Breast Cancer Exposomics
Abstract
:1. Introduction
2. Advances and Trends in Omics Fields Related to BC Exposomics
3. Absorption, Distribution, Metabolism/Biotransformation, Bioaccumulation, and Excretion/Bioelimination of Xenobiotics Involved in Breast Cancer
3.1. Absorption
3.2. Distribution
3.3. Biotransformation/Metabolism
3.4. Bioelimination/Excretion
3.5. Bioaccumulation
4. Food and Nutrition
5. Exposure to Endocrine-Disrupting Chemicals (EDCs)
EDCs | Pathological Effects of EDC Exposure | References |
---|---|---|
DES | in utero exposure dysregulates gene expression and transcriptional reprogramming in adult fibroblasts, ECM composition and collagen deposition in adult mammary gland, molecular alteration develops over time and contributes to increased BCR in adulthood, induces epigenetic alterations/epimutations with intergenerational/transgenerational effects | [157,182] |
PAHs (BaP and DB(ah)A) | in mammary gland, affect cellular morphology, cell-cell junctions, division, growth, repair, and number of p53 mutations, increase EVs production, changes in exosome content and gene expression control | [99,165] |
BPA and other bisphenols (AF, F, S) and TBBPA | affect mammary gland development, resulting in precancerous and cancerous lesions in adulthood, exert estrogenic effects, activate the expression of genes associated with cell proliferation and BC; associated with EMT and BC progression; activate VEGF associated with angiogenesis, MAPK signaling pathway, Wnt/β-catenin pathway, STAT3 signaling, and DNA repair; induce changes in genes associated with apoptosis and DNA methylation; inactivate p53; increase expression of BRCA1/2, BARD1, CtlP, RAD51, and BRCC3 involved in DNA repair; downregulate PDCD5 and BCL2L11 involved in apoptosis | [103,155,162,163,164,183,184] |
Phtalates (DBP) | mimic estradiol, interact with ER and PR, promote BC, especially ER+ BC, interfere with DNA methylation and DNA damage | [170,185] |
PCBs (PCB-153, PCB-180, PCB29-pQ) | BC cell proliferation by regulating ERK1/2 activation; induce cancer cell stemness and EMT via Wnt/β-catenin signaling | [166,184] |
Organochlorine insecticides (DDT) | increase in utero BCR, BC progression by interfering with androgen signaling pathways, BC cells proliferation, negative effects on OS | [184,186] |
Parabens (MeP, EtP, PrP, BuP) and their metabolites | promote protumorigenic effects in BC; modulate local estrogen-converting enzymes and increase local estrogen levels; cross-talk with HER2 pathway and affect ER signaling to increase pro-oncogenic c-Myc expression in ER+/HER2+ BC cells; alter ER target gene expression and cell viability | [172,173,181] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lynn, H.; Ward, D.; Burton, D.; Day, J.; Craig, A.; Parnell, M.; Dimmer, C. Breast Cancer: An Environmental Disease. The Case for Primary Prevention. 2005. Available online: https://www.researchgate.net/publication/275209371_Breast_Cancer_an_environmental_disease_The_case_for_primary_prevention (accessed on 14 March 2024).
- Hiatt, R.A.; Brody, J.G. Environmental Determinants of Breast Cancer. Annu. Rev. Public Health 2018, 39, 113–133. [Google Scholar] [CrossRef]
- Neagu, A.-N.; Whitham, D.; Bruno, P.; Arshad, A.; Seymour, L.; Morrissiey, H.; Hukovic, A.I.; Darie, C.C. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int. J. Mol. Sci. 2024, 25, 1628. [Google Scholar] [CrossRef]
- Mathipa, E.R.; Semuli, Q.K. We are what we eat. In Rethinking Teaching and Learning in the 21st Century, Proceedings of the South Africa International Conference on Education, Pretoria, South Africa, 21–23 September 2015; Manhattan Hotel Pretoria: Pretoria, South Africa, 2015. [Google Scholar]
- Pretty, J. We are what we eat. New Sci. 2004, 184, 44–47. [Google Scholar]
- Rumiati, R.I.; Foroni, F. We are what we eat: How food is represented in our mind/brain. Psychon. Bull. Rev. 2016, 23, 1043–1054. [Google Scholar] [CrossRef]
- Hull, S.C.; Charles, J.; Caplan, A.L. Are We What We Eat? The Moral Imperative of the Medical Profession to Promote Plant-Based Nutrition. Am. J. Cardiol. 2023, 188, 15–21. [Google Scholar] [CrossRef]
- Rajkhowa, S. “ARE WE WHAT WE EAT?”: Understanding Identities through Food. Master’s Thesis, Ambedkar University Delhi, Delhi, India, 2021. [Google Scholar]
- Miller, M.R.; Shah, A.S.V.; Newby, D.E. We all breathe the same air … and we are all mortal. Cardiovasc. Res. 2020, 116, 1797–1799. [Google Scholar] [CrossRef]
- Sorin Mihalache, A. How do We Live and what is the World We Live in Like? Some Possible Neuroscientific Evaluations on the Anthropology of the Spiritual Life in the Context of the Contemporary Society. Glob. J. Anthropol. Res. 2018, 4, 55–65. [Google Scholar] [CrossRef]
- Strumylaitė, L.; Mechonošina, K.; Tamašauskas, Š. Environmental factors and breast cancer. Medicina 2010, 46, 867. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Li, J.; Luo, X.-M.; Kim, J.-Y.; Li, Y.-M.; Guo, X.-M.; Chen, X.; Yang, Q.-Y.; Li, G.; Tang, N.-J. Polychlorinated biphenyls and breast cancer: A congener-specific meta-analysis. Environ. Int. 2016, 88, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Bucher, M.L.; Anderson, F.L.; Lai, Y.; Dicent, J.; Miller, G.W.; Zota, A.R. Exposomics as a tool to investigate differences in health and disease by sex and gender. Exposome 2023, 3, osad003. [Google Scholar] [CrossRef] [PubMed]
- Koual, M.; Tomkiewicz, C.; Cano-Sancho, G.; Antignac, J.-P.; Bats, A.-S.; Coumoul, X. Environmental chemicals, breast cancer progression and drug resistance. Environ. Health 2020, 19, 117. [Google Scholar] [CrossRef]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef] [PubMed]
- Terry, M.B.; on behalf of Breast Cancer and the Environment Research Program (BCERP); Michels, K.B.; Brody, J.G.; Byrne, C.; Chen, S.; Jerry, D.J.; Malecki, K.M.C.; Martin, M.B.; Miller, R.L.; et al. Environmental exposures during windows of susceptibility for breast cancer: A framework for prevention research. Breast Cancer Res. 2019, 21, 96. [Google Scholar] [CrossRef]
- Hiatt, R.A.; Beyeler, N. Women’s cancers and climate change. Int. J. Gynecol. Obstet. 2023, 160, 374–377. [Google Scholar] [CrossRef]
- Shih, Y.-W.; Hung, C.-S.; Huang, C.-C.; Chou, K.-R.; Niu, S.-F.; Chan, S.; Tsai, H.-T. The Association Between Smartphone Use and Breast Cancer Risk Among Taiwanese Women: A Case-Control Study. Cancer Manag. Res. 2020, 12, 10799–10807. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Saenz, A.; De Miguel, A.S.; Espinosa, A. Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study). Environ. Health Perspect. 2018, 126, 047011. [Google Scholar] [CrossRef]
- Hinchliffe, A.; Kogevinas, M.; Pérez-Gómez, B.; Ardanaz, E.; Amiano, P.; Marcos-Delgado, A.; Castaño-Vinyals, G.; Llorca, J.; Moreno, V.; Alguacil, J.; et al. Occupational Heat Exposure and Breast Cancer Risk in the MCC-Spain Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 364–372. [Google Scholar] [CrossRef]
- Gera, R.; Mokbel, R.; Igor, I.; Mokbel, K. Does the Use of Hair Dyes Increase the Risk of Developing Breast Cancer? A Meta-analysis and Review of the Literature. Anticancer Res. 2018, 38, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.E.; Schoemaker, M.J.; Wright, L.B.; Ashworth, A.; Swerdlow, A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017, 19, 118. [Google Scholar] [CrossRef]
- Huynh, D.; Huang, J.; Le, L.T.T.; Liu, D.; Liu, C.; Pham, K.; Wang, H. Electronic cigarettes promotes the lung colonization of human breast cancer in NOD-SCID-Gamma mice. Int. J. Clin. Exp. Pathol. 2020, 13, 2075–2081. [Google Scholar]
- Shih, Y.W.; O’brien, A.P.; Hung, C.S.; Chen, K.H.; Hou, W.H.; Tsai, H.T. Exposure to radiofrequency radiation increases the risk of breast cancer: A systematic review and meta-analysis. Exp. Ther. Med. 2021, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.R.; Mortazavi, S.M.J. Women with hereditary breast cancer predispositions should avoid using their smartphones, tablets and laptops at night. Iran. J. Basic Med. Sci. 2018, 21, 112–115. [Google Scholar] [PubMed]
- Vinogradova, Y.; Coupland, C.; Hippisley-Cox, J. Use of hormone replacement therapy and risk of breast cancer: Nested case-control studies using the QResearch and CPRD databases. BMJ 2020, 371, m3873. [Google Scholar] [CrossRef]
- de Blok, C.J.M.; Wiepjes, C.M.; Nota, N.M.; van Engelen, K.; Adank, M.A.; Dreijerink, K.M.A.; Barbé, E.; Konings, I.R.H.M.; den Heijer, M. Breast cancer risk in transgender people receiving hormone treatment: Nationwide cohort study in The Netherlands. BMJ 2019, 365, l1652. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.; Poulsen, A.H.; Kroman, N.; Hvidtfeldt, U.A.; Thacher, J.D.; Roswall, N.; Brandt, J.; Frohn, L.M.; Jensen, S.S.; Levin, G.; et al. Road and railway noise and risk for breast cancer: A nationwide study covering Denmark. Environ. Res. 2021, 195, 110739. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Jørgensen, J.T.; Elsborg, L.; Lophaven, S.N.; Backalarz, C.; Laursen, J.E.; Pedersen, T.H.; Simonsen, M.K.; Bräuner, E.V.; Lynge, E. Long-term exposure to road traffic noise and incidence of breast cancer: A cohort study. Breast Cancer Res. 2018, 20, 119. [Google Scholar] [CrossRef]
- Xiang, P.; Wang, K.; Bi, J.; Li, M.; He, R.-W.; Cui, D.; Ma, L.Q. Organic extract of indoor dust induces estrogen-like effects in human breast cancer cells. Sci. Total Environ. 2020, 726, 138505. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Fiaz, K.; Noor, A.; Sindhu, A.S.; Hanif, A.; Bibi, A.; Asad, M.; Nawaz, S.; Zafar, S.; Ayub, S.; et al. Interrelated Oncogenic Viruses and Breast Cancer. Front. Mol. Biosci. 2022, 9, 781111. [Google Scholar] [CrossRef]
- Vermeulen, R.; Schymanski, E.L.; Barabási, A.-L.; Miller, G.W. The exposome and health: Where chemistry meets biology. Science 2020, 367, 392–396. [Google Scholar] [CrossRef]
- Ziegler, R.G.; Hoover, R.N.; Pike, M.C.; Hildesheim, A.; Nomura, A.M.Y.; West, D.W.; Wu-Williams, A.H.; Kolonel, L.N.; Horn-Ross, P.L.; Rosenthal, J.F.; et al. Migration Patterns and Breast Cancer Risk in Asian-American Women. J. Natl. Cancer Inst. 1993, 85, 1819–1827. [Google Scholar] [CrossRef]
- Christ, A.; Latz, E. The Western lifestyle has lasting effects on metaflammation. Nat. Rev. Immunol. 2019, 19, 267–268. [Google Scholar] [CrossRef]
- Danforth, D.N. The Role of Chronic Inflammation in the Development of Breast Cancer. Cancers 2021, 13, 3918. [Google Scholar] [CrossRef]
- Itoh, H.; Ueda, M.; Suzuki, M.; Kohmura-Kobayashi, Y. Developmental Origins of Metaflammation; A Bridge to the Future Between the DOHaD Theory and Evolutionary Biology. Front. Endocrinol. 2022, 13, 839436. [Google Scholar] [CrossRef] [PubMed]
- Wani, B.; Aziz, S.A.; Ganaie, M.A.; Mir, M.H. Metabolic Syndrome and Breast Cancer Risk. Indian J. Med. Paediatr. Oncol. 2017, 38, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Wang, Z.; Shen, K.; Chen, X. Metabolic Syndrome and Breast Cancer: Prevalence, Treatment Response, and Prognosis. Front. Oncol. 2021, 11, 629666. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.Y.; Chun, S.; Shin, D.W.; Han, K.; Jeon, K.H.; Yu, J.; Chae, B.J.; Suh, M.; Park, Y.-M. Changes in Metabolic Syndrome Status and Breast Cancer Risk: A Nationwide Cohort Study. Cancers 2021, 13, 1177. [Google Scholar] [CrossRef] [PubMed]
- Starek-Świechowicz, B.; Budziszewska, B.; Starek, A. Endogenous estrogens—Breast cancer and chemoprevention. Pharmacol. Rep. 2021, 73, 1497–1512. [Google Scholar] [CrossRef]
- Autrup, H.; Barile, F.A.; Berry, S.C.; Blaauboer, B.J.; Boobis, A.; Bolt, H.; Borgert, C.J.; Dekant, W.; Dietrich, D.; Domingo, J.L.; et al. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity: How to evaluate the risk of the S-EDCs? Arch. Toxicol. 2020, 94, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Barati-Boldaji, R.; Soltani, S.; Mohammadipoor, N.; Esmaeilinezhad, Z.; Clark, C.C.T.; Babajafari, S.; Akbarzadeh, M. Intake of Various Food Groups and Risk of Breast Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2021, 12, 809–849. [Google Scholar] [CrossRef]
- Merugu, N.K.; Manapuram, S.; Chakraborty, T.; Karanam, S.K.; Imandi, S.B. Mutagens in commercial food processing and its microbial transformation. Food Sci. Biotechnol. 2023, 32, 599–620. [Google Scholar] [CrossRef]
- Thakkar, N.; Bin Shin, Y.; Sung, H.-K. Nutritional Regulation of Mammary Tumor Microenvironment. Front. Cell Dev. Biol. 2022, 10, 803280. [Google Scholar] [CrossRef]
- Wiseman, M. The Second World Cancer Research Fund/American Institute for Cancer Research Expert Report. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective: Nutrition Society and BAPEN Medical Symposium on ‘Nutrition support in cancer therapy’. Proc. Nutr. Soc. 2008, 67, 253–256. [Google Scholar]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Endocrine disrupting chemicals and breast cancer: A systematic review of epidemiological studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 6549–6576. [Google Scholar] [CrossRef]
- Darbre, P.D. Chapter Thirteen—Endocrine disrupting chemicals and breast cancer cells. In Advances in Pharmacology; Vandenberg, L.N., Turgeon, J.L., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 485–520. [Google Scholar]
- Jacobs, I.; Taljaard-Krugell, C.; Wicks, M.; Cubasch, H.; Joffe, M.; Laubscher, R.; Romieu, I.; Biessy, C.; Rinaldi, S.; Huybrechts, I. Dietary Patterns and Breast Cancer Risk in Black Urban South African Women: The SABC Study. Nutrients 2021, 13, 4106. [Google Scholar] [CrossRef]
- McDonald, J.A.; Goyal, A.; Terry, M.B. Alcohol Intake and Breast Cancer Risk: Weighing the Overall Evidence. Curr. Breast Cancer Rep. 2013, 5, 208–221. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, M.; Ke, Z.-J.; Luo, J. Cellular and Molecular Mechanism Underlying Alcohol-induced Aggressiveness of Breast Cancer. Pharmacol. Res. 2017, 115, 299–308. [Google Scholar] [CrossRef] [PubMed]
- VoPham, T.; Bertrand, K.A.; Jones, R.R.; Deziel, N.C.; DuPré, N.C.; James, P.; Liu, Y.; Vieira, V.M.; Tamimi, R.M.; Hart, J.E.; et al. Dioxin exposure and breast cancer risk in a prospective cohort study. Environ. Res. 2020, 186, 109516. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.M.Y.; Chan, W.C.; Kwok, C.C.-H.; Wu, C.; Law, S.-H.; Tsang, K.-H.; Yu, W.-C.; Yeung, Y.-C.; Chang, L.D.J.; Wong, C.K.M.; et al. Associations between Coffee Products and Breast Cancer Risk: A Case-Control study in Hong Kong Chinese Women. Sci. Rep. 2019, 9, 12684. [Google Scholar] [CrossRef]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Touvier, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.J.; Park, Y.-M.; Sinha, R.; Sandler, D.P. Association between meat consumption and risk of breast cancer: Findings from the Sister Study. Int. J. Cancer 2019, 146, 2156–2165. [Google Scholar] [CrossRef]
- Chazelas, E.; Srour, B.; Desmetz, E.; Kesse-Guyot, E.; Julia, C.; Deschamps, V.; Druesne-Pecollo, N.; Galan, P.; Hercberg, S.; Latino-Martel, P.; et al. Sugary drink consumption and risk of cancer: Results from NutriNet-Santé prospective cohort. BMJ 2019, 366, l2408. [Google Scholar] [CrossRef]
- Eve, L.; Fervers, B.; Le Romancer, M.; Etienne-Selloum, N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int. J. Mol. Sci. 2020, 21, 9139. [Google Scholar] [CrossRef]
- Shen, J.; Liao, Y.; Hopper, J.L.; Goldberg, M.; Santella, R.M.; Terry, M.B. Dependence of cancer risk from environmental exposures on underlying genetic susceptibility: An illustration with polycyclic aromatic hydrocarbons and breast cancer. Br. J. Cancer 2017, 116, 1229–1233. [Google Scholar] [CrossRef]
- Keren, Y.; Magnezi, R.; Carmon, M.; Amitai, Y. Investigation of the Association between Drinking Water Habits and the Occurrence of Women Breast Cancer. Int. J. Environ. Res. Public Health 2020, 17, 7692. [Google Scholar] [CrossRef] [PubMed]
- Maltarollo, V.G.; Gertrudes, J.C.; Oliveira, P.R.; Honorio, K.M. Applying machine learning techniques for ADME-Tox prediction: A review. Expert Opin. Drug Metab. Toxicol. 2015, 11, 259–271. [Google Scholar] [CrossRef]
- Neagu, A.-N.; Whitham, D.; Bruno, P.; Morrissiey, H.; Darie, C.A.; Darie, C.C. Omics-Based Investigations of Breast Cancer. Molecules 2023, 28, 4768. [Google Scholar] [CrossRef] [PubMed]
- Rasool, R.; Ullah, I.; Mubeen, B.; Alshehri, S.; Imam, S.S.; Ghoneim, M.M.; Alzarea, S.I.; Al-Abbasi, F.A.; Murtaza, B.N.; Kazmi, I.; et al. Theranostic Interpolation of Genomic Instability in Breast Cancer. Int. J. Mol. Sci. 2022, 23, 1861. [Google Scholar] [CrossRef] [PubMed]
- Portugal, J.; Mansilla, S.; Piña, B. Perspectives on the Use of Toxicogenomics to Assess Environmental Risk. Front. Biosci. 2022, 27, 294. [Google Scholar] [CrossRef] [PubMed]
- Santibáñez-Andrade, M.; Quezada-Maldonado, E.M.; Osornio-Vargas, Á.; Sánchez-Pérez, Y.; García-Cuellar, C.M. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis. Environ. Pollut. 2017, 229, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Coppedè, F. Genes and the Environment in Cancer: Focus on Environmentally Induced DNA Methylation Changes. Cancers 2023, 15, 1019. [Google Scholar] [CrossRef] [PubMed]
- Offiong, N.-A.O.; Edet, J.B.; Shaibu, S.E.; Akan, N.E.; Atakpa, E.O.; Sanganyado, E.; Okop, I.J.; Benson, N.U.; Okoh, A. Metagenomics: An emerging tool for the chemistry of environmental remediation. Front. Environ. Chem. 2023, 4, 1052697. [Google Scholar] [CrossRef]
- Zhang, Y.; Keerthisinghe, T.P.; Han, Y.; Liu, M.; Wanjaya, E.R.; Fang, M. “Cocktail” of Xenobiotics at Human Relevant Levels Reshapes the Gut Bacterial Metabolome in a Species-Specific Manner. Environ. Sci. Technol. 2018, 52, 11402–11410. [Google Scholar] [CrossRef] [PubMed]
- Kartti, S.; Bendani, H.; Boumajdi, N.; Bouricha, E.M.; Zarrik, O.; EL Agouri, H.; Fokar, M.; Aghlallou, Y.; EL Jaoudi, R.; Belyamani, L.; et al. Metagenomics Analysis of Breast Microbiome Highlights the Abundance of Rothia Genus in Tumor Tissues. J. Pers. Med. 2023, 13, 450. [Google Scholar] [CrossRef] [PubMed]
- Iida, M.; Takemoto, K. A network biology-based approach to evaluating the effect of environmental contaminants on human interactome and diseases. Ecotoxicol. Environ. Saf. 2018, 160, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Moslehi, R.; Stagnar, C.; Srinivasan, S.; Radziszowski, P.; Carpenter, D.O. The possible role of arsenic and gene-arsenic interactions in susceptibility to breast cancer: A systematic review. Rev. Environ. Health 2021, 36, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Lim CJ, C.; Lim PP, C.; Pizarro RR, M.; Segocio HG, B.; Ratta, K. 8—Nutrigenomics in the management and prevention of cancer. In Role of Nutrigenomics in Modern-Day Healthcare and Drug Discovery; Dable-Tupas, G., Egbuna, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 177–208. [Google Scholar]
- Sellami, M.; Bragazzi, N.L. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020, 12, 512. [Google Scholar] [CrossRef]
- Schraml, E.; Hackl, M.; Grillari, J. MicroRNAs and toxicology: A love marriage. Toxicol. Rep. 2017, 4, 634–636. [Google Scholar] [CrossRef]
- Singh, R.; Mo, Y.-Y. Role of microRNAs in breast cancer. Cancer Biol. Ther. 2013, 14, 201–212. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Gunasekaran, K.; Sasidharan, S.; Mathan, V.J.; Perumal, E. MicroRNAs and Xenobiotic Toxicity: An Overview. Toxicol. Rep. 2020, 7, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Zhao, X.; Li, Y.; Yu, L.; Li, Y.; Zhou, X.; Gong, Q. miR-423 Promotes Breast Cancer Invasion by Activating NF-κB Signaling. OncoTargets Ther. 2020, 13, 5467–5478. [Google Scholar] [CrossRef] [PubMed]
- Morales-Pison, S.; Jara, L.; Carrasco, V.; Gutiérrez-Vera, C.; Reyes, J.M.; Gonzalez-Hormazabal, P.; Carreño, L.J.; Tapia, J.C.; Contreras, H.R. Genetic Variation in MicroRNA-423 Promotes Proliferation, Migration, Invasion, and Chemoresistance in Breast Cancer Cells. Int. J. Mol. Sci. 2022, 23, 380. [Google Scholar] [CrossRef]
- Farahani, M.; Rezaei-Tavirani, M.; Arjmand, B. A systematic review of microRNA expression studies with exposure to bisphenol A. J. Appl. Toxicol. 2021, 41, 4–19. [Google Scholar] [CrossRef]
- Quintanilha, B.J.; Reis, B.Z.; Duarte, G.B.S.; Cozzolino, S.M.F.; Rogero, M.M. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017, 9, 1168. [Google Scholar] [CrossRef]
- Venkatadri, R.; Muni, T.; Iyer, A.K.V.; Yakisich, J.S.; Azad, N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis. 2016, 7, e2104. [Google Scholar] [CrossRef]
- Santoro, K.L.; Yakah, W.; Singh, P.; Ramiro-Cortijo, D.; Medina-Morales, E.; Freedman, S.D.; Martin, C.R. Acetaminophen and Xenobiotic Metabolites in Human Milk and the Development of Bronchopulmonary Dysplasia and Retinopathy of Prematurity in a Cohort of Extremely Preterm Infants. J. Pediatr. 2022, 244, 224–229.e3. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.; Bulucea, C.; Brindusa, C.; Mastorakis, N. Approaching Resonant Absorption of Environmental Xenobiotics Harmonic Oscillation by Linear Structures. Sustainability 2012, 4, 561–573. [Google Scholar]
- Idle, J.R.; Gonzalez, F.J. Metabolomics. Cell Metab. 2007, 6, 348–351. [Google Scholar] [CrossRef]
- Williams, J.A.; Phillips, D.H. Mammary Expression of Xenobiotic Metabolizing Enzymes and Their Potential Role in Breast Cancer. Cancer Res. 2000, 60, 4667–4677. [Google Scholar] [PubMed]
- Swift, L.H.; Golsteyn, R.M. Genotoxic Anti-Cancer Agents and Their Relationship to DNA Damage, Mitosis, and Checkpoint Adaptation in Proliferating Cancer Cells. Int. J. Mol. Sci. 2014, 15, 3403–3431. [Google Scholar] [CrossRef]
- Zahreddine, H.; Borden, K.L.B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Rylander, C.; Veierød, M.B.; Weiderpass, E.; Lund, E.; Sandanger, T.M. Use of skincare products and risk of cancer of the breast and endometrium: A prospective cohort study. Environ. Health 2019, 18, 105. [Google Scholar] [CrossRef]
- Filipiuc, S.-I.; Neagu, A.-N.; Uritu, C.M.; Tamba, B.-I.; Filipiuc, L.-E.; Tudorancea, I.M.; Boca, A.N.; Hâncu, M.F.; Porumb, V.; Bild, W. The Skin and Natural Cannabinoids–Topical and Transdermal Applications. Pharmaceuticals 2023, 16, 1049. [Google Scholar] [CrossRef]
- Andersen, E.R.; Eilertsen, G.; Myklebust, A.M.; Eriksen, S. Women’s experience of acute skin toxicity following radiation therapy in breast cancer. J. Multidiscip. Healthc. 2018, 11, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, A.M.; VoPham, T.; Laden, F.; Yarosh, R.; O’Brien, K.M.; Sandler, D.P.; White, A.J. Residential ultraviolet radiation and breast cancer risk in a large prospective cohort. Environ. Int. 2022, 159, 107028. [Google Scholar] [CrossRef] [PubMed]
- Chee, Y.C.; Pahnke, J.; Bunte, R.; Adsool, V.A.; Madan, B.; Virshup, D.M. Intrinsic Xenobiotic Resistance of the Intestinal Stem Cell Niche. Dev. Cell 2018, 46, 681–695.e5. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Han, Z. Identification and validation of xenobiotic metabolism-associated prognostic signature based on five genes to evaluate immune microenvironment in colon cancer. J. Gastrointest. Oncol. 2021, 12, 2788–2802. [Google Scholar] [CrossRef] [PubMed]
- White, A.J.; Gregoire, A.M.; Fisher, J.A.; Medgyesi, D.N.; Li, L.; Koutrakis, P.; Sandler, D.P.; Jones, R.R. Exposure to Particle Radioactivity and Breast Cancer Risk in the Sister Study: A U.S.-Wide Prospective Cohort. Environ. Health Perspect. 2022, 130, 047701. [Google Scholar] [CrossRef]
- Olesiejuk, K.; Chałubiński, M. How does particulate air pollution affect barrier functions and inflammatory activity of lung vascular endothelium? Allergy 2023, 78, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Smotherman, C.; Sprague, B.; Datta, S.; Braithwaite, D.; Qin, H.; Yaghjyan, L. Association of air pollution with postmenopausal breast cancer risk in UK Biobank. Breast Cancer Res. 2023, 25, 83. [Google Scholar] [CrossRef] [PubMed]
- Moriceau, M.-A.; Cano-Sancho, G.; Kim, M.; Coumoul, X.; Emond, C.; Arrebola, J.-P.; Antignac, J.-P.; Audouze, K.; Rousselle, C. Partitioning of Persistent Organic Pollutants between Adipose Tissue and Serum in Human Studies. Toxics 2023, 11, 41. [Google Scholar] [CrossRef]
- Ish, J.L.; Abubakar, M.; Fan, S.; Jones, R.R.; Niehoff, N.M.; Henry, J.E.; Gierach, G.L.; White, A.J. Outdoor air pollution and histologic composition of normal breast tissue. Environ. Int. 2023, 176, 107984. [Google Scholar] [CrossRef]
- Segovia-Mendoza, M.; de León, C.T.G.; García-Becerra, R.; Ambrosio, J.; Nava-Castro, K.E.; Morales-Montor, J. The chemical environmental pollutants BPA and BPS induce alterations of the proteomic profile of different phenotypes of human breast cancer cells: A proposed interactome. Environ. Res. 2020, 191, 109960. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, Y.; Wang, J.; Zhao, Y.; Li, K.; Jing, Y.; Zhang, X.; Liu, Q.; Geng, X.; Li, G.; et al. Long-term Persistent Organic Pollutants Exposure Induced Telomere Dysfunction and Senescence-Associated Secretary Phenotype. J. Gerontol. Ser. A 2018, 73, 1027–1035. [Google Scholar] [CrossRef]
- Montjean, D.; Neyroud, A.-S.; Yefimova, M.G.; Benkhalifa, M.; Cabry, R.; Ravel, C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int. J. Mol. Sci. 2022, 23, 3350. [Google Scholar] [CrossRef] [PubMed]
- Dungen, M.W.v.D.; Murk, A.J.; Kok, D.E.; Steegenga, W.T. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation. Toxicol. Vitr. 2017, 40, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Wielsøe, M.; Tarantini, L.; Bollati, V.; Long, M.; Bonefeld-Jørgensen, E.C. DNA methylation level in blood and relations to breast cancer, risk factors and environmental exposure in Greenlandic Inuit women. Basic Clin. Pharmacol. Toxicol. 2020, 127, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Zucchini-Pascal, N.; Peyre, L.; de Sousa, G.; Rahmani, R. Organochlorine pesticides induce epithelial to mesenchymal transition of human primary cultured hepatocytes. Food Chem. Toxicol. 2012, 50, 3963–3970. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Hwang, K.-A.; Choi, K.-C. Diverse pathways of epithelial mesenchymal transition related with cancer progression and metastasis and potential effects of endocrine disrupting chemicals on epithelial mesenchymal transition process. Mol. Cell. Endocrinol. 2016, 457, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-L.; Wang, H.-S.; Liu, N.; Ge, L.-C. Bisphenol A stimulates the epithelial mesenchymal transition of estrogen negative breast cancer cells via FOXA1 signals. Arch. Biochem. Biophys. 2015, 585, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Patterson, A.D.; Idle, J.R.; Gonzalez, F.J. Xenobiotic Metabolomics: Major Impact on the Metabolome. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 37–56. [Google Scholar] [CrossRef]
- Bièche, I.; Girault, I.; Urbain, E.; Tozlu, S.; Lidereau, R. Relationship between intratumoral expression of genes coding for xenobiotic-metabolizing enzymes and benefit from adjuvant tamoxifen in estrogen receptor alpha-positive postmenopausal breast carcinoma. Breast Cancer Res. 2004, 6, R252. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Steppi, A.; Zhou, Y.; Mao, F.; Miller, P.C.; He, M.M.; Zhao, T.; Sun, Q.; Zhang, J. Tumoral expression of drug and xenobiotic metabolizing enzymes in breast cancer patients of different ethnicities with implications to personalized medicine. Sci. Rep. 2017, 7, 4747. [Google Scholar] [CrossRef] [PubMed]
- Men, Y.; Li, L.; Zhang, F.; Kong, X.; Zhang, W.; Hao, C.; Wang, G. Evaluation of heavy metals and metabolites in the urine of patients with breast cancer. Oncol. Lett. 2020, 19, 1331–1337. [Google Scholar] [CrossRef] [PubMed]
- Tarhonska, K.; Janasik, B.; Roszak, J.; Kowalczyk, K.; Lesicka, M.; Reszka, E.; Wieczorek, E.; Braun, M.; Kolacinska-Wow, A.; Skokowski, J.; et al. Environmental exposure to cadmium in breast cancer—Association with the Warburg effect and sensitivity to tamoxifen. Biomed. Pharmacother. 2023, 161, 114435. [Google Scholar] [CrossRef]
- Gadzała-Kopciuch, R.; Pajewska-Szmyt, M. Human Milk and Xenobiotics. In Handbook of Bioanalytics; Buszewski, B., Baranowska, I., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 295–308. [Google Scholar]
- Mead, M. Contaminants in Human Milk: Weighing the Risks against the Benefits of Breastfeeding. Environ. Health Perspect. 2008, 116, A427–A434. [Google Scholar] [CrossRef] [PubMed]
- Ennour-Idrissi, K.; Ayotte, P.; Diorio, C. Persistent Organic Pollutants and Breast Cancer: A Systematic Review and Critical Appraisal of the Literature. Cancers 2019, 11, 1063. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.; Shoemaker, R.; Larian, N.; Cassis, L. Adipose Tissue as a Site of Toxin Accumulation. Compr. Physiol. 2017, 7, 1085–1135. [Google Scholar]
- Lee, Y.; Kim, K.; Jacobs, D.R.; Lee, D. Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes. Rev. 2017, 18, 129–139. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, R.; Liu, Q.; Yang, Z.; Lin, X.; Pang, J.; Li, X.; Wang, D.; He, J.; Li, J.; et al. Breast adipose metabolites mediates the association of tetrabromobisphenol a with breast cancer: A case-control study in Chinese population. Environ. Pollut. 2023, 316, 120701. [Google Scholar] [CrossRef]
- Liu, T.; Liang, X.; Lei, C.; Huang, Q.; Song, W.; Fang, R.; Li, C.; Li, X.; Mo, H.; Sun, N.; et al. High-Fat Diet Affects Heavy Metal Accumulation and Toxicity to Mice Liver and Kidney Probably via Gut Microbiota. Front. Microbiol. 2020, 11, 1604. [Google Scholar] [CrossRef]
- Romaniuk, A.; Lyndin, M.; Sikora, V.; Lyndina, Y.; Romaniuk, S.; Sikora, K. Heavy metals effect on breast cancer progression. J. Occup. Med. Toxicol. 2017, 12, 32. [Google Scholar] [CrossRef]
- Wang, X.; Mukherjee, B.; Park, S.K. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U.S. adults in NHANES 2003–2014. Environ. Int. 2018, 121, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Teo, P.S.; van Dam, R.M.; Whitton, C.; Tan, L.W.L.; Forde, C.G. Consumption of Foods With Higher Energy Intake Rates is Associated With Greater Energy Intake, Adiposity, and Cardiovascular Risk Factors in Adults. J. Nutr. 2021, 151, 370–378. [Google Scholar] [CrossRef]
- Bernard, J.J.; Wellberg, E.A. The Tumor Promotional Role of Adipocytes in the Breast Cancer Microenvironment and Macroenvironment. Am. J. Pathol. 2021, 191, 1342–1352. [Google Scholar] [CrossRef] [PubMed]
- Kothari, C.; Diorio, C.; Durocher, F. The Importance of Breast Adipose Tissue in Breast Cancer. Int. J. Mol. Sci. 2020, 21, 5760. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Sapkota, N.; Han, Z. Effect of fasting on cancer: A narrative review of scientific evidence. Cancer Sci. 2022, 113, 3291–3302. [Google Scholar] [CrossRef]
- Anemoulis, M.; Vlastos, A.; Kachtsidis, V.; Karras, S.N. Intermittent Fasting in Breast Cancer: A Systematic Review and Critical Update of Available Studies. Nutrients 2023, 15, 532. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C.; John, S.M.; Schmitz, G. Over-stimulation of insulin/IGF-1 signaling by Western diet may promote diseases of civilization: Lessons learnt from Laron syndrome. Nutr. Metab. 2011, 8, 41. [Google Scholar] [CrossRef]
- Christopoulos, P.F.; Msaouel, P.; Koutsilieris, M. The role of the insulin-like growth factor-1 system in breast cancer. Mol. Cancer 2015, 14, 43. [Google Scholar] [CrossRef]
- Cunha, S.C.; Menezes-Sousa, D.; Mello, F.V.; Miranda, J.A.; Fogaca, F.H.; Alonso, M.B.; Torres, J.P.M.; Fernandes, J.O. Survey on endocrine-disrupting chemicals in seafood: Occurrence and distribution. Environ. Res. 2022, 210, 112886. [Google Scholar] [CrossRef]
- Law, A.Y.S.; Wei, X.; Zhang, X.; Mak, N.K.; Cheung, K.C.; Wong, M.H.; Giesy, J.P.; Wong, C.K.C. Biological analysis of endocrine-disrupting chemicals in animal meats from the Pearl River Delta, China. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Pandya, P.; Baxi, D.; Ramachandran, A.V. Endocrine Disruptors–‘Food’ for Thought. Proc. Zool. Soc. 2021, 74, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Zhou, J.; Gao, M.; Zhang, H.; Wang, T. Research Advances in the Analysis of Estrogenic Endocrine Disrupting Compounds in Milk and Dairy Products. Foods 2022, 11, 3057. [Google Scholar] [CrossRef] [PubMed]
- Djedjibegovic, J.; Marjanovic, A.; Tahirovic, D.; Caklovica, K.; Turalic, A.; Lugusic, A.; Omeragic, E.; Sober, M.; Caklovica, F. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci. Rep. 2020, 10, 13238. [Google Scholar] [CrossRef]
- Nindrea, R.D.; Aryandono, T.; Lazuardi, L.; Dwiprahasto, I. Protective Effect of Omega-3 Fatty Acids in Fish Consumption Against Breast Cancer in Asian Patients: A Meta-Analysis. Asian Pac. J. Cancer Prev. 2019, 20, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.M.; Udesky, J.O.; Rudel, R.A.; Brody, J.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ. Res. 2018, 160, 152–182. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Gao, B.; Goldberg, I.D.; Rosen, E.M.; Fan, S. Stimulation of Cell Invasion and Migration by Alcohol in Breast Cancer Cells. Biochem. Biophys. Res. Commun. 2000, 273, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Muniraj, N.; Siddharth, S.; Sharma, D. Bioactive Compounds: Multi-Targeting Silver Bullets for Preventing and Treating Breast Cancer. Cancers 2019, 11, 1563. [Google Scholar] [CrossRef]
- Carlos-Reyes, Á.; López-González, J.S.; Meneses-Flores, M.; Gallardo-Rincón, D.; Ruíz-García, E.; Marchat, L.A.; la Vega, H.A.-D.; de la Cruz, O.N.H.; López-Camarillo, C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front. Genet. 2019, 10, 79. [Google Scholar] [CrossRef]
- Björner, S.; Rosendahl, A.H.; Tryggvadottir, H.; Simonsson, M.; Jirström, K.; Borgquist, S.; Rose, C.; Ingvar, C.; Jernström, H. Coffee Is Associated With Lower Breast Tumor Insulin-Like Growth Factor Receptor 1 Levels in Normal-Weight Patients and Improved Prognosis Following Tamoxifen or Radiotherapy Treatment. Front. Endocrinol. 2018, 9, 306. [Google Scholar] [CrossRef]
- Hayakawa, S.; Ohishi, T.; Miyoshi, N.; Oishi, Y.; Nakamura, Y.; Isemura, M. Anti-Cancer Effects of Green Tea Epigallocatchin-3-Gallate and Coffee Chlorogenic Acid. Molecules 2020, 25, 4553. [Google Scholar] [CrossRef]
- Zeng, A.; Liang, X.; Zhu, S.; Liu, C.; Wang, S.; Zhang, Q.; Zhao, J.; Song, L. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF-κB signaling pathway. Oncol. Rep. 2021, 45, 717–727. [Google Scholar] [CrossRef]
- Deus, C.M.; Serafim, T.L.; Magalhães-Novais, S.; Vilaça, A.; Moreira, A.C.; Sardão, V.A.; Cardoso, S.M.; Oliveira, P.J. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells. Arch. Toxicol. 2017, 91, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- Greenshields, A.L.; Doucette, C.D.; Sutton, K.M.; Madera, L.; Annan, H.; Yaffe, P.B.; Knickle, A.F.; Dong, Z.; Hoskin, D.W. Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett. 2015, 357, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Zeleznik, O.A.; Shutta, K.H.; Rosner, B.A.; Kraft, P.; Clish, C.B.; Stampfer, M.J.; Willett, W.C.; Tamimi, R.M.; Eliassen, A.H. A Metabolomics Analysis of Circulating Carotenoids and Breast Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2022, 31, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Maitisha, G.; Aimaiti, M.; An, Z.; Li, X. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol. Biol. Rep. 2021, 48, 7261–7272. [Google Scholar] [CrossRef]
- Rosas-González, V.C.; Téllez-Bañuelos, M.C.; Hernández-Flores, G.; Bravo-Cuellar, A.; Aguilar-Lemarroy, A.; Jave-Suárez, L.F.; Haramati, J.; Solorzano-Ibarra, F. Differential effects of alliin and allicin on apoptosis and senescence in luminal A and triple-negative breast cancer: Caspase, ΔΨm, and pro-apoptotic gene involvement. Fundam. Clin. Pharmacol. 2020, 34, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Schley, P.D.; Jijon, H.B.; Robinson, L.E.; Field, C.J. Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res. Treat. 2005, 92, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, J.; Namasivayam, V. Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environ. Int. 2015, 76, 78–97. [Google Scholar] [CrossRef]
- Gonsioroski, A.; Mourikes, V.E.; Flaws, J.A. Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int. J. Mol. Sci. 2020, 21, 1929. [Google Scholar] [CrossRef]
- Mnif, W.; Hassine AI, H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed]
- Iavicoli, I.; Fontana, L.; Bergamaschi, A. The Effects of Metals as Endocrine Disruptors. J. Toxicol. Environ. Health Part B 2009, 12, 206–223. [Google Scholar] [CrossRef]
- Peivasteh-Roudsari, L.; Barzegar-Bafrouei, R.; Sharifi, K.A.; Azimisalim, S.; Karami, M.; Abedinzadeh, S.; Asadinezhad, S.; Tajdar-Oranj, B.; Mahdavi, V.; Alizadeh, A.M.; et al. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023, 9, e18140. [Google Scholar] [CrossRef]
- Peinado, F.M.; Iribarne-Durán, L.M.; Ocón-Hernández, O.; Olea, N.; Artacho-Cordón, F. Endocrine Disrupting Chemicals in Cosmetics and Personal Care Products and Risk of Endometriosis. In Endometriosis; Courtney, M., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 2. [Google Scholar]
- Monneret, C. What is an endocrine disruptor? Comptes Rendus Biol. 2017, 340, 403–405. [Google Scholar] [CrossRef]
- Marinello, W.P.; Patisaul, H.B. Chapter Nine—Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. In Advances in Pharmacology; Vandenberg, L.N., Turgeon, J.L., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 347–400. [Google Scholar]
- Schjenken, J.E.; Green, E.S.; Overduin, T.S.; Mah, C.Y.; Russell, D.L.; Robertson, S.A. Endocrine Disruptor Compounds—A Cause of Impaired Immune Tolerance Driving Inflammatory Disorders of Pregnancy? Front. Endocrinol. 2021, 12, 607539. [Google Scholar] [CrossRef] [PubMed]
- Alavian-Ghavanini, A.; Rüegg, J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin. Pharmacol. Toxicol. 2018, 122, 38–45. [Google Scholar] [CrossRef]
- Zeng, W. Bisphenol A triggers the malignancy of nasopharyngeal carcinoma cells via activation of Wnt/β-catenin pathway. Toxicol. Vitr. 2020, 66, 104881. [Google Scholar] [CrossRef] [PubMed]
- Cowin, P.; Wysolmerski, J. Molecular Mechanisms Guiding Embryonic Mammary Gland Development. Cold Spring Harb. Perspect. Biol. 2010, 2, a003251. [Google Scholar] [CrossRef]
- Wormsbaecher, C.; Hindman, A.R.; Avendano, A.; Cortes-Medina, M.; Jones, C.E.; Bushman, A.; Onua, L.; Kovalchin, C.E.; Murphy, A.R.; Helber, H.L.; et al. In utero estrogenic endocrine disruption alters the stroma to increase extracellular matrix density and mammary gland stiffness. Breast Cancer Res. 2020, 22, 41. [Google Scholar] [CrossRef]
- Speroni, L.; Voutilainen, M.; Mikkola, M.L.; Klager, S.A.; Schaeberle, C.M.; Sonnenschein, C.; Soto, A.M. New insights into fetal mammary gland morphogenesis: Differential effects of natural and environmental estrogens. Sci. Rep. 2017, 7, 40806. [Google Scholar] [CrossRef]
- Soto, A.M.; Vandenberg, L.N.; Maffini, M.V.; Sonnenschein, C. Does Breast Cancer Start in the Womb? Basic Clin. Pharmacol. Toxicol. 2008, 102, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.M.; Brisken, C.; Schaeberle, C.; Sonnenschein, C. Does Cancer Start in the Womb? Altered Mammary Gland Development and Predisposition to Breast Cancer due to in Utero Exposure to Endocrine Disruptors. J. Mammary Gland Biol. Neoplasia 2013, 18, 199–208. [Google Scholar] [CrossRef]
- Tchen, R.; Tan, Y.; Barr, D.B.; Ryan, P.B.; Tran, V.; Li, Z.; Hu, Y.-J.; Smith, A.K.; Jones, D.P.; Dunlop, A.L.; et al. Use of high-resolution metabolomics to assess the biological perturbations associated with maternal exposure to Bisphenol A and Bisphenol F among pregnant African American women. Environ. Int. 2022, 169, 107530. [Google Scholar] [CrossRef] [PubMed]
- Mandrup, K.; Boberg, J.; Isling, L.K.; Christiansen, S.; Hass, U. Low-dose effects of bisphenol A on mammary gland development in rats. Andrology 2016, 4, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Tharp, A.P.; Maffini, M.V.; Hunt, P.A.; VandeVoort, C.A.; Sonnenschein, C.; Soto, A.M. Bisphenol A alters the development of the rhesus monkey mammary gland. Proc. Natl. Acad. Sci. USA 2012, 109, 8190–8195. [Google Scholar] [CrossRef]
- Fernandez, S.V.; Huang, Y.; Snider, K.E.; Zhou, Y.; Pogash, T.J.; Russo, J. Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. Int. J. Oncol. 2012, 41, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Korsh, J.; Shen, A.; Aliano, K.; Davenport, T. Polycyclic Aromatic Hydrocarbons and Breast Cancer: A Review of the Literature. Breast Care 2015, 10, 316–318. [Google Scholar] [CrossRef]
- Qin, Q.; Yang, B.; Liu, Z.; Xu, L.; Song, E.; Song, Y. Polychlorinated biphenyl quinone induced the acquisition of cancer stem cells properties and epithelial-mesenchymal transition through Wnt/β-catenin. Chemosphere 2021, 263, 128125. [Google Scholar] [CrossRef]
- Guo, J.-Y.; Wang, M.-Z.; Wang, M.-S.; Sun, T.; Wei, F.-H.; Yu, X.-T.; Wang, C.; Xu, Y.-Y.; Wang, L. The Undervalued Effects of Polychlorinated Biphenyl Exposure on Breast Cancer. Clin. Breast Cancer 2020, 20, 12–18. [Google Scholar] [CrossRef]
- Parada, H.; Sun, X.; Tse, C.-K.; Engel, L.S.; Hoh, E.; Olshan, A.F.; Troester, M.A. Plasma levels of polychlorinated biphenyls (PCBs) and breast cancer mortality: The Carolina Breast Cancer Study. Int. J. Hyg. Environ. Health 2020, 227, 113522. [Google Scholar] [CrossRef]
- Schildroth, S.; Wise, L.A.; Wesselink, A.K.; Bethea, T.N.; Fruh, V.; Taylor, K.W.; Calafat, A.M.; Baird, D.D.; Henn, B.C. Correlates of non-persistent endocrine disrupting chemical mixtures among reproductive-aged Black women in Detroit, Michigan. Chemosphere 2022, 299, 134447. [Google Scholar] [CrossRef] [PubMed]
- Ahern, T.P.; Broe, A.; Lash, T.L.; Cronin-Fenton, D.P.; Ulrichsen, S.P.; Christiansen, P.M.; Cole, B.F.; Tamimi, R.M.; Sørensen, H.T.; Damkier, P. Phthalate Exposure and Breast Cancer Incidence: A Danish Nationwide Cohort Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1800–1809. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Jin, H.; Guo, R.; Chen, P.; Zhong, S.; Wu, X. Distribution of parabens and 4-HB in human blood. Sci. Total Environ. 2024, 914, 169874. [Google Scholar] [CrossRef] [PubMed]
- Tapia, J.L.; McDonough, J.C.; Cauble, E.L.; Gonzalez, C.G.; Teteh, D.K.; Treviño, L.S. Parabens Promote Protumorigenic Effects in Luminal Breast Cancer Cell Lines With Diverse Genetic Ancestry. J. Endocr. Soc. 2023, 7, bvad080. [Google Scholar] [CrossRef]
- Hager, E.; Chen, J.; Zhao, L. Minireview: Parabens Exposure and Breast Cancer. Int. J. Environ. Res. Public Health 2022, 19, 1873. [Google Scholar] [CrossRef] [PubMed]
- Downs, C.A.; Amin, M.M.; Tabatabaeian, M.; Chavoshani, A.; Amjadi, E.; Afshari, A.; Kelishadi, R. Parabens preferentially accumulate in metastatic breast tumors compared to benign breast tumors and the association of breast cancer risk factors with paraben accumulation. Environ. Adv. 2023, 11, 100325. [Google Scholar] [CrossRef]
- Darbre, P.D.; Aljarrah, A.; Miller, W.R.; Coldham, N.G.; Sauer, M.J.; Pope, G.S. Concentrations of parabens in human breast tumours. J. Appl. Toxicol. 2004, 24, 5–13. [Google Scholar] [CrossRef]
- Robin, J.; Binson, G.; Albouy, M.; Sauvaget, A.; Pierre-Eugène, P.; Migeot, V.; Dupuis, A.; Venisse, N. Analytical method for the biomonitoring of bisphenols and parabens by liquid chromatography coupled to tandem mass spectrometry in human hair. Ecotoxicol. Environ. Saf. 2022, 243, 113986. [Google Scholar] [CrossRef]
- Park, Y.; Jang, J.; Park, J.; Kim, J.H.; Kim, E.; Song, Y.; Kwon, H. Analysis of parabens in dentifrices and the oral cavity. Biomed. Chromatogr. 2014, 28, 1692–1700. [Google Scholar] [CrossRef]
- Dualde, P.; Pardo, O.; Corpas-Burgos, F.; Kuligowski, J.; Gormaz, M.; Vento, M.; Pastor, A.; Yusà, V. Biomonitoring of parabens in human milk and estimated daily intake for breastfed infants. Chemosphere 2020, 240, 124829. [Google Scholar] [CrossRef]
- Park, N.-Y.; Cho, Y.H.; Choi, K.; Lee, E.-H.; Kim, Y.J.; Kim, J.H.; Kho, Y. Parabens in breast milk and possible sources of exposure among lactating women in Korea. Environ. Pollut. 2019, 255, 113142. [Google Scholar] [CrossRef]
- Andersen, M.H.G.; Zuri, G.; Knudsen, L.E.; Mathiesen, L. Placental transport of parabens studied using an ex-vivo human perfusion model. Placenta 2021, 115, 121–128. [Google Scholar] [CrossRef]
- Zhang, H.; Quan, Q.; Li, X.; Sun, W.; Zhu, K.; Wang, X.; Sun, X.; Zhan, M.; Xu, W.; Lu, L.; et al. Occurrence of parabens and their metabolites in the paired urine and blood samples from Chinese university students: Implications on human exposure. Environ. Res. 2020, 183, 109288. [Google Scholar] [CrossRef] [PubMed]
- Zamora-León, P. Are the Effects of DES Over? A Tragic Lesson from the Past. Int. J. Environ. Res. Public Health 2021, 18, 10309. [Google Scholar] [CrossRef]
- Stillwater, B.J.; Bull, A.C.; Romagnolo, D.F.; Neumayer, L.A.; Donovan, M.G.; Selmin, O.I. Bisphenols and Risk of Breast Cancer: A Narrative Review of the Impact of Diet and Bioactive Food Components. Front. Nutr. 2020, 7, 581388. [Google Scholar] [CrossRef] [PubMed]
- Dumitrascu, M.C.; Mares, C.; Petca, R.-C.; Sandru, F.; Popescu, R.-I.; Mehedintu, C.; Petca, A. Carcinogenic effects of bisphenol A in breast and ovarian cancers (Review). Oncol. Lett. 2020, 20, 282. [Google Scholar] [CrossRef]
- Yang, P.-J.; Hou, M.-F.; Ou-Yang, F.; Hsieh, T.-H.; Lee, Y.-J.; Tsai, E.-M.; Wang, T.-N. Association between recurrent breast cancer and phthalate exposure modified by hormone receptors and body mass index. Sci. Rep. 2022, 12, 2858. [Google Scholar] [CrossRef] [PubMed]
- Cohn, B.A.; La Merrill, M.; Krigbaum, N.Y.; Yeh, G.; Park, J.S.; Zimmermann, L.; Cirillo, P.M. DDT Exposure in Utero and Breast Cancer. J. Clin. Endocrinol. Metab. 2015, 100, 2865–2872. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagu, A.-N.; Jayaweera, T.; Corrice, L.; Johnson, K.; Darie, C.C. Breast Cancer Exposomics. Life 2024, 14, 402. https://doi.org/10.3390/life14030402
Neagu A-N, Jayaweera T, Corrice L, Johnson K, Darie CC. Breast Cancer Exposomics. Life. 2024; 14(3):402. https://doi.org/10.3390/life14030402
Chicago/Turabian StyleNeagu, Anca-Narcisa, Taniya Jayaweera, Lilian Corrice, Kaya Johnson, and Costel C. Darie. 2024. "Breast Cancer Exposomics" Life 14, no. 3: 402. https://doi.org/10.3390/life14030402
APA StyleNeagu, A. -N., Jayaweera, T., Corrice, L., Johnson, K., & Darie, C. C. (2024). Breast Cancer Exposomics. Life, 14(3), 402. https://doi.org/10.3390/life14030402