Patients’ Perceptions and Attitudes to the Use of Artificial Intelligence in Breast Cancer Diagnosis: A Narrative Review
Abstract
:1. Introduction
2. Receiving a Diagnosis of Breast Cancer
2.1. The Physical and Psychological Aftermath
2.2. Psychological Burden of Carrying a BRCA Genetic Mutation
2.3. Artificial Intelligence and Breast Cancer: Patients’ Perspectives
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F.; Bsc, M.F.B.; Me, J.F.; Soerjomataram, M.I.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.J.; Tirona, M. An updated review of epidemiology, risk factors, and management of male breast cancer. Med. Oncol. 2021, 38, 39. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Trentin, C.; Ferrari, F.; Signorelli, G.; Tantrige, P.; Montesano, M.; Cicala, C.; Virgoli, R.; D’acquisto, S.; Nicosia, L.; et al. Deep learning performance for detection and classification of microcalcifications on mammography. Eur. Radiol. Exp. 2023, 7, 69. [Google Scholar] [CrossRef]
- Pesapane, F.; Battaglia, O.; Pellegrino, G.; Mangione, E.; Petitto, S.; Manna, E.D.F.; Cazzaniga, L.; Nicosia, L.; Lazzeroni, M.; Corso, G.; et al. Advances in breast cancer risk modeling: Integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment. Future Oncol. 2023, 19, 2547–2564. [Google Scholar] [CrossRef]
- Lång, K.; Josefsson, V.; Larsson, A.-M.; Larsson, S.; Högberg, C.; Sartor, H.; Hofvind, S.; Andersson, I.; Rosso, A. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): A clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study. Lancet Oncol. 2023, 24, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Dembrower, K.; Crippa, A.; Colón, E.; Eklund, M.; Strand, F. Artificial intelligence for breast cancer detection in screening mammography in Sweden: A prospective, population-based, paired-reader, non-inferiority study. Lancet Digit. Health 2023, 5, e703–e711. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Cassano, E. Enhancing Breast Imaging Practices: Addressing False-Positive Findings, Personalization, and Equitable Access. Radiology 2023, 309, e232189. [Google Scholar] [CrossRef] [PubMed]
- Khullar, D.; Casalino, L.P.; Qian, Y.; Lu, Y.; Krumholz, H.M.; Aneja, S. Perspectives of Patients about Artificial Intelligence in Health Care. JAMA Netw. Open 2022, 5, e2210309. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Rotili, A.; Valconi, E.; Agazzi, G.M.; Montesano, M.; Penco, S.; Nicosia, L.; Bozzini, A.; Meneghetti, L.; Latronico, A.; et al. Women’s perceptions and attitudes to the use of AI in breast cancer screening: A survey in a cancer referral centre. Br. J. Radiol. 2023, 96, 20220569. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Enns, H.; Woodgate, R. The psychosocial experiences of women with breast cancer across the lifespan: A systematic review protocol. JBI Database Syst. Rev. Implement. Rep. 2015, 13, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Arnaboldi, P.; Riva, S.; Crico, C.; Pravettoni, G. A systematic literature review exploring the prevalence of post-traumatic stress disorder and the role played by stress and traumatic stress in breast cancer diagnosis and trajectory. Breast Cancer Targets Ther. 2017, 9, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Arnaboldi, P.; Lucchiari, C.; Santoro, L.; Sangalli, C.; Luini, A.; Pravettoni, G. PTSD symptoms as a consequence of breast cancer diagnosis: Clinical implications. SpringerPlus 2014, 3, 392. [Google Scholar] [CrossRef] [PubMed]
- Faccio, F.; Mascheroni, E.; Ionio, C.; Pravettoni, G.; Peccatori, F.A.; Pisoni, C.; Cassani, C.; Zambelli, S.; Zilioli, A.; Nastasi, G.; et al. Motherhood during or after breast cancer diagnosis: A qualitative study. Eur. J. Cancer Care 2020, 29, e13214. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.; Parle, M.; Cairns, D. Appraisal and psychological distress six months after diagnosis of breast cancer. Br. J. Health Psychol. 2002, 7, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Kissane, D.W.; Ildn, J.; Bloch, S.; Vitetta, L.; Clarke, D.M.; Smith, G.C.; McKenzie, D.P. Psychological morbidity and quality of life in Australian women with early-stage breast cancer: A cross-sectional survey. Med. J. Aust. 1998, 169, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Fann, J.R.; Thomas-Rich, A.M.; Katon, W.J.; Cowley, D.; Pepping, M.; McGregor, B.A.; Gralow, J. Major depression after breast cancer: A review of epidemiology and treatment. Gen. Hosp. Psychiatry 2008, 30, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Denieffe, S.; Gooney, M. A meta-synthesis of women’s symptoms experience and breast cancer. Eur. J. Cancer Care 2011, 20, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Cohee, A.A.; Adams, R.N.; Fife, B.L.; Von Ah, D.M.; Monahan, P.O.; Zoppi, K.A.; Cella, D.; Champion, V.L. Relationship Between Depressive Symptoms and Social Cognitive Processing in Partners of Long-Term Breast Cancer Survivors. Oncol. Nurs. Forum 2017, 44, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.E.; Wiskemann, J.; Steindorf, K. Quality of life, problems, and needs of disease-free breast cancer survivors 5 years after diagnosis. Qual. Life Res. 2018, 27, 2077–2086. [Google Scholar] [CrossRef] [PubMed]
- Dinapoli, L.; Colloca, G.; Di Capua, B.; Valentini, V. Psychological Aspects to Consider in Breast Cancer Diagnosis and Treatment. Curr. Oncol. Rep. 2021, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Izci, F.; Ilgun, A.S.; Findikli, E.; Ozmen, V. Psychiatric Symptoms and Psychosocial Problems in Patients with Breast Cancer. J. Breast Health 2016, 12, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Sebri, V.; Mazzoni, D.; Triberti, S.; Pravettoni, G. The Impact of Unsupportive Social Support on the Injured Self in Breast Cancer Patients. Front. Psychol. 2021, 12, 722211. [Google Scholar] [CrossRef] [PubMed]
- Durosini, I.; Triberti, S.; Savioni, L.; Sebri, V.; Pravettoni, G. The Role of Emotion-Related Abilities in the Quality of Life of Breast Cancer Survivors: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 12704. [Google Scholar] [CrossRef] [PubMed]
- Sebri, V.; Durosini, I.; Mazzoni, D.; Pravettoni, G. The Body after Cancer: A Qualitative Study on Breast Cancer Survivors’ Body Representation. Int. J. Environ. Res. Public Health 2022, 19, 12515. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.V.; Bergerot, C.D.; Barbosa, L.R.; Calux, N.M.d.C.T.; Elias, S.; Ashing, K.T.; Domenico, E.B.L.D. Impact of breast cancer and quality of life of women survivors. Rev. Bras. Enferm. 2018, 71, 2916–2921. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Zhang, C.; Li, W.; Jin, F.; Wang, A. Incidence and severity of sexual dysfunction among women with breast cancer: A meta-analysis based on female sexual function index. Support. Care Cancer 2019, 27, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, D.L.; McDaniel, L.R.; Golden, D. Long-Term Effects of Breast Cancer Surgery, Treatment, and Survivor Care. J. Midwifery Womens Health 2019, 64, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Bjørnslett, M.; Dahl, A.A.; Sørebø, Ø.; Dørum, A. Psychological distress related to BRCA testing in ovarian cancer patients. Fam. Cancer 2015, 14, 495–504. [Google Scholar] [CrossRef]
- Borreani, C.; Manoukian, S.; Bianchi, E.; Brunelli, C.; Peissel, B.; Caruso, A.; Morasso, G.; Pierotti, M. The psychological impact of breast and ovarian cancer preventive options in BRCA1 and BRCA2 mutation carriers. Clin. Genet. 2014, 85, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; Jervis, S.; Van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402. [Google Scholar] [CrossRef] [PubMed]
- Landsbergen, K.M.; Brunner, H.G.; Manders, P.; Hoogerbrugge, N.; Prins, J.B. Educational-support groups for BRCA mutation carriers satisfy need for information but do not affect emotional distress. Genet. Couns. 2010, 21, 423–437. [Google Scholar] [PubMed]
- Jamal, L.; Schupmann, W.; Berkman, B.E. An ethical framework for genetic counseling in the genomic era. J. Genet. Couns. 2020, 29, 718–727. [Google Scholar] [CrossRef] [PubMed]
- van Driel, C.M.G.; Oosterwijk, J.C.; Meijers-Heijboer, E.J.; van Asperen, C.J.; Zeijlmans van Emmichoven, I.A.; de Vries, J.; Mourits, M.; Henneman, L.; Timmermans, D.; de Bock, G. Psychological factors associated with the intention to choose for risk-reducing mastectomy in family cancer clinic attendees. Breast 2016, 30, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Guarino, A.; Polini, C.; Forte, G.; Favieri, F.; Boncompagni, I.; Casagrande, M. The Effectiveness of Psychological Treatments in Women with Breast Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Meiser, B. Psychological impact of genetic testing for cancer susceptibility: An update of the literature. Psycho-Oncology 2005, 14, 1060–1074. [Google Scholar] [CrossRef] [PubMed]
- Knabben, L.; Siegenthaler, F.; Imboden, S.; Mueller, M.D. Fertility in BRCA mutation carriers: Counseling BRCA-mutated patients on reproductive issues. Horm. Mol. Biol. Clin. Investig. 2022, 43, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Dibble, K.E.; Donorfio, L.K.M.; Britner, P.A.; Bellizzi, K.M. Stress, anxiety, and health-related quality of life in BRCA1/2-positive women with and without cancer: A comparison of four US female samples. Gynecol. Oncol. Rep. 2022, 42, 101033. [Google Scholar] [CrossRef] [PubMed]
- Scotto, L.; Pizzoli, S.F.M.; Marzorati, C.; Mazzocco, K.; Pravettoni, G. The impact of prophylactic mastectomy on sexual well-being: A systematic review. Sex. Med. Rev. 2024, 2024, qead054. [Google Scholar] [CrossRef]
- Ongena, Y.P.; Yakar, D.; Haan, M.; Kwee, T.C. Artificial Intelligence in Screening Mammography: A Population Survey of Women’s Preferences. J. Am. Coll. Radiol. 2021, 18, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Derevianko, A.; Pizzoli, S.F.M.; Pesapane, F.; Rotili, A.; Monzani, D.; Grasso, R.; Cassano, E.; Pravettoni, G. The Use of Artificial Intelligence (AI) in the Radiology Field: What Is the State of Doctor–Patient Communication in Cancer Diagnosis? Cancers 2023, 15, 470. [Google Scholar] [CrossRef]
- Borondy Kitts, A. Patient Perspectives on Artificial Intelligence in Radiology. J. Am. Coll. Radiol. 2023, 20, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Lennox-Chhugani, N.; Chen, Y.; Pearson, V.; Trzcinski, B.; James, J. Women’s attitudes to the use of AI image readers: A case study from a national breast screening programme. BMJ Health Care Inform. 2021, 28, e100293. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.J.; Tang, R.; Babyn, P. Patient Perspectives and Priorities Regarding Artificial Intelligence in Radiology: Opportunities for Patient-Centered Radiology. J. Am. Coll. Radiol. 2020, 17, 1034–1036. [Google Scholar] [CrossRef] [PubMed]
- Bunnell, A.; Rowe, S. The Effect of AI-Enhanced Breast Imaging on the Caring Radiologist-Patient Relationship. Pac. Symp. Biocomput. 2023, 28, 472–483. [Google Scholar] [PubMed]
- Kruger, J.; Dunning, D. Unskilled and unaware of it: How difficulties in recognizing one’s own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 1999, 77, 1121–1134. [Google Scholar] [CrossRef]
- Stogiannos, N.; Malik, R.; Kumar, A.; Barnes, A.; Pogose, M.; Harvey, H.; McEntee, M.F.; Malamateniou, C. Black box no more: A scoping review of AI governance frameworks to guide procurement and adoption of AI in medical imaging and radiotherapy in the UK. Br. J. Radiol. 2023, 96, 20221157. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Balaji, S.; Jeyaraman, N.; Yadav, S. Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare. Cureus 2023, 15, e43262. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, T. Explainable Artificial Intelligence (XAI): Concepts and Challenges in Healthcare. AI 2023, 4, 652–666. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- de Vries, C.F.; Colosimo, S.J.; Boyle, M.; Lip, G.; Anderson, L.A.; Staff, R.T.; Harrison, D.; Black, C.; Murray, A.; Wilde, K.; et al. AI in breast screening mammography: Breast screening readers’ perspectives. Insights Imaging 2022, 13, 186. [Google Scholar] [CrossRef]
- Handtke, O.; Schilgen, B.; Mösko, M. Culturally competent healthcare—A scoping review of strategies implemented in healthcare organizations and a model of culturally competent healthcare provision. PLoS ONE 2019, 14, e0219971. [Google Scholar] [CrossRef] [PubMed]
- Perry, H.; Eisenberg, R.L.; Swedeen, S.T.; Snell, A.M.; Siewert, B.; Kruskal, J.B. Improving Imaging Care for Diverse, Marginalized, and Vulnerable Patient Populations. RadioGraphics 2018, 38, 1833–1844. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Tantrige, P.; Rotili, A.; Nicosia, L.; Penco, S.; Bozzini, A.C.; Raimondi, S.; Corso, G.; Grasso, R.; Pravettoni, G.; et al. Disparities in Breast Cancer Diagnostics: How Radiologists Can Level the Inequalities. Cancers 2023, 16, 130. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, M.; Malmierca, E.; de Górgolas, M.; Casado, E. Cancer in developing countries: The next most preventable pandemic. The global problem of cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, K.; Wong, B.N.X.; Lee, S.; Franco, H.; Singh, C.; Cabrera Silva, L.A.; Iraqi, H.; Sinha, A.; Burger, S.; Breedt, D.S.; et al. Role of Artificial Intelligence in Global Surgery: A Review of Opportunities and Challenges. Cureus 2023, 15, e43192. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.M.; Parikh, J.R. Education of Radiologists in Healthcare Disparities. Clin. Imaging 2022, 81, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Floridi, L.; Cowls, J. A Unified Framework of Five Principles for AI in Society. In Machine Learning and the City; Wiley: Hoboken, NJ, USA, 2022; pp. 535–545. [Google Scholar]
- Morley, J.; Machado, C.C.V.; Burr, C.; Cowls, J.; Joshi, I.; Taddeo, M.; Floridi, L. The ethics of AI in health care: A mapping review. Soc. Sci. Med. 2020, 260, 113172. [Google Scholar] [CrossRef] [PubMed]
- Mökander, J.; Floridi, L. Ethics-Based Auditing to Develop Trustworthy AI. Minds Mach. 2021, 31, 323–327. [Google Scholar] [CrossRef]
Aspect | Take-Home Messages |
---|---|
AI’s Potential in Diagnosis | AI enhances diagnostic accuracy and efficiency in breast cancer screening. |
Patient Concerns | Varied concerns about AI’s trustworthiness, personal interaction, and accountability. |
Role of Radiologists | Patients prefer AI as a complement to radiologists, not a replacement. |
Demographic Variations | Perceptions of AI vary by demographic; tailored patient education is crucial. |
Legal and Ethical Considerations | Need for explainable AI and governance frameworks to address legal/ethical issues. |
Future Focus | Harmonize AI with patient needs, ensuring it supports human elements of healthcare. |
Study | Key Findings |
---|---|
Borondy Kitts (2022) [41] |
|
Ongena et al. (2021) [39] |
|
Lennox-Chhugani et al. (2020) [42] |
|
Adams et al. (2020) [43] |
|
Pesapane et al. (2021) [9] |
|
Bunnel and Rowe (2022) [44] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesapane, F.; Giambersio, E.; Capetti, B.; Monzani, D.; Grasso, R.; Nicosia, L.; Rotili, A.; Sorce, A.; Meneghetti, L.; Carriero, S.; et al. Patients’ Perceptions and Attitudes to the Use of Artificial Intelligence in Breast Cancer Diagnosis: A Narrative Review. Life 2024, 14, 454. https://doi.org/10.3390/life14040454
Pesapane F, Giambersio E, Capetti B, Monzani D, Grasso R, Nicosia L, Rotili A, Sorce A, Meneghetti L, Carriero S, et al. Patients’ Perceptions and Attitudes to the Use of Artificial Intelligence in Breast Cancer Diagnosis: A Narrative Review. Life. 2024; 14(4):454. https://doi.org/10.3390/life14040454
Chicago/Turabian StylePesapane, Filippo, Emilia Giambersio, Benedetta Capetti, Dario Monzani, Roberto Grasso, Luca Nicosia, Anna Rotili, Adriana Sorce, Lorenza Meneghetti, Serena Carriero, and et al. 2024. "Patients’ Perceptions and Attitudes to the Use of Artificial Intelligence in Breast Cancer Diagnosis: A Narrative Review" Life 14, no. 4: 454. https://doi.org/10.3390/life14040454
APA StylePesapane, F., Giambersio, E., Capetti, B., Monzani, D., Grasso, R., Nicosia, L., Rotili, A., Sorce, A., Meneghetti, L., Carriero, S., Santicchia, S., Carrafiello, G., Pravettoni, G., & Cassano, E. (2024). Patients’ Perceptions and Attitudes to the Use of Artificial Intelligence in Breast Cancer Diagnosis: A Narrative Review. Life, 14(4), 454. https://doi.org/10.3390/life14040454