. Med. 2023, 12, 1041. [Google Scholar] [CrossRef]
- Barillari, M.R.; Bastiani, L.; Lechien, J.R.; Mannelli, G.; Molteni, G.; Cantarella, G.; Coppola, N.; Costa, G.; Trecca, E.M.C.; Grillo, C.; et al. A Structural Equation Model to Examine the Clinical Features of Mild-to-Moderate COVID-19: A Multicenter Italian Study. J. Med. Virol. 2021, 93, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Place, S.; Van Laethem, Y.; Cabaraux, P.; Mat, Q.; Huet, K.; Plzak, J.; Horoi, M.; Hans, S.; et al. Clinical and Epidemiological Characteristics of 1420 European Patients with Mild-to-Moderate Coronavirus Disease 2019. J. Intern. Med. 2020, 288, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 Novel Coronavirus (2019-nCoV) by Real-Time RT-PCR. Euro Surveill. 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, G.; Weizman, O.; Trimaille, A.; Pommier, T.; Cellier, J.; Geneste, L.; Panagides, V.; Marsou, W.; Deney, A.; Attou, S.; et al. Characteristics and Outcomes of Patients Hospitalized for COVID-19 in France: The Critical COVID-19 France (CCF) Study. Arch. Cardiovasc. Dis. 2021, 114, 352–363. [Google Scholar] [CrossRef]
- Gupta, A.; Marzook, H.; Ahmad, F. Comorbidities and Clinical Complications Associated with SARS-CoV-2 Infection: An Overview. Clin. Exp. Med. 2022, 23, 313–331. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Portuondo-Jimenez, J.; Bilbao-González, A.; Tíscar-González, V.; Garitano-Gutiérrez, I.; García-Gutiérrez, S.; Martínez-Mejuto, A.; Santiago-Garin, J.; Arribas-García, S.; García-Asensio, J.; Chart-Pascual, J.; et al. Modelling the Risk of Hospital Admission of Lab Confirmed SARS-CoV-2-Infected Patients in Primary Care: A Population-Based Study. Intern. Emerg. Med. 2022, 17, 1211–1221. [Google Scholar] [CrossRef]
- COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical Characteristics and Day-90 Outcomes of 4244 Critically Ill Adults with COVID-19: A Prospective Cohort Study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef]
- Qu, H.-Q.; Qu, J.; Glessner, J.; Hakonarson, H. Mendelian Randomization Study of Obesity and Type 2 Diabetes in Hospitalized COVID-19 Patients. Metabolism 2022, 129, 155156. [Google Scholar] [CrossRef]
- Basu, A.; Agwu, J.C.; Barlow, N.; Lee, B. Hypertension Is the Major Predictor of Poor Outcomes among Inpatients with COVID-19 Infection in the UK: A Retrospective Cohort Study. BMJ Open 2021, 11, e047561. [Google Scholar] [CrossRef]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- Miwa, T.; Mori, E.; Sekine, R.; Kimura, Y.; Kobayashi, M.; Shiga, H.; Tsuzuki, K.; Suzuki, M.; Kondo, K.; Suzaki, I.; et al. Olfactory and Taste Dysfunctions Caused by COVID-19: A Nationwide Study. Rhinology 2023, 61, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence of Olfactory Dysfunction in Coronavirus Disease 2019 (COVID-19): A Meta-Analysis of 27,492 Patients. Laryngoscope 2021, 131, 865–878. [Google Scholar] [CrossRef]
- von Bartheld, C.S.; Wang, L. Prevalence of Olfactory Dysfunction with the Omicron Variant of SARS-CoV-2: A Systematic Review and Meta-Analysis. Cells 2023, 12, 430. [Google Scholar] [CrossRef]
- Vaira, L.A.; Boscolo-Rizzo, P.; Lechien, J.R.; Mayo-Yáñez, M.; Petrocelli, M.; Pistidda, L.; Salzano, G.; Maglitto, F.; Hopkins, C.; De Riu, G. Olfactory Recovery Following Omicron Variant Infection: A Psychophysical Prospective Case-Control Study with Six-Month Follow Up. J. Laryngol. Otol. 2023, 137, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- DiLena, D.D.; Warton, E.M.; Vinson, D.R.; Siqueiros, M.H.; Rauchwerger, A.S.; Mark, D.G.; Skarbinski, J.; Cholleti, S.M.; Durant, E.J.; Reed, M.E.; et al. Smells like a Variant: How the Association between COVID-19 and Olfactory Dysfunction Changed between 2019 and 2022. J. Intern. Med. 2023. ahead of print. [Google Scholar] [CrossRef]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-Converting Enzyme 2 Is a Functional Receptor for the SARS Coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Zou, X.; Chen, K.; Zou, J.; Han, P.; Hao, J.; Han, Z. Single-Cell RNA-Seq Data Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of Different Human Organs Vulnerable to 2019-nCoV Infection. Front. Med. 2020, 14, 185–192. [Google Scholar] [CrossRef]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef]
- Bilinska, K.; Jakubowska, P.; Von Bartheld, C.S.; Butowt, R. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem. Neurosci. 2020, 11, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shen, W.; Rowan, N.R.; Kulaga, H.; Hillel, A.; Ramanathan, M.; Lane, A.P. Elevated ACE-2 Expression in the Olfactory Neuroepithelium: Implications for Anosmia and Upper Respiratory SARS-CoV-2 Entry and Replication. Eur. Respir. J. 2020, 56, 2001948. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Yoo, S.-J.; Clijsters, M.; Backaert, W.; Vanstapel, A.; Speleman, K.; Lietaer, C.; Choi, S.; Hether, T.D.; Marcelis, L.; et al. Visualizing in Deceased COVID-19 Patients How SARS-CoV-2 Attacks the Respiratory and Olfactory Mucosae but Spares the Olfactory Bulb. Cell 2021, 184, 5932–5949.e15. [Google Scholar] [CrossRef]
- Butowt, R.; Bilinska, K.; von Bartheld, C.S. Olfactory Dysfunction in COVID-19: New Insights into the Underlying Mechanisms. Trends Neurosci. 2023, 46, 75–90. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta Variant of SARS-CoV-2: A Comparative Computational Study of Spike Protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 Entry into Cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef]
- Peacock, T.P.; Brown, J.C.; Zhou, J.; Thakur, N.; Sukhova, K.; Newman, J.; Kugathasan, R.; Yan, A.W.C.; Furnon, W.; Lorenzo, G.D.; et al. The Altered Entry Pathway and Antigenic Distance of the SARS-CoV-2 Omicron Variant Map to Separate Domains of Spike Protein. bioRxiv 2022. bioRxiv:2021-12. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; Tirelli, G.; Meloni, P.; Hopkins, C.; Lechien, J.R.; Madeddu, G.; Bonini, P.; Gardenal, N.; Cancellieri, E.; Lazzarin, C.; et al. Recovery from Olfactory and Gustatory Dysfunction Following COVID-19 Acquired during Omicron BA.1 Wave in Italy. Am. J. Otolaryngol. 2023, 44, 103944. [Google Scholar] [CrossRef]
- Shelton, J.F.; Shastri, A.J.; Fletez-Brant, K.; 23andMe COVID-19 Team; Aslibekyan, S.; Auton, A. The UGT2A1/UGT2A2 Locus Is Associated with COVID-19-Related Loss of Smell or Taste. Nat. Genet. 2022, 54, 121–124. [Google Scholar] [CrossRef]
- Heydel, J.-M.; Coelho, A.; Thiebaud, N.; Legendre, A.; Le Bon, A.-M.; Faure, P.; Neiers, F.; Artur, Y.; Golebiowski, J.; Briand, L. Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events. Anat. Rec. 2013, 296, 1333–1345. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Menetrier, F.; Heydel, J.-M.; Chavanne, E.; Faure, P.; Labrousse, M.; Lirussi, F.; Canon, F.; Mannervik, B.; Briand, L.; et al. Interactions between Odorants and Glutathione Transferases in the Human Olfactory Cleft. Chem. Senses 2020, 45, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Lazard, D.; Zupko, K.; Poria, Y.; Nef, P.; Lazarovits, J.; Horn, S.; Khen, M.; Lancet, D. Odorant Signal Termination by Olfactory UDP Glucuronosyl Transferase. Nature 1991, 349, 790–793. [Google Scholar] [CrossRef]
- Ninchritz-Becerra, E.; Soriano-Reixach, M.M.; Mayo-Yánez, M.; Calvo-Henríquez, C.; Martínez-Ruiz de Apodaca, P.; Saga-Gutiérrez, C.; Parente-Arias, P.; Villareal, I.M.; Viera-Artiles, J.; Poletti-Serafini, D.; et al. Subjective Evaluation of Smell and Taste Dysfunction in Patients with Mild COVID-19 in Spain. Med. Clin. (Engl. Ed.) 2021, 156, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, S.; Heydel, J.-M.; Amossé, V.; Gradinaru, D.; Cattarelli, M.; Artur, Y.; Goudonnet, H.; Magdalou, J.; Netter, P.; Pelczar, H.; et al. Glucuronidation of Odorant Molecules in the Rat Olfactory System: Activity, Expression and Age-Linked Modifications of UDP-Glucuronosyltransferase Isoforms, UGT1A6 and UGT2A1, and Relation to Mitral Cell Activity. Brain Res. Mol. Brain Res. 2002, 107, 201–213. [Google Scholar] [CrossRef]
- Buckley, D.B.; Klaassen, C.D. Tissue- and Gender-Specific mRNA Expression of UDP-Glucuronosyltransferases (UGTs) in Mice. Drug Metab. Dispos. Biol. Fate Chem. 2007, 35, 121–127. [Google Scholar] [CrossRef]
- Gori, A.; Leone, F.; Loffredo, L.; Cinicola, B.L.; Brindisi, G.; De Castro, G.; Spalice, A.; Duse, M.; Zicari, A.M. COVID-19-Related Anosmia: The Olfactory Pathway Hypothesis and Early Intervention. Front. Neurol. 2020, 11, 956. [Google Scholar] [CrossRef]
- Bajaj, V.; Gadi, N.; Spihlman, A.P.; Wu, S.C.; Choi, C.H.; Moulton, V.R. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front. Physiol. 2020, 11, 571416. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex Differences in Immune Responses That Underlie COVID-19 Disease Outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Vadakedath, S.; Kandi, V.; Mohapatra, R.K.; Pinnelli, V.B.K.; Yegurla, R.R.; Shahapur, P.R.; Godishala, V.; Natesan, S.; Vora, K.S.; Sharun, K.; et al. Immunological Aspects and Gender Bias during Respiratory Viral Infections Including Novel Coronavirus Disease-19 (COVID-19): A Scoping Review. J. Med. Virol. 2021, 93, 5295–5309. [Google Scholar] [CrossRef] [PubMed]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Vaira, L.A.; De Riu, G.; Cammaroto, G.; Chekkoury-Idrissi, Y.; Circiu, M.; Distinguin, L.; Journe, F.; de Terwangne, C.; et al. Epidemiological, Otolaryngological, Olfactory and Gustatory Outcomes According to the Severity of COVID-19: A Study of 2579 Patients. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 2851–2859. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Vaira, L.A.; De Riu, G.; Cammaroto, G.; Chekkoury-Idrissi, Y.; Circiu, M.; Distinguin, L.; Journe, F.; de Terwangne, C.; et al. Correction to: Epidemiological, Otolaryngological, Olfactory and Gustatory Outcomes According to the Severity of COVID-19: A Study of 2579 Patients. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 2861. [Google Scholar] [CrossRef]
- Rass, V.; Tymoszuk, P.; Sahanic, S.; Heim, B.; Ausserhofer, D.; Lindner, A.; Kofler, M.; Mahlknecht, P.; Boehm, A.; Hüfner, K.; et al. Distinct Smell and Taste Disorder Phenotype of Post-Acute COVID-19 Sequelae. Eur. Arch. Oto-Rhino-Laryngol. 2023, 280, 5115–5128. [Google Scholar] [CrossRef]
- Roshanravan, N.; Seif, F.; Ostadrahimi, A.; Pouraghaei, M.; Ghaffari, S. Targeting Cytokine Storm to Manage Patients with COVID-19: A Mini-Review. Arch. Med. Res. 2020, 51, 608–612. [Google Scholar] [CrossRef]
- Que, Y.; Hu, C.; Wan, K.; Hu, P.; Wang, R.; Luo, J.; Li, T.; Ping, R.; Hu, Q.; Sun, Y.; et al. Cytokine Release Syndrome in COVID-19: A Major Mechanism of Morbidity and Mortality. Int. Rev. Immunol. 2022, 41, 217–230. [Google Scholar] [CrossRef]
- Purja, S.; Shin, H.; Lee, J.-Y.; Kim, E. Is Loss of Smell an Early Predictor of COVID-19 Severity: A Systematic Review and Meta-Analysis. Arch. Pharm. Res. 2021, 44, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Goshtasbi, K.; Pang, J.; Lehrich, B.M.; Vasudev, M.; Birkenbeuel, J.L.; Abiri, A.; Kuan, E.C. Association Between Olfactory Dysfunction and Critical Illness and Mortality in COVID-19: A Meta-Analysis. Otolaryngol.—Head Neck Surg. 2022, 166, 388–392. [Google Scholar] [CrossRef]
- Talavera, B.; García-Azorín, D.; Martínez-Pías, E.; Trigo, J.; Hernández-Pérez, I.; Valle-Peñacoba, G.; Simón-Campo, P.; de Lera, M.; Chavarría-Miranda, A.; López-Sanz, C.; et al. Anosmia Is Associated with Lower In-Hospital Mortality in COVID-19. J. Neurol. Sci. 2020, 419, 117163. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, P.; Zhang, Y.; Du, T.; Zhou, Y.; Lu, S.; Peng, X. Characteristic Analysis of Omicron-Included SARS-CoV-2 Variants of Concern. MedComm 2022, 3, e129. [Google Scholar] [CrossRef]
- Hannum, M.E.; Ramirez, V.A.; Lipson, S.J.; Herriman, R.D.; Toskala, A.K.; Lin, C.; Joseph, P.V.; Reed, D.R. Objective Sensory Testing Methods Reveal a Higher Prevalence of Olfactory Loss in COVID-19-Positive Patients Compared to Subjective Methods: A Systematic Review and Meta-Analysis. Chem. Senses 2020, 45, 865–874. [Google Scholar] [CrossRef] [PubMed]
Total: n = 481 | OD at First Consultation: n = 292 (60.7%) | Normal Olfactory Function: n = 189 (39.3%) | p-Value | |
---|---|---|---|---|
Sex female | 326 (67.8%) | 217 (74.3%) | 109 (57.7%) | <0.001 * |
Age | <0.001 * | |||
<65 years | 417 (86.7%) | 270 (92.5%) | 147 (77.8%) | |
≥65 years | 49 (10.2%) | 19 (6.5%) | 30 (15.9%) | |
Body Mass Index (BMI) | 0.62 | |||
<30 | 397 (82.5%) | 243 (83.2%) | 154 (81.5%) | |
Obese | 64 (13.3%) | 49 (16.8%) | 35 (18.5%) | |
Tobacco | ||||
Non-smoker | 324 (67.4%) | 189 (64.7%) | 135 (71.4%) | 0.027 * |
History of tobacco use | 142 (29.5%) | 92 (31.5%) | 50 (26.4%) | 0.19 |
Comorbidities | ||||
Immunosuppression | 17 (3.5%) | 8 (2.7%) | 9 (4.8%) | 0.247 |
Diabetes | 48 (10%) | 19 (6.5%) | 29 (15.3%) | 0.002 * |
Hypertension | 86 (17.9%) | 38 (13%) | 48 (25.4%) | <0.001 * |
Renal insufficiency | 20 (4.2%) | 4 (1.4%) | 16 (8.5%) | <0.001 * |
Cancer | 19 (4%) | 11 (3.8%) | 8 (4.2%) | 0.81 |
Auto-immune disease | 19 (4%) | 12 (4.1%) | 7 (3.7%) | 0.83 |
Allergic rhinitis | 120 (24.9%) | 82 (28.1%) | 38 (20.1%) | 0.057 |
Personal treatments | ||||
Antihypertensive drugs | 78 (16.2%) | 32 (11%) | 46 (24.3%) | <0.001 * |
Corticosteroids | 11 (2.3%) | 3 (1%) | 8 (4.2%) | 0.029 * |
Non-steroidal anti-inflammatory drugs | 2 (0.4%) | 1 (0.3%) | 1 (0.5%) | 0.95 |
Antihistamine | 21 (4.4%) | 13 (4.5%) | 8 (4.2%) | 0.91 |
Work | <0.001 * | |||
Liberal | 90 (18.7%) | 49 (16.8%) | 41 (21.7%) | |
Retirement | 56 (11.6%) | 17 (5.8%) | 39 (20.6%) | |
Unemployed | 16 (3.3%) | 7 (2.4%) | 9 (4.8%) | |
Healthcare worker | 275 (57.2%) | 195 (66.8%) | 80 (42.3%) | |
Other | 40 (8.3%) | 24 (8.2%) | 16 (8.4%) | |
Worst clinical situation | <0.001 * | |||
Outpatient care | 377 (78.4%) | 256 (87.7%) | 121 (64.0%) | |
Hospitalized in medicine | 84 (17.5%) | 34 (11.6%) | 50 (26.4%) | |
Hospitalized in the ICU | 20 (4.1%) | 2 (0.7%) | 18 (9.5%) | |
Total hospitalization | 104 (21.6%) | 36 (12.3%) | 68 (36.0%) | <0.001 * |
Standard Hospital Admission/Outpatient Care | Hospitalization in the ICU/Outpatient Care | |||||||
---|---|---|---|---|---|---|---|---|
Univariate Analyses | Multivariate Analyses | Univariate Analyses | Multivariate Analyses | |||||
Characteristics | OR (95% CI) | p-value | OR (95% CI) | p-value | OR (95% CI) | p-value | OR (95% CI) | p-value |
OD at 1st cs | 0.32 [0.20, 0.52] | <0.001 * | 0.51 [0.29, 0.89] | 0.018 * | 0.05 [0.01, 0.23] | <0.001 * | 0.09 [0.02, 0.43] | 0.003 * |
Age | ||||||||
<65 years | Ref | Ref | Ref | Ref | ||||
≥65 years | 10.1 [5.03, 20.2] | <0.001 * | 6.31 [2.86, 13.96] | <0.001 * | 17.2 [6.30, 47.1] | <0.001 * | 5.02 [1.34, 18.8] | 0.017 * |
Sex | ||||||||
F | Ref | Ref | Ref | Ref | ||||
M | 3.03 [1.86, 4.92] | <0.001 * | 2.62 [1.49, 4.63] | <0.001 * | 8.66 [3.07, 24.4] | <0.001 * | 5.97 [1.71, 20.8] | 0.005 * |
BMI in class | ||||||||
BMI < 30 | Ref | Ref | Ref | Ref | ||||
Obese | 1.13 [0.62, 2.07] | 0.69 | 1.51 [0.76, 3.02] | 0.24 | 0.85 [0.24, 2.97] | 0.80 | 0.73 [0.16, 3.38] | 0.69 |
Diabetes | ||||||||
No | Ref | Ref | Ref | Ref | ||||
Yes | 3.23 [1.57, 6.61] | <0.001 * | 1.95 [0.80,4.79] | 0.14 | 24.20 [8.97, 65.3] | <0.001 * | 11.59 [3.36, 40.0] | <0.001 * |
Hypertension | ||||||||
No | Ref | Ref | Ref | Ref | ||||
Yes | 3.99 [2.31, 6.91] | <0.001 * | 1.26 [0.59, 2.71] | 0.55 | 14.1 [5.32, 37.1] | <0.001 * | 3.37 [0.92, 12.3] | 0.067 |
Total (n = 481) | Outpatients (n = 377) | Inpatients (n = 104) | p-Value | |
---|---|---|---|---|
Fever | 281 (58.4%) | 199 (52.8%) | 82 (78.8%) | <0.001 a,* |
NA | 4 | 4 | 0 | |
Cough | 310 (64.4%) | 233 (61.8%) | 77 (74.0%) | 0.023 a |
NA | 1 | 1 | 0 | |
Dyspnea | 159 (33.1%) | 94 (24.9%) | 65 (62.5%) | <0.001 a,* |
NA | 1 | 1 | 0 | |
Asthenia | 402 (83.6%) | 309 (82.0%) | 93 (89.4%) | 0.076 a |
NA | 1 | 1 | 0 | |
Myalgia | 276 (57.4%) | 234 (62.1%) | 42 (40.4%) | <0.001 a,* |
NA | 1 | 1 | 0 | |
Headache | 324 (67.4%) | 273 (72.4%) | 51 (49.0%) | <0.001 a,* |
NA | 2 | 1 | 1 | |
Rhinorrhea | 178 (37.0%) | 159 (42.2%) | 19 (18.3%) | <0.001 b,* |
NA | 6 | 3 | 3 | |
Nasal obstruction | 153 (31.9%) | 132 (35.0%) | 21 (20.2%) | 0.013 b,* |
NA | 27 | 15 | 12 | |
Olfactory dysfunction | 292 (60.7%) | 256 (67.9%) | 36 (34.6%) | <0.001 a,* |
NA | 0 | 0 | 0 | |
Taste dysfunction | 260 (54.1%) | 227 (60.2%) | 33 (31.7%) | <0.001 a,* |
NA | 2 | 1 | 1 | |
Simultaneous OD and TD | 241 (50.1%) | 216 (57.3%) | 25 (24.0%) | <0.001 b,* |
NA | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamel, A.-L.; Delbos, L.; Natella, P.-A.; Radulesco, T.; Alexandru, M.; Bartaire, E.; Bartier, S.; Benoite, G.; Bequignon, E.; Castillo, L.; et al. The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study. Life 2024, 14, 293. https://doi.org/10.3390/life14030293
Hamel A-L, Delbos L, Natella P-A, Radulesco T, Alexandru M, Bartaire E, Bartier S, Benoite G, Bequignon E, Castillo L, et al. The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study. Life. 2024; 14(3):293. https://doi.org/10.3390/life14030293
Chicago/Turabian StyleHamel, Anne-Laure, Léo Delbos, Pierre-André Natella, Thomas Radulesco, Mihaela Alexandru, Emmanuel Bartaire, Sophie Bartier, Gonda Benoite, Emilie Bequignon, Laurent Castillo, and et al. 2024. "The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study" Life 14, no. 3: 293. https://doi.org/10.3390/life14030293
APA StyleHamel, A. -L., Delbos, L., Natella, P. -A., Radulesco, T., Alexandru, M., Bartaire, E., Bartier, S., Benoite, G., Bequignon, E., Castillo, L., Canouï-Poitrine, F., Carsuzaa, F., Corré, A., Coste, A., Couloigner, V., Daveau, C., De Boissieu, P., De Bonnecaze, G., De Gabory, L., ... Fieux, M. (2024). The Prognostic Value of Olfactory Dysfunction in Patients with COVID-19: The COVIDORA Study. Life, 14(3), 293. https://doi.org/10.3390/life14030293