Utility of Fasting C-Peptide for the Diagnostic Differentiation of Patients with Type 1, Type 2 Diabetes, MODY, and LADA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric Measurements
2.2. Biochemical Determinations
2.3. Determination of C-Peptides and Antibodies
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basto-Abreu, A.; López-Olmedo, N.; Rojas-Martínez, R.; A Aguilar-Salinas, C.; Moreno-Banda, G.L.; Carnalla, M.; A Rivera, J.; Romero-Martinez, M.; Barquera, S.; Barrientos-Gutiérrez, T. Prevalencia de prediabetes y diabetes en México: Ensanut 2022. Salud Publica Mex. 2023, 65, s163–s168. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, P.; Pieralice, S. Latent Autoimmune Diabetes in Adults: Current status and new horizons. Endocrinol. Metab. 2018, 33, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Broome, D.T.; Pantalone, K.M.; Kashyap, S.R.; Philipson, L.H. Approach to the patient with MODY-Monogenic Diabetes. J. Clin. Endocrinol. Metab. 2021, 106, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Shields, B.M.; Peters, J.L.; Cooper, C.; Lowe, J.; A Knight, B.; Powell, R.J.; Jones, A.; Hyde, C.J.; Hattersley, A.T. Can clinical features be used to differentiate type 1 from type 2 diabetes? A systematic review of the literature. BMJ Open 2015, 5, e009088. [Google Scholar] [CrossRef] [PubMed]
- Pucci, M.; Benati, M.; Cascio, C.L.; Montagnana, M.; Lippi, G. The challenges of diagnosing diabetes in childhood. Diagnosis 2020, 8, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Hermosillo, A.; Molina-Ayala, M.A. Autoimmune diseases in type 1A diabetes mellitus. Rev. Med. Chil. 2015, 143, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Jamiolkowska-Sztabkowska, M.; Glowinska-Olszewska, B.; Bossowski, A. C-peptide and residual beta-cell function in pediatric diabetes—State of the art. Pediatr. Endocrinol. Diabetes Metab. 2021, 27, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.; Carlsson, A.; Forsander, G.; Ivarsson, S.; Kockum, I.; Lernmark, Å.; Lindblad, B.; Marcus, C.; Samuelsson, U. C-peptide in the classification of diabetes in children and adolescents. Pediatr. Diabetes 2012, 13, 45–50. [Google Scholar] [CrossRef]
- Pipi, E.; Marketou, M.; Tsirogianni, A. Distinct clinical and laboratory characteristics of latent autoimmune diabetes in adults in relation to type 1 and type 2 diabetes mellitus. World J. Diabetes 2014, 5, 505–510. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. 1), S20–S42. [Google Scholar] [CrossRef]
- University of Exeter. DiabetesGenes. Available online: https://www.diabetesgenes.org (accessed on 1 February 2024).
- Shields, B.M.; McDonald, T.J.; Ellard, S.; Campbell, M.J.; Hyde, C.; Hattersley, A.T. The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia 2012, 55, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, T.; Fonseca, L.; Santos Monteiro, S.; Borges Duarte, D.; Martins Lopes, A.; Couto de Carvalho, A.; Oliveira, M.J.; Borges, T.; Laranjeira, F.; Couce, M.L.; et al. MODY probability calculator utility in individuals’ selection for genetic testing: Its accuracy and performance. Endocrinol. Diabetes Metab. 2022, 5, e00332. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Jensen, E.T. Type 2 Diabetes in Youth. Glob. Pediatr. Health 2021, 7, 2333794X20981343. [Google Scholar] [CrossRef] [PubMed]
- Hermosillo, A.F.; Ortega, G.V.; Virla, B.G.; Atri, M.M.; Ayala, M.M. Prevalence of metabolic syndrome (MS) in patients with type 1 diabetes (DM1). Gac. Med. Mex. 2012, 148, 137–143. [Google Scholar]
- Zečević, K.; Volčanšek, Š.; Katsiki, N.; Rizzo, M.; Milardović, T.M.; Stoian, A.P.; Banach, M.; Muzurović, E. Maturity-Onset diabetes of the Young (MODY)—In search of ideal diagnostic criteria and precise treatment. Prog. Cardiovasc. Dis. 2024, in press.
- Carlsson, S. Etiology and pathogenesis of Latent Autoimmune Diabetes in Adults (LADA) compared to Type 2 Diabetes. Front. Physiol. 2019, 10, 320. [Google Scholar] [CrossRef] [PubMed]
- Hjort, R.; Ahlqvist, E.; Carlsson, P.-O.; Grill, V.; Groop, L.; Martinell, M.; Rasouli, B.; Rosengren, A.; Tuomi, T.; Åsvold, B.O.; et al. Overweight, obesity and the risk of LADA: Results from a Swedish case-control study and the Norwegian HUNT Study. Diabetologia 2018, 61, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Vardi, P.; Ziegler, A.G.; Mathews, J.H.; Dib, S.; Keller, R.J.; Ricker, A.T.; Wolfsdorf, J.; Herskowitz, R.D.; Rabizadeh, A.; Eiswnbarth, G.S.; et al. Concentration of insulin autoantibodies at onset of type I diabetes. Inverse log-linear correlation with age. Diabetes Care 1988, 11, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 2017, 3, 17016. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, Y.; Kim, J.T.; Kim, E.K. Prevalence and clinical characteristics of recently diagnosed type 2 diabetes patients with positive anti-glutamic acid decarboxylase antibody. Diabetes Metab. J. 2012, 36, 136–143. [Google Scholar] [CrossRef]
- Sorgjerd, E.P.; Thorsby, P.M.; Torjesen, P.A. Presence of anti-GAD in a non-diabetic population of adults; time dynamics and clinical influence: Results from the HUNT study. BMJ Open Diabetes Res. Care 2015, 3, e000076. [Google Scholar] [CrossRef]
- Hattersley, A.T.; Greeley, S.A.; Polak, M.; Rubio-Cabezas, O.; Njølstad, P.R.; Mlynarski, W.; Castano, L.; Carlsson, A.; Raile, K.; Chi, D.V.; et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr. Diabetes 2018, 19 (Suppl. 27), 47–63. [Google Scholar] [CrossRef] [PubMed]
- Thunander, M.; Törn, C.; Petersson, C.; Ossiansson, B.; Fornander, J.; Landin-Olsson, M. Levels of C-peptide, body mass index and age, and their usefulness in classification of diabetes in relation to autoimmunity, in adults with newly diagnosed diabetes in Kronoberg, Sweden. Eur. J. Endocrinol. 2012, 166, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Leighton, E.; Sainsbury, C.A.; Jones, G.C. A practical review of C-peptide testing in diabetes. Diabetes Ther. 2017, 8, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Levitt Katz, L.E. C-peptide and 24-hour urinary C-peptide as markers to help classify types of childhood diabetes. Horm. Res. Paediatr. 2015, 84, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Agladioglu, S.; Sagsak, E.; Aycan, Z. Urinary C-peptide/Creatinine ratio can distinguish Maturity-Onset Diabetes of the Young from type 1 diabetes in children and adolescents: A single-center experience. Horm. Res. Paediatr. 2015, 84, 54–61. [Google Scholar] [CrossRef]
- Bouche, C.; Lopez, X.; Fleischman, A.; Cypess, A.M.; O’Shea, S.; Stefanovski, D.; Bergman, R.N.; Rogatsky, E.; Stein, D.T.; Kahn, C.R.; et al. Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proc. Natl. Acad. Sci. USA 2010, 107, 4770–4775. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, E.; Bolli, G.B.; Frier, B.M.; Little, R.R.; Leslie, R.D.; Pozzilli, P.; Buzzetti, R. C-peptide determination in the diagnosis of type of diabetes and its management: A clinical perspective. Diabetes Obes. Metab. 2022, 24, 1912–1926. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Xie, Y.; Xiang, Y.; Yan, X.; Huang, G.; Zhou, Z. Decline Pattern of Beta-cell Function in Adult-onset Latent Autoimmune Diabetes: An 8-year Prospective Study. J. Clin. Endocrinol. Metab. 2020, 105, dgaa205. [Google Scholar] [CrossRef]
- Cho, M.J.; Kim, M.S.; Kim, C.J.; Kim, E.Y.; Kim, J.D.; Lee, D.-Y. Fasting serum C-peptide is useful for initial classification of diabetes mellitus in children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2014, 19, 80–85. [Google Scholar] [CrossRef]
- Levitt Katz, L.E.; Jawad, A.F.; Ganesh, J.; Abraham, M.; Murphy, K.; Lipman, T.H. Fasting c-peptide and insulin-like growth factor-binding protein-1 levels help to distin-guish childhood type 1 and type 2 diabetes at diagnosis. Pediatr. Diabetes 2007, 8, 53–59. [Google Scholar] [CrossRef]
- Geneş, D.; Pekkolay, Z.; Şimşek, M.; Saraçoğlu, H.; Turgut, M.; Tekeş, S.; Tuzcu, A.K. Comparison of c-peptide levels in monogenic forms of diabetes with other types of diabetes: A single-center study. Acta Endocrinol. 2023, 19, 281–285. [Google Scholar]
- Buzzetti, R.; Tuomi, T.; Mauricio, D.; Pietropaolo, M.; Zhou, Z.; Pozzilli, P.; Leslie, R.D. Management of latent autoimmune diabetes in adults: A consensus statement from an international expert panel. Diabetes 2020, 69, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.I.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The Management of Type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021, 44, 2589–2625. [Google Scholar] [CrossRef] [PubMed]
- Haban, P.; Simoncic, R.; Zidekova, E.; Ozdin, L. Role of fasting serum C-peptide as a predictor of cardiovascular risk associated with the metabolic X-syndrome. Med. Sci. Monit. 2002, 8, CR175-9. [Google Scholar] [PubMed]
- Törn, C.; Mueller, P.W.; Schlosser, M.; Bonifacio, E.; Bingley, P.J.; Laboratories, P. Diabetes Antibody Standardization Program: Evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 2008, 5, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Sosenko, J.M.; Skyler, J.S.; Palmer, J.P.; Krischer, J.P.; Cuthbertson, D.; Yu, L.; Schatz, D.A.; Orban, T.; Eisenbarth, G. Diabetes Prevention Trial–Type 1 and Type 1 Diabetes TrialNet Study Groups. A longitudinal study of GAD65 and ICA512 autoantibodies during the progression to type 1 diabetes in Diabetes Prevention Trial-Type 1 (DPT-1) participants. Diabetes Care 2011, 34, 2435–2437. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, C.J.; Beam, C.A.; Boulware, D.; Gitelman, S.E.; Gottlieb, P.A.; Herold, K.C.; Lachin, J.M.; McGee, P.; Palmer, J.P.; Pescovitz, M.D.; et al. Fall in C-peptide during first 2 years from diagnosis: Evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes 2012, 61, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
- Maddaloni, E.; Lessan, N.; Al Tikriti, A.; Buzzetti, R.; Pozzilli, P.; Barakat, M.T. Latent Autoimmune Diabetes in Adults in the United Arab Emirates: Clinical Features and Factors Related to Insulin-Requirement. PLoS ONE 2015, 10, e0131837. [Google Scholar] [CrossRef] [PubMed]
- Mollo, A.; Hernandez, M.; Marsal, J.R.; Esquerda, A.; Rius, F.; Blanco-Vaca, F.; Verdaguer, J.; Pozzilli, P.; de Leiva, A.; Mauricio, D. Action LADA 8. Latent autoimmune diabetes in adults is perched between type 1 and type 2: Evidence from adults in one region of Spain. Diabetes Metab. Res. Rev. 2013, 29, 446–451. [Google Scholar] [CrossRef]
- Bingley, P.J.; Williams, A.J.; Colman, P.G.; Gellert, S.A.; Eisenbarth, G.; Yu, L.; Perdue, L.H.; Pierce, J.J.; Hilner, J.E.; Nierras, C.; et al. Measurement of islet cell antibodies in the Type 1 Diabetes Genetics Consortium: Efforts to harmonize procedures among the laboratories. Clin. Trials 2010, 7 (Suppl. 1), S56–S64. [Google Scholar] [CrossRef]
- Pihoker, C.; Gilliam, L.K.; Hampe, C.S.; Lernmark, A. Autoantibodies in diabetes. Diabetes 2005, 54 (Suppl. 2), S52–S61. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, E. Anti-Islet Autoantibodies in Type 1 Diabetes. Int. J. Mol. Sci. 2023, 24, 10012. [Google Scholar] [CrossRef] [PubMed]
- McDonald, T.J.; Colclough, K.; Brown, R.; Shields, B.; Shepherd, M.; Bingley, P.; Williams, A.; Hattersley, A.T.; Ellard, S. Islet autoantibodies can discriminate maturity-onset diabetes of the young (MODY) from Type 1 diabetes. Diabet. Med. 2011, 28, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.K.; DuBose, S.N.; Haller, M.J.; Miller, K.M.; DiMeglio, L.A.; Bethin, K.E.; Goland, R.S.; Greenberg, E.M.; Liljenquist, D.R.; Ahmann, A.J.; et al. Prevalence of detectable C-peptide according to age at diagnosis and duration of type 1 diabetes. Diabetes Care 2014, 38, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Haupt, E.; Haupt, A.; Herrmann, R.; Benecke-Timp, A.; Vogel, H.; Walter, C. The KID Study V: The natural history of type 2 diabetes in younger patients still practising a profession. Heterogeneity of basal and reactive C-peptide levels in relation to BMI, duration of disease, age and HbA1. Exp. Clin. Endocrinol. Diabetes 1999, 107, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Chaillous, L.; Bouhanick, B.; Kerlan, V.; Mathieu, E.; Lecomte, P.; Ducluzeau, P.-H.; Delamaire, M.; Sonnet, E.; Maugendre, D.; Maréchaud, R.; et al. Clinical and metabolic characteristics of patients with latent autoimmune diabetes in adults (LADA): Absence of rapid beta-cell loss in patients with tight metabolic control. Diabetes Metab. 2010, 36, 64–70. [Google Scholar] [CrossRef]
- Thunander, M.; Thorgeirsson, H.; Törn, C.; Petersson, C.; Landin-Olsson, M. B-cell function and metabolic control in latent autoimmune diabetes in adults with early versus conventional treatment: A 3-year follow-up. Eur. J. Endocrinol. 2011, 164, 239–245. [Google Scholar] [CrossRef]
T1D (n = 38 *) | T2D (n = 49) | MODY (n = 13 *) | LADA (n = 61) | p ** | |||||
---|---|---|---|---|---|---|---|---|---|
T2D vs. T1D | T2D vs. MODY | T1D vs. LADA | T2D vs. LADA | LADA vs. MODY | |||||
Age (years) | 27 | 60 | 37 | 50 | <0.001 | <0.001 | <0.001 | 0.010 | 0.007 |
(23–35) | (46–71) | (25–52) | (43–59) | ||||||
Disease duration (years) | 17 (11.1–24) | 13.6 (11–16.9) | 19 (11.2–30.4) | 12 (8.2–14.7) | NS | ||||
Female (%) | 66 | 53 | 54 | 61 | NS | ||||
BMI (kg/m2) | 24.4 | 29 | 26.4 | 25.9 | 0.012 | NS | NS | 0.013 | NS |
(22.2–28.5) | (24.9–31.7) | (24.7–27.8) | (24.0–28.4) | ||||||
WC (cm) | 88 | 105 | 91 | 92 | <0.001 | 0.012 | 0.012 | <0.001 | NS |
(79–94) | (92–114) | (77–101) | (87–99) | ||||||
Female | 85 | 107 | 91 | 92 | <0.001 | NS | 0.015 | 0.009 | NS |
(77–94) | (90–113) | (82–112) | (87–97) | ||||||
Male | 90 | 105 | 85 | 94 | 0.008 | 0.010 | NS | 0.002 | NS |
(80–102) | (94–116) | (70–96) | (86–100) | ||||||
WHtR | 0.54 | 0.64 | 0.54 | 0.59 | <0.001 | 0.014 | 0.001 | 0.002 | NS |
(0.49–0.59) | (0.58–0.71) | (0.46–0.60) | (0.56–0.62) | ||||||
Female | 0.53 | 0.66 | 0.57 | 0.59 | <0.001 | NS | <0.001 | 0.008 | NS |
(0.48–0.58) | (0.60–0.74) | (0.50–0.72) | (0.57–0.63) | ||||||
Male | 0.55 | 0.62 | 0.48 | 0.57 | NS | 0.025 | NS | 0.019 | NS |
(0.49–0.62) | (0.55–0.67) | (0.42–0.55) | (0.50–0.60) |
T1D (n = 38 *) | T2D (n = 49) | MODY (n = 13 *) | LADA (n = 61) | p ** | |||||
---|---|---|---|---|---|---|---|---|---|
T2D vs. T1D | T2D vs. MODY | T1D vs. LADA | T2D vs. LADA | LADA vs. MODY | |||||
Glucose (mg/dL) | 138 | 135 | 185 | 190 | NS | 0.04 | 0.001 | 0.001 | NS |
(81–188) | (115–176) | (116–268) | (139–254) | ||||||
HbA1c (%) | 8.8 | 8.25 | 9.8 | 9.4 | NS | ||||
(7.6–10.1) | (6.7–10.2) | (7.8–12.1) | (7.2–11.0) | ||||||
HbA1c (mmol/mol) | 73 | 67 | 84 | 79 | NS | ||||
(60–87) | (50–88) | (62–109) | (55–97) | ||||||
TC (mg/dL) | 188 | 181 | 207 | 195 | NS | ||||
(144–223) | (161–211) | (163–222) | (162–233) | ||||||
TG (mg/dL) | 133 | 164 | 156 | 172 | NS | ||||
(89–198) | (120–234) | (132–280) | (117–222) | ||||||
LDL-c (mg/dL) | 110 | 99 | 96 | 128 | NS | NS | 0.036 | 0.002 | NS |
(79–133) | (76–123) | (85–147) | (94–154) | ||||||
HDL-c (mg/dL) | 45 (39–61) | 45 (34–56) | 41 (33–52) | 47 (41–54) | NS | ||||
Female | 52 (43–64) | 49 (42–60) | 40 (31–57) | 48 (42–54) | |||||
Male | 39 (34–52) | 39 (30–51) | 41 (33–55) | 46 (40–53) | |||||
Creatinine clearance (mL/min/24 h) | 77 (60–95) | 91 (72–140) | 102 (62–126) | 92 (77–112) | 0.035 | NS | NS | 0.003 | NS |
Creatinine (mg/dL) | 0.76 (0.64–0.96) | 0.91 (0.73–1.26) | 0.70 (0.64–0.95) | 0.75 (0.64–0.93) | 0.033 | NS | NS | 0.007 | NS |
C-Peptide (ng/mL) | 0.2 (0.01–0.85) | 2.4 (1.3–3.6) | 1.14 (0.80–1.83) | 1.87 (1.27–2.48) | <0.001 | 0.028 | <0.001 | 0.019 | NS |
C-peptide after hyperglycemic exclusion | 0.2 (0.01–0.95) | 2.69 (1.3–3.6) | 1.39 (0.77–2.0) | 1.72 (0.80–2.30) | <0.001 | 0.036 | <0.001 | 0.010 | NS |
Anti-GAD+ (n = 161) | 55% (21/38) | 4% (2/49) | 0% (0/13) | 23% (14/61) | 0.001 | NS | 0.037 | 0.050 | NS |
Anti-IA2 + (n = 161) | 42% (16/38) | 0% (0/49) | 0% (0/13) | 62% (38/61) | 0.007 | NS | <0.001 | <0.001 | <0.001 |
Medication | T1D (n = 38) | T2D (n = 49) | MODY (n = 13) | LADA (n = 61) | p (T2D vs. T1D) | p (T2D vs. MODY) | p (T1D vs. LADA) | p (T2D vs. LADA) |
---|---|---|---|---|---|---|---|---|
Rapid-acting insulin (Humalog or lispro) | 29 | 9 | 3 | 12 | <0.001 | NS | <0.001 | NS |
(76%) | (18%) | (23%) | (20%) | |||||
Intermediate-acting insulin (NPH) | 14 | 24 | 4 | 25 | 0.001 | NS | NS | NS |
(37%) | (49%) | (31%) | (41%) | |||||
Long-acting insulin (glargine) | 21 | 5 | 4 | 10 | 0.001 | NS | <0.001 | NS |
(55%) | (10%) | (31%) | (16%) | |||||
Metformin | 5 (13%) | 27 (45%) | 7 (54%) | 42 (69%) | 0.001 | NS | <0.001 | NS |
Sulphonylurea | 0 (0%) | 4 (8%) | 10 (77%) | 17 (28%) | NS | <0.001 | <0.001 | 0.006 |
Use of insulin | 100% | 29 (59%) | 9 (69%) | 33 (54%) | <0.001 | <0.001 | <0.001 | NS |
Insulin doses (U/kg) | 0.80 | 0.50 | 0.61 | 0.12 | <0.001 | NS | <0.001 | <0.001 |
(0.60–1.0) | (0.31–0.67) | (0.39–0.65) | (0.04–0.51) | |||||
Total insulin dose (U/day) | 46.5 | 35 | 34 | 31 | 0.002 | NS | <0.001 | NS |
(38–70) | (25–48.5) | (27–55) | (18–42) |
Total Study Population | Type 1 Diabetes | Type 2 Diabetes | MODY | LADA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
rho | p | rho | p | rho | p | rho | p | rho | p | |
Fasting C-peptide vs. weight | 0.452 | <0.001 | 0.524 | 0.012 | 0.499 | 0.001 | 0.446 | NS | 0.276 | 0.039 |
vs. BMI | 0.390 | <0.001 | 0.454 | 0.034 | 0.380 | 0.017 | 0.410 | NS | 0.317 | 0.019 |
vs. waist circumference | 0.491 | <0.001 | 0.430 | NS | 0.506 | 0.001 | 0.237 | NS | 0.212 | NS |
vs. WHtR | 0.397 | <0.001 | 0.369 | NS | 0.332 | 0.039 | 0.213 | NS | 0.142 | NS |
vs. TAG | 0.408 | <0.001 | 0.272 | NS | 0.507 | 0.001 | 0.005 | NS | 0.372 | 0.006 |
vs. HDL-c | −0.295 | 0.001 | −0.403 | NS | −0.326 | 0.049 | −0.339 | NS | −0.299 | 0.028 |
Variable | Total Group | Type 2 Diabetes | Type 1 Diabetes | LADA | ||||
---|---|---|---|---|---|---|---|---|
ß * (IC95%) | p | ß * (IC95%) | p | ß * (IC95%) | p | ß * (IC95%) | p | |
WC | 0.468 (0.038–0.074) | <0.001 | 0.496 (0.033–0.107) | <0.001 | NS | NS | ||
Insulin use | −0.280 (−1.351–−0.401) | <0.001 | −0.288 (−2.093–−0.110) | 0.030 | NS | NS | ||
Sex | 0.217 (0.207–1.178) | 0.006 | 0.307 (0.183–2.211) | 0.022 | NS | NS | ||
BMI | NA | NS | 0.482 (0.012–0.235) | 0.031 | NS | |||
HbA1c | NS | NS | NS | −0.280 (−0.227–−0.002) | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemán-Contreras, R.; Gómez-Díaz, R.A.; Noyola-García, M.E.; Mondragón-González, R.; Wacher, N.; Ferreira-Hermosillo, A. Utility of Fasting C-Peptide for the Diagnostic Differentiation of Patients with Type 1, Type 2 Diabetes, MODY, and LADA. Life 2024, 14, 550. https://doi.org/10.3390/life14050550
Alemán-Contreras R, Gómez-Díaz RA, Noyola-García ME, Mondragón-González R, Wacher N, Ferreira-Hermosillo A. Utility of Fasting C-Peptide for the Diagnostic Differentiation of Patients with Type 1, Type 2 Diabetes, MODY, and LADA. Life. 2024; 14(5):550. https://doi.org/10.3390/life14050550
Chicago/Turabian StyleAlemán-Contreras, Ricardo, Rita A. Gómez-Díaz, Maura E. Noyola-García, Rafael Mondragón-González, Niels Wacher, and Aldo Ferreira-Hermosillo. 2024. "Utility of Fasting C-Peptide for the Diagnostic Differentiation of Patients with Type 1, Type 2 Diabetes, MODY, and LADA" Life 14, no. 5: 550. https://doi.org/10.3390/life14050550
APA StyleAlemán-Contreras, R., Gómez-Díaz, R. A., Noyola-García, M. E., Mondragón-González, R., Wacher, N., & Ferreira-Hermosillo, A. (2024). Utility of Fasting C-Peptide for the Diagnostic Differentiation of Patients with Type 1, Type 2 Diabetes, MODY, and LADA. Life, 14(5), 550. https://doi.org/10.3390/life14050550