The Value of Subjective Olfactometry as a Predictive Biomarker of Neurodegenerative Diseases: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question
2.2. Search Strategy
- Participants: Adult patients with cognitive impairment or NDs, with or without olfactory disorders assessed through subjective olfactometry.
- Intervention: Eligible interventions included standardized olfactometry tests as primary assessment tools.
- Comparators: Healthy adults with no diagnosis of an olfactory disorder or cognitive impairment.
- Outcomes: Diagnostic accuracy of subjective olfactometry tests for the early identification of cognitive impairment or NDs, and prognostic value of these tools in predicting the progression of NDs.
- r: Research works published in the last six years (from 2018 to 2023).
2.3. Eligibility Criteria
2.4. Study and Variable Extraction
2.5. Assessment of Study Quality and Risk of Bias
2.6. Descriptive and Qualitative Analysis
3. Results
3.1. Cross-Sectional and Cohort Studies
Authors | Study Design and Level of Evidence | Follow-Up (Years) | Sample Size | Age (Mean ± SD) | Gender (M/W) | Main ND Disease Tests | Smell Test | Sinonasal Diseases Considered | Prevalence of Olfactory Disorders | Main Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Camargo et al., Brazil (2018) [27] | Cross-sectional 4 | N/A | PD: 42 Controls: 38 | PD: 70.7 ± 10.7 C: 69.2 ± 6.5 | PD: 62/38 C: 53/47 | H and Y Scale UPDRS-III SCOPA-Cog MMSE MDS Criteria | SST-12 | No | PD: 95% C: NR | No correlation between cognitive impairment and SST-12. Correlation between lower SST-12 score and attention loss measured through SCOPA-Cog. |
Masala et al., Italy (2018) [28] | Cross-sectional 4 | N/A | PD: 96 Controls: 51 | PD: 67.8 ± 8.2 C: 65.1 ± 11.8 | PD: 59/37 C: 25/26 | Gelb criteria UKPDSBB H and Y Scale UPDRS-III MoCA | SST | Yes | PD: 99% C: 33% | Negative correlation between motor symptoms’ severity, SI and TDI. Negative correlation between apathy, ST, SD, SI and TDI. |
Jalali et al., Iran (2019) [29] | Cross-sectional 4 | N/A | PD: 104 | PD: 64.1 ± 5.7 | PD: 66/38 | MDS Criteria H and Y Scale | Iran-SIT | Yes | PD: 97% | Lower Iran-SIT scores correlated with advanced age (>60 y). Negative correlation between Iran-SIT and H and Y scale. Differences in SI across PD subtypes: Lower Iran-SIT scores in TDPD than in PIGD or LOPD. |
Yoo et al., Republic of Korea (2019) [26] | Retrospective cohort 3b | 5 | PD: 77 Normosmic: 15; Hyposmic without anosnognosia (AO−): 40; Hyposmic with anosognosia (AO+): 22 | Normosmic: NR Hyposmic AO−: NR Hyposmic AO+: NR | Normosmic: 6/9 Hyposmic AO−: 23/17 Hyposmic AO+: 11/11 | UKPDSBB UPDRS-III RBD Screening Questionnaire BDI MMSE | CCSIT | Yes | PD: 80.5% | Higher proportion of MCI at baseline in patients with hyposmia and AO. Greater tendency to dementia and more rapid decline in MMSE in patients with hyposmia. Greater conversion to dementia in the group of hyposmia and AO+. |
Roos et al., The Nether- lands [30] | Cross-sectional 4 | N/A | PD: 295, within them 155 with DaT-SPECT | PD: 65.3 ± 10.4 DaT-SPECT: 65.4 ± 10.7 | PD: 179/116 DaT-SPECT: 95/60 | UKPDSBB H and Y Scale UPDRS-III MMSE SCOPA BDI/BAI DaT-SPECT | UPSIT | N/R | PD: 83% | Lower UPSIT scores correlated with sleep disorders, depression and anxiety. Association between smell impairment and severity of motor symptoms. UPSIT scores are directly proportional to dopaminergic neurons loss at the caudal nucleus and putamen as measured by DaT-SPECT |
Yoshii et al., Japan (2019) [25] | Cross-sectional 4 | N/A | AD: 55 MCI: 27 | AD: 80 ± 7 MCI: 76 ±10 | AD: 21/34 MCI: 8/19 | DSM-IV criteria NINCDS NIA-AA ADAS-Jcog MRI | OSIT-J | Yes | N/R | Significant differences between OSIT-J and AD and MCI. Positive correlation between OSIT-J and ADAS-Jcog and OSIT-J and brain atrophy. Association between OSIT-J scores and medial temporal lobe atrophy (hippocampus and parahippocampal region). |
Lian et al., China (2019) [38] | Cross-sectional 4 | N/A | AD: 60 (30 with ODs, 30 without) | ODs: 66.4 ± 11.7 No ODs: 65.3 ± 10.0 | SI: 33/67 No SI: 43/57 | NIA-AA MMSE AVLT BNT ADL MRI | SST | Yes | N/A | Positive correlation between ST and SI and global cognition. Significant impairment of cognitive function, memory, attention, speech and visuospatial capacities if olfactory dysfunction. Significantly smaller hippocampal and amygdala volume if olfactory dysfunction. Thinner entorhinal, inferior temporal, middle temporal and fusiform cortices. Positive correlation between MMSE and TDI. |
Doorduijn et al., The Netherlands (2020) [39] | Cross-sectional 4 | N/A | AD: 30 MCI: 22 Controls: 40 | AD: 62.5 ± 6.8 MCI: 69.8 ± 7.2 C: 69.5 ± 9.4 | AD: 18/22 MCI: 16/6 C: 14/16 | NIA-AA MMSE TMT A | SST | No | AD: 77% MCI: 68% C: 38% | Lower SD and SI in AD and MCI. No difference in ST between the 3 groups. Association between low TDI, SI and SD and memory impairment. |
Da Silva et al., Portugal (2020) [40] | Retrospective cohort 3b | 10 | MS: 149 | MS: 41 (35–50) | MS: 47/102 | EDSS MSSS ARMSS MMSE | B-SIT | Yes | RRMS: 4% SPMS: 56% PPMS: 12% | Smell dysfunction does not predict the switch from RRMS to progressive MS. More severe symptoms in the follow-up of progressive MS and smell dysfunction. Greater death HR if B-SIT impaired. |
Fujio et al., Japan (2020) [37] | Prospective cohort 4 | 3 | PD: 56 | PD: 67.8 | PD: 27/29 | MMSE | JSO OE | Yes | PD: 88% | No correlation between OE and lower MMSE between the 1st and last evaluation. |
Lee et al., South Korea (2021) [31] | Retrospective cohort 3b | 1 | PD: 108 (Normosmia: 29, Hyposmia: 79) | N-PD: 58.9 ± 10.6 H-PD: 66.2 ± 9.1 | N-PD: 19/10 /> H-PD: 43/36 | MDS criteria UPDRS MMSE MoCA | KSST | Yes | PD: 73% | Significant improvement of motor functions in N-PD with treatment rather than in H-PD (axial symptoms). Higher development of freezing of gait in H-PD. |
Masuda et al., Japan (2021) [42] | Cross-sectional 4 | N/A | ALS: 30 Controls: 53 | ALS: 67.3 ± 8.2 C: 68 ± 6.9 | ALS: 28/25 C: 20/10 | El Escorial criteria ALSFRS-R MMSE FAB ADAS-Jcog BDI MRI | OSIT-J | Yes | N/R | Significantly lower OSIT-J in ALS. Positive correlation between OSIT-J and frontotemporal cognitive impairment, bilateral medial orbital cortex and right hippocampus atrophy in ALS. |
Duz et al., Turkey (2021) [41] | Cross-sectional 4 | N/A | RRMS: 10 RIS: 10 Controls: 10 | RRMS: 37 ± 9.5 RIS: 33.2 ± 7.5 C: 33.4 ± 3.5 | RRMS: 2/8 RIS: 3/7 C: 3/7 | MMSE BDI EDSS | SST | Yes | N/R | Significative smell dysfunction in RRMS. ST impairment in RIS. Cognitive impairment in RRMS and RIS: attention, memory and executive functions. Association between ST decrease and early inflammatory stage in MS. SI and SD impairment if neurodegeneration. |
Elhassa-nien et al., Egypt (2021) [32] | Cross-sectional 4 | N/A | TDPD: 22 ET: 36 Controls: 24 | TDPD: 57.7 ± 3.5 ET: 62.6 ± 4.6 C: 62.0 ± 6.7 | TDPD: 14/8 ET: 20/16 C: 16/8 | MDS criteria UPDRS-III MRI | SST | Yes | TDPD: 100% ET: 75% C: 29% | Significant ST, SI, SD and TDI decrease in TDPD in comparison with ET and C; and in ET in comparison with C. Significant olfactory bulb volume decreases in TDPD. Negative correlation between PD duration and smell dysfunction. |
Wang et al., China (2021) [12] | Cross-sectional 4 | N/A | SCI.: 84 MCI: 129 AD: 52 Controls: 35 | SCI: 67 ± 5.6 MCI 67.8 ± 8.6 AD: 71.2 ± 10.3 C: 67.5 ± 5.3 | SCI: 32/52 MCI: 41/88 AD: 23/29 C: 18/17 | NINCDS Peterson criteria MMSE AVTL BNT | SST-16 | No | SCI: 54% MCI: 65% AD: 96% C: 23% | Worse SI is associated with worse cognition in AD. Strong positive correlation between SI and memory. |
Trentin et al., Brazil (2022) [33] | Cross-sectional 4 | N/A | PD: 27 Controls: 17 | PD: 65.6 ± 9.7 C: 61.4 ± 7.4 | PD: 11/16 C: 3/14 | MDS Criteria MoCA | SST | Yes | PD: 100% C: 53% | Significantly worse ST, SI, SD and TDI in PD. Positive correlation between cognition and TDI. Superiority of TDI vs its subtests. |
Saunders-Pullman et al., USA (2022) [34] | Prospective cohort 4 | 3.4 | PD LRRK2: 162 IPD: 198 | PD LRRK2: 67.6 ± 9.5 IPD: 65.4 ± 10.5 | PD LRRK2: 54/46 IPD: 63/37 | UKPDSBB UPDRS MoCA GDS | UPSIT | N/R | PD LRRK2: 56% IPD: 85% | PD LRRK2: worse UPSIT were significantly younger. Correlation between worse UPSIT and motor impairment progression. Greater deterioration if worse UPSIT in IPD. |
Thomas et al., UK (2022) [13] | Cross-sectional 4 | N/A | Probable MCI-Lewy Bodies:38 Possible MCI-LB: 19 MCI-AD:33 Controls: 32 | Prob. MCI-LB: 74.1 ± 6.6 Pos. MCI-LB: 73 ± 7.3 MCI-AD: 74.6 ± 7.5 C: 73.9 ± 7.2 | Prob. MCI-LB: 33/5 Pos. MCI-LB: 10/9 MCI-AD: 16/17 C: 23/9 | MDS Criteria NIA-AA UPDRS-III GDS | SST-16 | No | Prob. MCI-LB: 84% Pos. MCI-LB: 74% MCI-AD: 70% C: 34% | Significant correlation between cognition and SST-16, not with motor dysfunction. No correlation between SST-16 and subjective assessment of olfaction. ≤7 SST-16 cutoff: differentiate MCI-LB from MCI-AD. |
Almeida et al., Brazil (2022) [17] | Cross-sectional 4 | N/A | PD: 20 Controls: 9 | PD: 49.8 ± 5.0 C: 60.8 ± 9.6 | PD: 13/7 C: 6/3 | UKPDSBB H and Y Scale UPDRS-III ADL MMSE DaT-SPECT TCS | SST-16 | Yes | PD: 65% C: 0% | Positive correlation between SST-16 and SPECT, negative correlation between SST-16 and TCS. SST-16 + TCS assessment compares to SPECT (gold standard) to confirm PD. |
Nabizadeh et al., Iran (2022) [35] | Cross-sectional and prospective cohort 3b | 4 | PD: 487 Controls: 197 | PD: 61.7 ± 9.7 C: 61.4 ± 11.0 | PD: 335/152 C: 131/66 | MDS Criteria H and Y Scale UPDRS ADL MoCA GDS SCOPA-AUT | UPSIT | Yes | N/R | Greater smell impairment in PD than in controls. Positive correlation between UPSIT and H and Y stage, motor and non-motor impairment in tremor-dominant patients. No correlation with other subgroups of PD. |
Stewart et al., Canada (2023) [36] | Cross-sectional 4 | N/A | PD-MCI: 12 PD-Normal cognition: 21 | PD-MCI: 63.5 ± 7.28 PD-NC: 61.4 ± 5.95 | PD-MCI: 6/6 PD-NC: 13/8 | H and Y Scale MDS Criteria TMT MRI (DTI) | UPSIT | No | N/R | Better UPSIT scores and lower changes in MRI-DTI measures in PD-NC. Positive correlation between the severity of smell dysfunction and cognitive impairment. |
3.2. Meta-Analyses
Authors | Neurodegenerative Disease | Articles Included | Exclusion Criteria | Smell Test Assessed | Results | I2 |
---|---|---|---|---|---|---|
Kotecha et al., UK (2018) [47] | Alzheimer’s disease (AD) Mild cognitive impairment (MCI) | 10 | Insufficient characterization of AD and MCI sample, no control group, incorrect olfactory measurement/methodology, non-extractable raw data, non-randomized and non-controlled trials. | UPSIT-10 (4) SSIT-16 (3) UPSIT-12 (1) UPSIT-20 (1) SSIT (1) SSIT-12 (1) SSDT-16 (1) B-SIT-12 (1) | Significant SI differences between AD patients and controls. Significant SI differences between MCI patients and controls. | AD: 75% MCI: 61% |
Sui et al., China (2019) [44] | Parkinson’s disease (PD) | 7 | If published as case-control, cross-section, case report, review, conference abstract, comment or letter, reported only risk estimates, if 95% CIs were not reported, non-sufficient data to calculate risk estimates, duplicate populations, non-English publications, if not published. | SST (2) BSIT (2) UPSIT (1) SDOIT (1) Not specified (1) | Correlation between hyposmia and increased risk of PD. Greater risk of PD development if hyposmia is presented before the diagnosis in comparison with healthy controls. | 51.6% |
Jung et al., South Korea (2019) [48] | Alzheimer’s disease (AD) Mild cognitive impairment (MCI) | 12 | Use of animals, comorbid neurological conditions that affect olfactory function, reviews or symposium papers. | UPSIT (6) SST (2) BSIT (1) CA-SIT (1) CCSIT (1) 16 common odors (1) | Greater olfactory dysfunction in AD than in MCI patients. Greater SI compared with ST or SD. | 45.5% |
Janssen Daalen et al., The Netherlands (2021) [46] | Parkinson’s disease (PD) | 8 | Cross-sectional studies. | UPSIT (4) BSIT (3) SST-16 (2) SST-12 (1) | Olfactory dysfunction may indicate PD diagnosis in populations with a higher proportion of older women and in patients with REM sleep behavior disorder. | 70.7% |
Alonso et al., Brazil (2021) [45] | Parkinson’s disease (PD) | 104 | Not published in a peer-reviewed journal, published as editorials, letters, comments, review articles, longitudinal studies, or single-case studies. | UPSIT (45) SST-48 (18) SST-16 (16) B-SIT (13) OSIT-S (7) SST-12 (6) Open Essence (2) | Significant olfactory impairment in PD in comparison with controls, regardless of the test used. Lower heterogeneity (I2) if UPSIT is used compared to other tests. Long term PD patients did not have a significantly different olfactory dysfunction than patients recently diagnosed. | 70% |
Jobin et al., Canada (2021) [49] | Subjective cognitive impairment (SCI) | 5 | <50 y/o, if cognitive impairment, psychiatric diagnosis or neurological condition were present. | SSIT (2) UPSIT (1) CC-SIT (1) OPID (1) | Mild SI worsening detectable in SCI patients compared to controls. | 30% |
4. Discussion
4.1. Prevalence and Predictive Value of Olfactory Disorders in NDs
4.2. Study of Olfactory Subdomains in NDs
4.3. Subjective Olfactometries
4.4. Olfaction Outcomes in Relation to Neurocognitive Batteries Assessing Different Cognitive Domains
4.5. Olfactory Training
4.6. Underlying Basis of the Link between Olfactory Disorders and Cognitive Impairment
4.7. Fundamental Bases of Olfactory Disorders through Neuroimaging
4.8. Clinical Implications
4.9. Limitations
5. Conclusions
- The majority of studies reviewed found worse olfaction outcomes in patients with neurodegenerative diseases compared with healthy controls. They all agree to highlight a correlation between olfaction status and cognitive outcomes, thus suggesting olfactory impairment as a prognostic risk disease factor.
- Olfactory function and subdomains showed different peculiarities among different diseases. In Parkinson’s, the three domains of olfaction (identification, discrimination, and threshold) were affected, with various grades of severity being found among different Parkinson’s subtypes, whereas in Alzheimer’s, the most affected domain was odor discrimination. Changes in olfactory function, with peculiar characteristics among neurodegenerative diseases, may constitute useful markers for the better characterization and management of the disease.
- Subjective olfactometries that evaluate various olfaction domains, such as the Sniffin’ Sticks Test, are reported to provide more exhaustive information about olfactory function and its possible relationship with cognitive decline. In the future, the implementation and validation of new screening tests could help identify patient candidates for further olfactory evaluation, possibly facilitating its systematic adoption into ND routine assessments. Thus, a consensus on the methodology and optimal smell tests to be used in NDs must be reached.
- Future studies that analyze the predictive value and accuracy of subjective olfactometries and the specific alterations observed in different olfactory subdomains are still needed. Such studies should contribute with larger sample sizes and more data to increase and strengthen the current scientific evidence, thus possibly laying the basis for the definitive inclusion of olfactory protocols and testing in patients with dementia.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hummel, T.; Whitcroft, K.L.; Andrews, P.; Altundag, A.; Cinghi, C.; Costanzo, R.M.; Damm, M.; Frasnelli, J.; Gudziol, H.; Gupta, N.; et al. Position Paper on Olfactory Dysfunction. Rhinol. J. 2017, 54, 1–30. [Google Scholar] [CrossRef]
- Patel, Z.M.; Holbrook, E.H.; Turner, J.H.; Adappa, N.D.; Albers, M.W.; Altundag, A.; Appenzeller, S.; Costanzo, R.M.; Croy, I.; Davis, G.E.; et al. International Consensus Statement on Allergy and Rhinology: Olfaction. Int. Forum Allergy Rhinol. 2022, 12, 327–680. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Han, P.; Burghardt, S.; Knaapila, A.; Schriever, V.; Hummel, T. Influence of Olfactory Dysfunction on the Perception of Food. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 2811–2817. [Google Scholar] [CrossRef] [PubMed]
- Whitcroft, K.L.; Altundag, A.; Balungwe, P.; Boscolo-Rizzo, P.; Douglas, R.; Enecilla, M.L.B.; Fjaeldstad, A.W.; Fornazieri, M.A.; Frasnelli, J.; Gane, S.; et al. Position Paper on Olfactory Dysfunction: 2023. Rhinology 2023, 61, 29–31. [Google Scholar]
- Choi, J.S.; Hur, K.; Chow, M.; Shen, J.; Wrobel, B. Olfactory Dysfunction and Cognition among Older Adults in the United States. Int. Forum Allergy Rhinol. 2018, 8, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Rahayel, S.; Frasnelli, J.; Joubert, S. The Effect of Alzheimer’s Disease and Parkinson’s Disease on Olfaction: A Meta-Analysis. Behav. Brain Res. 2012, 231, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Saramago, I.; Franceschi, A.M. Olfactory Dysfunction in Neurodegenerative Disease. Top. Magn. Reson. Imaging 2021, 30, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Hawkes, C.H. Chemosensory Dysfunction in Neurodegenerative Diseases. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 164, pp. 325–360. [Google Scholar] [CrossRef]
- Cha, H.; Kim, S.; Kim, H.; Kim, G.; Kwon, K.Y. Effect of Intensive Olfactory Training for Cognitive Function in Patients with Dementia. Geriatr. Gerontol. Int. 2021, 22, 5–11. [Google Scholar] [CrossRef]
- Marin, C.; Vilas, D.; Langdon, C.; Alobid, I.; López-Chacón, M.; Haehner, A.; Hummel, T.; Mullol, J. Olfactory Dysfunction in Neurodegenerative Diseases. Curr. Allergy Asthma Rep. 2018, 18, 42. [Google Scholar] [CrossRef]
- Schapira, A.H.V.; Chaudhuri, K.R.; Jenner, P. Non-Motor Features of Parkinson Disease. Nat. Rev. Neurosci. 2017, 18, 435–450. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, B.; Zhong, X.; Zhou, H.; Zhang, M.; Mai, N.; Wu, Z.; Huang, X.; Haehner, A.; Chen, X.; et al. Olfactory Dysfunction Is Already Present with Subjective Cognitive Decline and Deepens with Disease Severity in the Alzheimer’s Disease Spectrum. J. Alzheimer’s Dis. 2021, 79, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.J.; Hamilton, C.A.; Barker, S.; Durcan, R.; Lawley, S.; Barnett, N.; Firbank, M.; Roberts, G.; Allan, L.M.; O’Brien, J.; et al. Olfactory Impairment in Mild Cognitive Impairment with Lewy Bodies and Alzheimer’s Disease. Int. Psychogeriatr. 2021, 34, 585–592. [Google Scholar] [CrossRef]
- Doty, R.L. Olfactory Dysfunction and Its Measurement in the Clinic. World J. Otorhinolaryngol.-Head Neck Surg. 2015, 1, 28–33. [Google Scholar] [CrossRef]
- Callejón-Leblic, M.A.; Martín-Jiménez, D.I.; Moreno-Luna, R.; Palacios-Garcia, J.M.; Alvarez-Cendrero, M.; Vizcarra-Melgar, J.A.; Fernandez-Velez, C.; Reyes-Tejero, I.M.; Maza-Solano, J.; Gonzalez-Garcia, J.; et al. Analysis of Prevalence and Predictive Factors of Long-Lasting Olfactory and Gustatory Dysfunction in COVID-19 Patients. Life 2022, 12, 1256. [Google Scholar] [CrossRef]
- Callejon-Leblic, M.A.; Moreno-Luna, R.; Del Cuvillo, A.; Reyes-Tejero, I.M.; Garcia-Villaran, M.A.; Santos-Peña, M.; Maza-Solano, J.M.; Martín-Jimenez, D.I.; Palacios-Garcia, J.M.; Fernandez-Velez, C.; et al. Loss of Smell and Taste Can Accurately Predict COVID-19 Infection: A Machine-Learning Approach. J. Clin. Med. 2021, 10, 570. [Google Scholar] [CrossRef]
- Almeida, K.J.; Bor-Seng-Shu, E.; Pedroso, J.L.; Felicio, A.C.; de-Lima-Oliveira, M.; Barsottini, O.G.P.; de Carvalho Nogueira, R.; Paschoal-Júnior, F.M.; Borges, V.; Batista, I.R.; et al. Combined Assessment by Transcranial Sonography and Sniffin’ Sticks Test Has a Similar Diagnostic Accuracy Compared to Brain SPECT for Parkinson’s Disease Diagnosis. Clin. Neurol. Neurosurg. 2022, 220, 107333. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed]
- Howick, J.; Chalmers, I.; Lind, J.; Glasziou, P.; Greenhalgh, T.; Heneghan, C.; Liberati, A.; Moschetti, I.; Phillips, B.; Thornton, H.; et al. Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 20 December 2023).
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing Heterogeneity in Meta-Analysis: Q Statistic or I2 Index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef]
- NICE. Methods for the Development of NICE Public Health Guidance, 3rd ed.; Appendix F.; NICE: London, UK, 2012. [Google Scholar]
- Kobal, G.; Klimek, L.; Wolfensberger, M.; Gudziol, H.; Temmel, A.; Owen, C.M.; Seeber, H.; Pauli, E.; Hummel, T. Multicenter Investigation of 1,036 Subjects Using a Standardized Method for the Assessment of Olfactory Function Combining Tests of Odor Identification, Odor Discrimination, and Olfactory Thresholds. Eur. Arch. Oto-Rhino-Laryngol. 2000, 257, 205–211. [Google Scholar] [CrossRef]
- Boesveldt, S.; Postma, E.M.; Boak, D.; Welge-Luessen, A.; Schöpf, V.; Mainland, J.D.; Martens, J.; Ngai, J.; Duffy, V.B. Anosmia—A Clinical Review. Chem. Senses 2017, 42, 513–523. [Google Scholar] [CrossRef]
- Yoshii, F.; Onaka, H.; Kohara, S.; Ryo, M.; Takahashi, W. Association of Smell Identification Deficit with Alzheimer’s Disease Assessment Scale-Cognitive Subscale, Japanese Version Scores and Brain Atrophy in Patients with Dementia. Eur. Neurol. 2019, 81, 145–151. [Google Scholar] [CrossRef]
- Yoo, H.S.; Chung, S.J.; Lee, Y.H.; Ye, B.S.; Sohn, Y.H.; Lee, P.H. Olfactory Anosognosia Is a Predictor of Cognitive Decline and Dementia Conversion in Parkinson’s Disease. J. Neurol. 2019, 266, 1601–1610. [Google Scholar] [CrossRef]
- Camargo, C.H.F.; Jobbins, V.A.; Serpa, R.A.; Berbetz, F.A.; Sabatini, J.S.; Teive, H.A.G. Association between Olfactory Loss and Cognitive Deficits in Parkinson’s Disease. Clin. Neurol. Neurosurg. 2018, 173, 120–123. [Google Scholar] [CrossRef]
- Masala, C.; Solla, P.; Liscia, A.; Defazio, G.; Saba, L.; Cannas, A.; Cavazzana, A.; Hummel, T.; Haehner, A. Correlation among Olfactory Function, Motors’ Symptoms, Cognitive Impairment, Apathy, and Fatigue in Patients with Parkinson’s Disease. J. Neurol. 2018, 265, 1764–1771. [Google Scholar] [CrossRef]
- Jalali, M.M.; Roudbary, S.A.; Gerami, H.; Soleimani, R.; Ebrahimi, S.M. Olfactory Identification among Various Subtypes of Parkinson Disease. Eur. Neurol. 2019, 81, 167–173. [Google Scholar] [CrossRef]
- Roos, D.S.; Twisk, J.W.R.; Raijmakers, P.G.H.M.; Doty, R.L.; Berendse, H.W. Hyposmia as a Marker of (Non-)Motor Disease Severity in Parkinson’s Disease. J. Neural Transm. 2019, 126, 1471–1478. [Google Scholar] [CrossRef]
- Lee, J.J.; Hong, J.Y.; Baik, J.S. Hyposmia May Predict Development of Freezing of Gait in Parkinson’s Disease. J. Neural Transm. 2021, 128, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Elhassanien, M.E.M.; Bahnasy, W.S.; El-Heneedy, Y.A.E.; Kishk, A.M.; Tomoum, M.O.; Ramadan, K.M.; Allah Ragab, O.A. Olfactory Dysfunction in Essential Tremor versus Tremor Dominant Parkinson Disease. Clin. Neurol. Neurosurg. 2020, 200, 106352. [Google Scholar] [CrossRef] [PubMed]
- Trentin, S.; de Oliveira, B.S.F.; Borges, Y.F.F.; de Mello Rieder, C.R. Evaluation of the Complete Sniffin Sticks Test versus Its Subtests in Differentiating Parkinson’s Disease Patients from Healthy Controls. Arq. Neuro-Psiquiatr. 2022, 80, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Saunders-Pullman, R.; Ortega, R.A.; Wang, C.; Raymond, D.; Elango, S.; Leaver, K.; Urval, N.; Katsnelson, V.; Gerber, R.; Swan, M.; et al. Association of Olfactory Performance with Motor Decline and Age at Onset in People with Parkinson Disease and the LRRK2 G2019S Variant. Neurology 2022, 99, e814–e823. [Google Scholar] [CrossRef]
- Nabizadeh, F.; Pirahesh, K.; Khalili, E. Olfactory Dysfunction Is Associated with Motor Function Only in Tremor-Dominant Parkinson’s Disease. Neurol. Sci. 2022, 43, 4193–4201. [Google Scholar] [CrossRef]
- Stewart, S.A.; Pimer, L.; Fisk, J.D.; Rusak, B.; Leslie, R.A.; Eskes, G.; Schoffer, K.; McKelvey, J.R.; Rolheiser, T.; Khan, M.N.; et al. Olfactory Function and Diffusion Tensor Imaging as Markers of Mild Cognitive Impairment in Early Stages of Parkinson’s Disease. Clin. EEG Neurosci. 2021, 54, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Fujio, H.; Inokuchi, G.; Kuroki, S.; Tatehara, S.; Katsunuma, S.; Kowa, H.; Nibu, K. ichi. Three-Year Prospective Study on Olfaction of Patients with Parkinson’s Disease. Auris Nasus Larynx 2020, 47, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Lian, T.H.; Zhu, W.L.; Li, S.W.; Liu, Y.O.; Guo, P.; Zuo, L.J.; Hu, Y.; Yu, S.Y.; Li, L.X.; Jin, Z.; et al. Clinical, Structural, and Neuropathological Features of Olfactory Dysfunction in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 70, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Doorduijn, A.S.; de van der Schueren, M.A.E.; van de Rest, O.; de Leeuw, F.A.; Fieldhouse, J.L.P.; Kester, M.I.; Teunissen, C.E.; Scheltens, P.; van der Flier, W.M.; Visser, M.; et al. Olfactory and Gustatory Functioning and Food Preferences of Patients with Alzheimer’s Disease and Mild Cognitive Impairment Compared to Controls: The NUDAD Project. J. Neurol. 2019, 267, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.M.; Torres, C.; Ferreira, I.; Moreira, I.; Samões, R.; Sousa, A.P.; Santos, E.; Teixeira-Pinto, A.; Cavaco, S. Prognostic Value of Odor Identification Impairment in Multiple Sclerosis: 10-Years Follow-Up. Mult. Scler. Relat. Disord. 2020, 46, 102486. [Google Scholar] [CrossRef] [PubMed]
- Duz, O.A.; Saatci, O.; Karakulak, E.Z.; Birday, E.; Hanoglu, L. Olfactory Dysfunction and Cognition in Radiologically Isolated Syndrome and Relapsing-Remitting Multiple Sclerosis. Eur. Neurol. 2021, 84, 175–182. [Google Scholar] [CrossRef]
- Masuda, M.; Watanabe, H.; Ogura, A.; Ohdake, R.; Kato, T.; Kawabata, K.; Hara, K.; Nakamura, R.; Atsuta, N.; Epifanio, B.; et al. Clinicoradiological Features in Amyotrophic Lateral Sclerosis Patients with Olfactory Dysfunction. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 260–266. [Google Scholar] [CrossRef]
- Doty, R.L.; Shaman, P.; Kimmelman, C.P.; Dann, M.S. University of Pennsylvania Smell Identification Test: A Rapid Quantitative Olfactory Function Test for the Clinic. Laryngoscope 1984, 94, 176–178. [Google Scholar] [CrossRef]
- Sui, X.; Zhou, C.; Li, J.; Chen, L.; Yang, X.; Li, F. Hyposmia as a Predictive Marker of Parkinson’s Disease: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2019, 2019, 3753786. [Google Scholar] [CrossRef]
- Alonso, C.C.G.; Silva, F.G.; Costa, L.O.P.; Freitas, S.M.S.F. Smell Tests Can Discriminate Parkinson’s Disease Patients from Healthy Individuals: A Meta-Analysis. Clin. Neurol. Neurosurg. 2021, 211, 107024. [Google Scholar] [CrossRef]
- Janssen Daalen, J.M.; Tosserams, A.; Mahlknecht, P.; Seppi, K.; Bloem, B.R.; Darweesh, S.K.L. Towards Subgroup-Specific Risk Estimates: A Meta-Analysis of Longitudinal Studies on Olfactory Dysfunction and Risk of Parkinson’s Disease. Park. Relat. Disord. 2021, 84, 155–163. [Google Scholar] [CrossRef]
- Kotecha, A.M.; Corrêa, A.D.C.; Fisher, K.M.; Rushworth, J.V. Olfactory Dysfunction as a Global Biomarker for Sniffing out Alzheimer’s Disease: A Meta-Analysis. Biosensors 2018, 8, 41. [Google Scholar] [CrossRef]
- Jung, H.J.; Shin, I.; Lee, J. Olfactory Function in Mild Cognitive Impairment and Alzheimer’s Disease: A Meta-analysisLaryngoscope 2018, 129, 362–369. 129 2018, 129, 362–369. [Google Scholar] [CrossRef]
- Jobin, B.; Zahal, R.; Bussières, E.L.; Frasnelli, J.; Boller, B. Olfactory Identification in Subjective Cognitive Decline: A Meta-Analysis. J. Alzheimer’s Dis. 2021, 79, 1497–1507. [Google Scholar] [CrossRef]
- Devanand, D.P.; Lee, S.; Luchsinger, J.A.; Andrews, H.; Goldberg, T.; Huey, E.D.; Schupf, N.; Manly, J.; Stern, Y.; Kreisl, W.C.; et al. Intact Global Cognitive and Olfactory Ability Predicts Lack of Transition to Dementia. Alzheimer’s Dement. 2020, 16, 326–334. [Google Scholar] [CrossRef]
- Doty, R.L.; Marcus, A.; William Lee, W. Development of the 12-Item Cross-Cultural Smell Identification Test (CC-SIT). Laryngoscope 1996, 106, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Okutani, F.; Hirose, K.; Kobayashi, T.; Kaba, H.; Hyodo, M. Evaluation of “Open Essence” Odor-Identification Test Card by Application to Healthy Volunteers. Auris Nasus Larynx 2013, 40, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Nishida, K.; Nakamura, S.; Oishi, M.; Shiozaki, T.; Majima, Y.; Maeda, T.; Furuta, S.; Takashima, Y.; Saito, S. Suitability of the Odor Stick Identification Test for the Japanese in Patients Suffering from Olfactory Disturbance. Acta Oto-Laryngol. Suppl. 2004, 124, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Kobal, G.; Hummel, T.; Sekinger, B.; Barz, S.; Roscher, S.; Wolf, S. “Sniffin’’ Sticks": Screening of Olfactory Performance. ” Rhinology 1996, 34, 222–226. [Google Scholar]
- Hummel, T.; Rosenheim, K.; Konnerth, C.-G.; Kobal, G. Screening of Olfactory Function with a Four-Minute Odor Identification Test: Reliability, Normative Data, and Investigations in Patients with Olfactory Loss. Ann. Otol. Rhinol. Laryngol. 2001, 110, 976–981. [Google Scholar] [CrossRef]
- Lawton, M.; Hu, M.T.M.; Baig, F.; Ruffmann, C.; Barron, E.; Swallow, D.M.A.; Malek, N.; Grosset, K.A.; Bajaj, N.; Barker, R.A.; et al. Equating Scores of the University of Pennsylvania Smell Identification Test and Sniffin’ Sticks Test in Patients with Parkinson’s Disease. Park. Relat. Disord. 2016, 33, 96–101. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Y.; Liu, K.; Han, X.; Liu, R.; Ren, Y.; Cong, L.; Zhang, Q.; Hou, T.; Song, L.; et al. Anosmia, Mild Cognitive Impairment, and Biomarkers of Brain Aging in Older Adults. Alzheimer’s Dement. 2022, 19, 589–601. [Google Scholar] [CrossRef]
- Haehner, A.; Chen, B.; Espin, M.; Haussmann, R.; Matthes, C.; Desser, D.; Loessner, L.; Brandt, M.D.; Donix, M.; Hummel, T. Training with Odors Impacts Hippocampal Thickness in Patients with Mild Cognitive Impairment. J. Alzheimer’s Dis. 2022, 88, 743–755. [Google Scholar] [CrossRef]
- D’Andrea, F.; Tischler, V.; Dening, T.; Churchill, A. Olfactory Stimulation for People with Dementia: A Rapid Review. Dementia 2022, 21, 1800–1824. [Google Scholar] [CrossRef] [PubMed]
- El Haj, M. Odor-Evoked Autobiographical Memory in Alzheimer’s Disease? Arch. Clin. Neuropsychol. 2021, 37, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Fullard, M.E.; Morley, J.F.; Duda, J.E. Olfactory Dysfunction as an Early Biomarker in Parkinson’s Disease. Neurosci. Bull. 2017, 33, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.O.; Christianson, T.J.H.; Kremers, W.K.; Mielke, M.M.; Machulda, M.M.; Vassilaki, M.; Alhurani, R.E.; Geda, Y.E.; Knopman, D.S.; Petersen, R.C. Association Between Olfactory Dysfunction and Amnestic Mild Cognitive Impairment and Alzheimer Disease Dementia. JAMA Neurol. 2016, 73, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Hanganu, A.; Monchi, O. Structural Neuroimaging Markers of Cognitive Decline in Parkinson’s Disease. Park. Dis. 2016, 2016, 3217960. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Gedela, S.; Herath, P.; Constantine, G.M.; Moore, R.Y. Selective Hyposmia in Parkinson Disease: Association with Hippocampal Dopamine Activity. Neurosci. Lett. 2008, 447, 12–16. [Google Scholar] [CrossRef]
- Takagi, S.; Toyota, B.; Kitamura, T. Olfactory Disorders: Measurements and Treatments. Tokyo Igakushoin 1978, 8. [Google Scholar]
- Miwa, T.; Furukawa, M.; Matsune, S.; Kurono, Y.; Harada, H.; Kato, T.; Tokumaru, H.; Nakashima, T.; Ono, N.; Yamashita, H.; et al. Clinical Usefulness of Five Odorant Jet Stream Olfactometry. Nihon Bika Gakkai Kaishi Jpn. J. Rhinol. 2004, 43, 182–187. [Google Scholar] [CrossRef]
- Murphy, C.; Anderson, J.A.; Markison, S. Psychophysical Assessment of Chemosensory Disorders in Clinical Populations. In Olfaction and Taste XI: Proceedings of the 11th International Symposium on Olfaction and Taste and of the 27th Japanese Symposium on Taste and Smell. Joint Meeting held at Kosei-nenkin Kaikan, Sapporo, Japan, 12–16 July 1993; Springer: Berlin/Heidelberg, Germany, 1994; pp. 609–613. [Google Scholar]
- Parola, S.; Liberini, P. Assessing Olfaction in the Italian Population: Methodology and Clinical Application. Ital. J. Neurol. Sci. 1999, 20, 287–296. [Google Scholar] [CrossRef]
- Saito, S. Development of an Odor Identification Test for Japanese People: Verification of Stick Type and Card Type. J. Jpn. Assoc. Odor Environ. 2003, 34, 1. [Google Scholar]
- Cho, J.H.; Jeong, Y.S.; Lee, Y.J.; Hong, S.-C.; Yoon, J.-H.; Kim, J.K. The Korean Version of the Sniffin’stick (KVSS) Test and Its Validity in Comparison with the Cross-Cultural Smell Identification Test (CC-SIT). Auris Nasus Larynx 2009, 36, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Taherkhani, S.; Moztarzadeh, F.; Mehdizadeh Seraj, J.; Hashemi Nazari, S.S.; Taherkhani, F.; Gharehdaghi, J.; Okazi, A.; Pouraghaei, S. Iran Smell Identification Test (Iran-SIT): A Modified Version of the University of Pennsylvania Smell Identification Test (UPSIT) for Iranian Population. Chemosens. Percept. 2015, 8, 183–191. [Google Scholar] [CrossRef]
- Dhilla Albers, A.; Asafu-Adjei, J.; Delaney, M.K.; Kelly, K.E.; Gomez-Isla, T.; Blacker, D.; Johnson, K.A.; Sperling, R.A.; Hyman, B.T.; Betensky, R.A.; et al. Episodic Memory of Odors Stratifies Alzheimer Biomarkers in Normal Elderly. Ann. Neurol. 2016, 80, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Mioshi, E.; Dawson, K.; Mitchell, J.; Arnold, R.; Hodges, J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A Brief Cognitive Test Battery for Dementia Screening. Int. J. Geriatr. Psychiatry 2006, 21, 1078–1085. [Google Scholar] [CrossRef]
- Honma, A. Development of a Japanese Version of Alzheimer’s Disease Assessment Scale (ADAS). Jpn. J. Geriatr. Psychiatry 1992, 3, 647–655. [Google Scholar]
- Kueper, J.K.; Speechley, M.; Montero-Odasso, M. The Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog): Modifications and Responsiveness in Pre-Dementia Populations. A Narrative Review. J. Alzheimer’s Dis. 2018, 63, 423–444. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhao, Q.; Chen, M.; Ding, D.; Hong, Z. A Comparison Study of Mild Cognitive Impairment with 3 Memory Tests among Chinese Individuals. Alzheimer Dis. Assoc. Disord. 2009, 23, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Benton, A.; Sivan, A.; Hamsher, K.; Varney, N.; Spreen, O. Benton Facial Recognition Test; It. Vers (1990); Organizzazioni Speciali: Firenze, Italy, 1983. [Google Scholar]
- Murray, E.; Bennetts, R.; Tree, J.; Bate, S. An Update of the Benton Facial Recognition Test. Behav. Res. Methods 2021, 54, 2318–2333. [Google Scholar] [CrossRef] [PubMed]
- Benton, A.L.; Varney, N.; Hamsher, K.d. Judgment of Line Orientation; APA: Washington, DC, USA, 1983. [Google Scholar]
- Hudon, C.; Belleville, S.; Belzile, F.; Landry, M.; Mulet-Perreault, H.; Trudel, C.; Macoir, J. Normative Data for the Judgment of Line Orientation Test (Long and Short Forms) in the Quebec-French Population Aged between 50 and 89 Years. Arch. Clin. Neuropsychol. 2023, acad077. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.; Cheung, M.-C.; Chan, A. Confrontation Naming in Chinese Patients with Left, Right or Bilateral Brain Damage. J. Int. Neuropsychol. Soc. JINS 2004, 10, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.L.; Wong, S.; Gracer, T.S.; Ozonoff, A.; Green, R.C.; Stern, R.A. Geriatric Performance on an Abbreviated Version of the Boston Naming Test. Appl. Neuropsychol. 2007, 14, 215–223. [Google Scholar] [CrossRef]
- Li, E.C.; Williams, S.E. An Investigation of Naming Errors Following Semantic and Phonemic Cueing. Neuropsychologia 1991, 29, 1083–1093. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Abbreviated Scale of Intelligence; APA: Washington, DC, USA, 1999. [Google Scholar]
- O’Bryant, S.E.; Lacritz, L.H.; Hall, J.; Waring, S.C.; Chan, W.; Khodr, Z.G.; Massman, P.J.; Hobson, V.; Cullum, C.M. Validation of the New Interpretive Guidelines for the Clinical Dementia Rating Scale Sum of Boxes Score in the National Alzheimer’s Coordinating Center Database. Arch. Neurol. 2010, 67, 746–749. [Google Scholar] [CrossRef]
- Tzeng, R.-C.; Yang, Y.-W.; Hsu, K.-C.; Chang, H.-T.; Chiu, P.-Y. Sum of Boxes of the Clinical Dementia Rating Scale Highly Predicts Conversion or Reversion in Predementia Stages. Front. Aging Neurosci. 2022, 14, 1021792. [Google Scholar] [CrossRef]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Ober, B.A. California Verbal Learning Test, 2nd ed.; Adult Version; Pearson: London, UK, 2000. [Google Scholar]
- Woods, S.P.; Delis, D.C.; Scott, J.C.; Kramer, J.H.; Holdnack, J.A. The California Verbal Learning Test—Second Edition: Test-Retest Reliability, Practice Effects, and Reliable Change Indices for the Standard and Alternate Forms. Arch. Clin. Neuropsychol. 2006, 21, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Delis, D.C.; Kaplan, E.; Kramer, J.H. Delis-Kaplan Executive Function System; Pearson: London, UK, 2001. [Google Scholar] [CrossRef]
- Wechsler, D. WAIS-III: Administration and Scoring Manual: Wechsler Adult Intelligence Scale, 3rd ed.; Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Woods, D.L.; Kishiyama, M.M.; Yund, E.W.; Herron, T.J.; Edwards, B.; Poliva, O.; Hink, R.F.; Reed, B. Improving Digit Span Assessment of Short-Term Verbal Memory. J. Clin. Exp. Neuropsychol. 2010, 33, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A Frontal Assessment Battery at Bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Song, C.-S.; Lee, H.-S.; Chun, B.-Y. Comparison of Montreal Cognitive Assessment in Korean Version for Predicting Mild Cognitive Assessment in 65-Year and Over Individuals. Occup. Ther. Int. 2022, 2022, e4108434. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.-W.; Beom, I.-G.; Cho, J.-Y.; Son, H.-R. Accuracy of Korean-Mini-Mental Status Examination Based on Seoul Neuro-Psychological Screening Battery II Results. Korean J. Fam. Med. 2016, 37, 177–181. [Google Scholar] [CrossRef]
- Chung, S.; Wang, X.; Fieremans, E.; Rath, J.F.; Amorapanth, P.; Foo, F.-Y.A.; Morton, C.J.; Novikov, D.S.; Flanagan, S.R.; Lui, Y.W. Altered Relationship between Working Memory and Brain Microstructure after Mild Traumatic Brain Injury. Am. J. Neuroradiol. 2019, 40, 1438–1444. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, B.; Zhao, Q.; Wang, B.; Hong, Z. Memory and Executive Screening (MES): A Brief Cognitive Test for Detecting Mild Cognitive Impairment. BMC Neurol. 2012, 12, 119. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Smailagic, N.; i Figuls, M.R.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Cosp, X.B.; Cullum, S. Mini-Mental State Examination (MMSE) for the Detection of Alzheimer’s Disease and Other Dementias in People with Mild Cognitive Impairment (MCI). Cochrane Database Syst. Rev. 2015, 2015, CD010783. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”: A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Schoenberg, M.R.; Dawson, K.A.; Duff, K.; Patton, D.; Scott, J.G.; Adams, R.L. Test Performance and Classification Statistics for the Rey Auditory Verbal Learning Test in Selected Clinical Samples. Arch. Clin. Neuropsychol. 2006, 21, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Osterrieth, P.A. Le Test de Copie d’une Figure Complexe; Contribution à l’étude de La Perception et de La Mémoire. [Test of Copying a Complex Figure; Contribution to the Study of Perception and Memory.]. Arch. Psychol. 1944, 30, 206–356. [Google Scholar]
- Shin, M.-S.; Park, S.-Y.; Park, S.-R.; Seol, S.-H.; Kwon, J.S. Clinical and Empirical Applications of the Rey–Osterrieth Complex Figure Test. Nat. Protoc. 2006, 1, 892–899. [Google Scholar] [CrossRef]
- Basso, A.; Capitani, E.; Laiacona, M. Raven’s Coloured Progressive Matrices: Normative Values on 305 Adult Normal Controls. Funct. Neurol. 1987, 2, 189–194. [Google Scholar]
- Raven, J. The Raven’s Progressive Matrices: Change and Stability over Culture and Time. Cogn. Psychol. 2000, 41, 1–48. [Google Scholar] [CrossRef]
- Marinus, J.; Visser, M.; Verwey, N.A.; Verhey, F.R.J.; Middelkoop, H.A.M.; Stiggelbout, A.M.; van Hilten, J.J. Assessment of Cognition in Parkinson’s Disease. Neurology 2003, 61, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Fujibayashi, M.; Nagatsuka, N.; Yoshida, T.; Howard, D.; Franklin, S.; Whitworth, A. Sophia Analysis of Language in Aphasia; Chiba Test Center Co Ltd : Chiba, Japan, 2004. [Google Scholar]
- Jensen, A.R.; Rohwer, W.D. The Stroop Color-Word Test: A Review. Acta Psychol. 1966, 25, 36–93. [Google Scholar] [CrossRef] [PubMed]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef]
- Fellows, R.P.; Schmitter-Edgecombe, M. Symbol Digit Modalities Test: Regression-Based Normative Data and Clinical Utility. Arch. Clin. Neuropsychol. 2019, 35, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Joy, S.; Kaplan, E.; Fein, D. Digit Symbol–Incidental Learning in the WAIS-III: Construct Validity and Clinical Significance. Clin. Neuropsychol. 2003, 17, 182–194. [Google Scholar] [CrossRef]
- Vertesi, A.; Lever, J.A.; Molloy, D.W.; Sanderson, B.; Tuttle, I.; Pokoradi, L.; Principi, E. Standardized Mini-Mental State Examination. Use and Interpretation. Can. Fam. Physician 2001, 47, 2018–2023. [Google Scholar]
- Ahn, H.-J.; Chin, J.; Park, A.; Lee, B.H.; Suh, M.K.; Seo, S.W.; Na, D.L. Seoul Neuropsychological Screening Battery-Dementia Version (SNSB-D): A Useful Tool for Assessing and Monitoring Cognitive Impairments in Dementia Patients. J. Korean Med. Sci. 2010, 25, 1071–1076. [Google Scholar] [CrossRef]
- Ashendorf, L.; Jefferson, A.L.; O’Connor, M.K.; Chaisson, C.; Green, R.C.; Stern, R.A. Trail Making Test Errors in Normal Aging, Mild Cognitive Impairment, and Dementia. Arch. Clin. Neuropsychol. 2008, 23, 129–137. [Google Scholar] [CrossRef]
- Salthouse, T.A. What Cognitive Abilities Are Involved in Trail-Making Performance? Intelligence 2011, 39, 222–232. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-L.; Hsiao, I.-T.; Kuo, H.-C.; Hsieh, C.-J.; Hsieh, Y.-C.; Wu, Y.-M.; Wey, S.-P.; Yen, T.-C.; Lin, K.-J.; Huang, C.-C. Correlation between Visual Association Memory Test and Structural Changes in Patients with Alzheimer’s Disease and Amnestic Mild Cognitive Impairment. J. Formos. Med Assoc. 2018, 118, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Lindeboom, J.; Schmand, B.; Tulner, L.; Walstra, G.; Jonker, C. Visual Association Test to Detect Early Dementia of the Alzheimer Type. J. Neurol. Neurosurg. Psychiatry 2002, 73, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Amador, J.A. La Escala de Memoria de Wechsler Cuarta Edición (WMS-IV); Facultad de Psicología, Universidad de Barcelona: Barcelona, Spain, 2015. [Google Scholar]
- Wechsler, D. A Standardized Memory Scale for Clinical Use. J. Psychol. 1945, 19, 87–95. [Google Scholar] [CrossRef]
- Öktem-Tanör, Ö. Handboook of Öktem Verbal Memory Process Test (Öktem-VMPT); Turkish Psychological Association: Ankara, Turkey, 2011. [Google Scholar]
- Warrington, E.K. Visual Object and Space Perception Battery. Available online: https://www.pearsonclinical.co.uk/store/ukassessments/en/Store/Professional-Assessments/Cognition-%26-Neuro/Visual-Object-and-Space-Perception-Battery/p/P100009236.html (accessed on 14 January 2024).
- Lezak, M.D. Neuropsychological Assessment; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Shao, Z.; Janse, E.; Visser, K.; Meyer, A.S. What Do Verbal Fluency Tasks Measure? Predictors of Verbal Fluency Performance in Older Adults. Front. Psychol. 2014, 5, 772. [Google Scholar] [CrossRef] [PubMed]
- Teng, E.L.; Chui, H.C. The Modified Mini-Mental State (3MS) Examination. J. Clin. Psychiatry 1987, 48, 314–318. [Google Scholar]
Group Reviewed | Number of Studies | Average Sample Size | Largest Sample | Smaller Sample | Average Age (Weighted) |
---|---|---|---|---|---|
PD | 13 | 155.7 ± 93.9 | 487 | 22 | 64.4 ± 3.0 |
AD | 5 | 132.9 ± 149.9 | 265 | 52 | 70.2 ± 4.7 |
MS | 2 | 56.3 ± 80.3 | 149 | 20 | 40.3 ± 2.0 |
ALS | 1 | 30.0 | - | - | 67.3 ± 8.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Casademont, L.; Martin-Jimenez, D.; Villarreal-Garza, B.; Sánchez-Gomez, S.; Callejon-Leblic, M.A. The Value of Subjective Olfactometry as a Predictive Biomarker of Neurodegenerative Diseases: A Systematic Review. Life 2024, 14, 298. https://doi.org/10.3390/life14030298
Ramos-Casademont L, Martin-Jimenez D, Villarreal-Garza B, Sánchez-Gomez S, Callejon-Leblic MA. The Value of Subjective Olfactometry as a Predictive Biomarker of Neurodegenerative Diseases: A Systematic Review. Life. 2024; 14(3):298. https://doi.org/10.3390/life14030298
Chicago/Turabian StyleRamos-Casademont, Laia, Daniel Martin-Jimenez, Brenda Villarreal-Garza, Serafín Sánchez-Gomez, and María Amparo Callejon-Leblic. 2024. "The Value of Subjective Olfactometry as a Predictive Biomarker of Neurodegenerative Diseases: A Systematic Review" Life 14, no. 3: 298. https://doi.org/10.3390/life14030298
APA StyleRamos-Casademont, L., Martin-Jimenez, D., Villarreal-Garza, B., Sánchez-Gomez, S., & Callejon-Leblic, M. A. (2024). The Value of Subjective Olfactometry as a Predictive Biomarker of Neurodegenerative Diseases: A Systematic Review. Life, 14(3), 298. https://doi.org/10.3390/life14030298