Modulation of Tropane Alkaloids’ Biosynthesis and Gene Expression by Methyl Jasmonate in Datura stramonium L.: A Comparative Analysis of Scopolamine, Atropine, and Hyoscyamine Accumulation
Abstract
:1. Introduction
2. Results
2.1. HPLC Results
2.2. The Effect of MJ on the Expression of Genes Involved in the Biosynthesis of Tropane Alkaloids
2.3. Principal Component Analysis
2.4. Correlation Test
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Methyl Jasmonate Induction
4.3. RNA Isolation and Reverse Transcription
4.4. Primer Design and Quantitative Real-Time PCR (qRT-PCR)
4.5. Preparation of Extracts for HPLC Analysis
4.6. High-Performance Liquid Chromatography (HPLC)
4.7. Principal Component Analysis
4.8. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornelius, G.; Lohiya, G.; Sharma, R.; Scholar, R. Chemical Constituents and Pharmacological Properties of Datura stramonium (Thorn Apple)—A Review. Int. J. Eng. Res. Technol. 2019, 8, 512–515, ISSN: 2278-0181. [Google Scholar]
- Ryan Supervisor, C.; József Kutszegi, G. Jimsonweed (Datura stramonium L.) Poisoning in Horse. Doctoral Dissertation; University of Veterinry Medicine Budapest: Budapest, Hungary, 2022. [Google Scholar]
- Akbar, S. Datura stramonium L. (Solanaceae). In Handbook of 200 Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2020; pp. 857–868. [Google Scholar] [CrossRef]
- Thapa, A.; Ali, Y.; Madan, S.; Verma, P.; Verma, P.; Gaurav, N. An Assessment of in Vitro Propagation and Medicinal Properties of Datura stramonium (Dhatura). Sci. Temper 2022, 13, 293–301. [Google Scholar] [CrossRef]
- Pretorius, E.; Marx, J. Datura Stramonium in Asthma Treatment and Possible Effects on Prenatal Development. Environ. Toxicol. Pharmacol. 2006, 21, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Rasila Devi, M.; Bawari, M.; Paul, S. Neurotoxic and Medicinal Properties of Datura stramonium L.—Review. Biol. Environ. Sci. 2011, 7, 139–144. [Google Scholar]
- Sharma, M.; Dhaliwal, I.; Rana, K.; Delta, A.K.; Kaushik, P. Phytochemistry, Pharmacology, and Toxicology of Datura Species—A Review. Antioxidants 2021, 10, 1291. [Google Scholar] [CrossRef]
- Cinelli, M.A.; Jones, A.D. Alkaloids of the Genus Datura: Review of a Rich Resource for Natural Product Discovery. Molecules 2021, 26, 2629. [Google Scholar] [CrossRef]
- Jirschitzka, J.; Dolke, F.; D’Auria, J.C. Increasing the Pace of New Discoveries in Tropane Alkaloid Biosynthesis. Adv. Bot. Res. 2013, 68, 39–72. [Google Scholar] [CrossRef]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of Alkaloids (Indole Alkaloids, Isoquinoline Alkaloids, Tropane Alkaloids). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–567. [Google Scholar] [CrossRef]
- Grynkiewicz, G.; Gadzikowska, M. Tropane Alkaloids as Medicinally Useful Natural Products and Their Synthetic Derivatives as New Drugs*. Pharmacol. Rep. 2008, 60, 439–463. [Google Scholar]
- Schlesinger, D. Accumulation of Tropane Alkaloids in the Solanaceae; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Huang, J.P.; Wang, Y.J.; Tian, T.; Wang, L.; Yan, Y.; Huang, S.X. Tropane Alkaloid Biosynthesis: A Centennial Review. Nat. Prod. Rep. 2021, 38, 1634–1658. [Google Scholar] [CrossRef]
- Kohnen-Johannsen, K.L.; Kayser, O. Tropane Alkaloids: Chemistry, Pharmacology, Biosynthesis and Production. Molecules 2019, 24, 796. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; López-Martínez, L.X.; Contreras-Angulo, L.A.; Elizalde-Romero, C.A.; Heredia, J.B. Plant Alkaloids: Structures and Bioactive Properties. In Plant-Derived Bioactives: Chemistry and Mode of Action; Springer: Singapore, 2020; pp. 85–117. [Google Scholar] [CrossRef]
- Palazón, J.; Moyano, E.; Bonfill, M.; Cusidó, R.M.; Piñol, M.T. Chemical Structure of the Basic Tropane Alkaloids. 27 Tropane Alkaloids in Plants and Genetic Engineering of Their Biosynthesis. Floric. Ornam. Plant Biotechnol. 2006, 2, 209–221. [Google Scholar]
- Yamada, Y.; Tabata, M. Plant Biotechnology of Tropane Alkaloids. Plant Biotechnol. 1997, 14, 1–10. [Google Scholar] [CrossRef]
- Ullrich, S.F.; Hagels, H.; Kayser, O. Scopolamine: A Journey from the Field to Clinics. Phytochem. Rev. 2016, 16, 333–353. [Google Scholar] [CrossRef]
- Yang, L.; Stöckigt, J. Trends for Diverse Production Strategies of Plant Medicinal Alkaloids. Nat. Prod. Rep. 2010, 27, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Kohnen-Johannsen, K.L. Molecular Biological Elucidation of Late Tropane Alkaloid Biosynthesis. Ph.D. Thesis, University Dortmund, Dortmund, Germany, 2019. [Google Scholar] [CrossRef]
- Satish, L.; Shamili, S.; Yolcu, S.; Lavanya, G.; Alavilli, H.; Swamy, M.K. Biosynthesis of Secondary Metabolites in Plants as Influenced by Different Factors. In Plant-Derived Bioactives: Production, Properties, and Therapeutic Applications; Springer: Singapore, 2020; pp. 61–100. [Google Scholar] [CrossRef]
- Jeyasri, R.; Muthuramalingam, P.; Karthick, K.; Shin, H.; Choi, S.H.; Ramesh, M. Methyl Jasmonate and Salicylic Acid as Powerful Elicitors for Enhancing the Production of Secondary Metabolites in Medicinal Plants: An Updated Review. Plant Cell Tissue Organ Cult. 2023, 153, 447–458. [Google Scholar] [CrossRef]
- Ho, T.T.; Murthy, H.N.; Park, S.Y. Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures. Int. J. Mol. Sci. 2020, 21, 716. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, W.; Zhang, Y.; Zhang, X.; Lang, D.; Zhang, X. The Roles of Methyl Jasmonate to Stress in Plants. Funct. Plant Biol. 2018, 46, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Moradi, A.; Sharifi, M.; Mousavi, A. Induced Production of Tropane Alkaloids, and Expression of Hyoscyamine 6β-Hydroxylase (H6h) and Putrescine N-Methyl Transferase (Pmt2) Genes in Hairy Roots and Propagated Plantlets of Atropa belladonna L. Elicited by Methyl Jasmonate. S. Afr. J. Bot. 2020, 131, 328–334. [Google Scholar] [CrossRef]
- Jaremicz, Z.; Luczkiewicz, M.; Kisiel, M.; Zárate, R.; Jaber-Vazdekis, N.E.; Migas, P. Multi-Development–HPTLC Method for Quantitation of Hyoscyamine, Scopolamine and Their Biosynthetic Precursors in Selected Solanaceae Plants Grown in Natural Conditions and as In Vitro Cultures. Phytochem. Anal. 2014, 25, 29–35. [Google Scholar] [CrossRef]
- Ally, F.; Mohanlall, V. An Overview of Tropane Alkaloids from Datura stramonium L. J. Pharmacogn. Phytochem. 2020, 9, 5–13. [Google Scholar]
- Wasternack, C.; Song, S. Jasmonates: Biosynthesis, Metabolism, and Signaling by Proteins Activating and Repressing Transcription. J. Exp. Bot. 2017, 68, 1303–1321. [Google Scholar] [CrossRef]
- Sood, M. Jasmonates: “The Master Switch” for Regulation of Developmental and Stress Responses in Plants. J. Plant Growth Regul. 2023, 42, 5247–5265. [Google Scholar] [CrossRef]
- Macioszek, V.K.; Jęcz, T.; Ciereszko, I.; Kononowicz, A.K. Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells 2023, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Pedranzani, H.; Vigliocco, A. Evaluation of Jasmonic Acid and Salicylic Acid Levels in Abiotic Stress Tolerance: Past and Present. In Regulation of Jasmonic Acid and Salicylic Acid Levels in Abiotic Stress Tolerance: Past and Present; Nova Science Publishers: New York, NY, USA, 2017. [Google Scholar]
- Pourhabibian, S.; Iranbakhsh, A.; Ebadi, M.; Hassanpour, H.; Hekmat, A. Alteration in the Callogenesis, Tropane Alkaloid Formation, and Gene Expression in Hyoscyamus niger under Clinorotation. Protoplasma 2024, 261, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Nandy, S.; Das, T.; Dey, A. Role of Jasmonic Acid and Salicylic Acid Signaling in Secondary Metabolite Production. In Jasmonates and Salicylates Signaling in Plants; Springer: Cham, Switzerland, 2021; pp. 87–113. [Google Scholar] [CrossRef]
- Biastoff, S.; Brandt, W.; Dräger, B. Putrescine N-Methyltransferase—The Start for Alkaloids. Phytochemistry 2009, 70, 1708–1718. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Liao, Y.; Tang, Y.; Zhang, H.; Zhang, J.; Liao, Z. Metabolic Effects of Elicitors on the Biosynthesis of Tropane Alkaloids in Medicinal Plants. Plants 2023, 12, 3050. [Google Scholar] [CrossRef] [PubMed]
- Kohnen, K.L.; Sezgin, S.; Spiteller, M.; Hagels, H.; Kayser, O. Localization and Organization of Scopolamine Biosynthesis in Duboisia Myoporoides R. Br. Plant Cell Physiol. 2018, 59, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Palazón, J.; Navarro-Ocaña, A.; Hernandez-Vazquez, L.; Mirjalili, M.H. Application of Metabolic Engineering to the Production of Scopolamine. Molecules 2008, 13, 1722–1742. [Google Scholar] [CrossRef]
- Nakajima, K.; Hashimoto, T. Two Tropinone Reductases, That Catalyze Opposite Stereospecific Reductions in Tropane Alkaloid Biosynthesis, Are Localized in Plant Root with Different Cell-Specific Patterns. Plant Cell Physiol. 1999, 40, 1099–1107. [Google Scholar] [CrossRef]
- Singh, A.; Nirala, N.K.; Das, S.; Narula, A.; Rajam, M.V.; Srivastava, P.S. Overexpression of Odc (Ornithine decarboxylase) in Datura Innoxia Enhances the Yield of Scopolamine. Acta Physiol. Plant. 2011, 33, 2453–2459. [Google Scholar] [CrossRef]
- Hedayati, A.; Hosseini, B.; Palazon, J.; Maleki, R. Improved Tropane Alkaloid Production and Changes in Gene Expression in Hairy Root Cultures of Two Hyoscyamus Species Elicited by Silicon Dioxide Nanoparticles. Plant Physiol. Biochem. 2020, 155, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.M.; Jung, H.Y.; Kang, Y.M.; Yun, D.J.; Bahk, J.D.; Yang, J.K.; Choi, M.S. Effects of Methyl Jasmonate and Salicylic Acid on the Production of Tropane Alkaloids and the Expression of PMT and h6h in Adventitious Root Cultures of Scopolia Parviflora. Plant Sci. 2004, 166, 745–751. [Google Scholar] [CrossRef]
- Albayrak, İ.; Demirci, T.; Baydar, N.G. Enhancement of in Vitro Production of Tropane Alkaloids and Phenolic Compounds in Hyoscyamus Niger by Culture Types and Elicitor Treatments. Plant Cell Tissue Organ Cult. 2024, 156, 72. [Google Scholar] [CrossRef]
- Dubey, N.K.; Singh, P.; Singh, A.; Yadav, S.K. Current Progress in Tropane Alkaloid Production by Transgenic and Heterologous Gene Expression Approaches. In Tropane Alkaloids: Pathways, Potential and Biotechnological Applications; Springer: Singapore, 2021; pp. 113–131. [Google Scholar] [CrossRef]
- Moyano, E.; Jouhikainen, K.; Tammela, P.; Palazón, J.; Cusidó, R.M.; Piñol, M.T.; Teeri, T.H.; Oksman-Caldentey, K.M. Effect of Pmt Gene Overexpression on Tropane Alkaloid Production in Transformed Root Cultures of Datura Metel and Hyoscyamus Muticus. J. Exp. Bot. 2003, 54, 203–211. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, Q.; Cheuk, W.K.; Wu, J. Enhancement of Tanshinone Production in Salvia Miltiorrhiza Hairy Root Culture by Ag+ Elicitation and Nutrient Feeding. Planta Med. 2004, 70, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Deng, F. Effects of Glyphosate, Chlorsulfuron, and Methyl Jasmonate on Growth and Alkaloid Biosynthesis of Jimsonweed (Datura stramonium L.). Pestic. Biochem. Physiol. 2005, 82, 16–26. [Google Scholar] [CrossRef]
- Jariani, P.; Shahnejat-Bushehri, A.A.; Naderi, R.; Naghavi, M.R.; Mofidi, S.S.H. Identification of MiRNAs and Their Target Genes Involved in the Biosynthesis of Flower Color and Scent in Rosa canina L. Iran. J. Sci. 2024, 48, 31–43. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Djilani, A.; Legseir, B. Extraction of Atropine by Ultrasounds in Different Solvent Systems. Fitoterapia 2005, 76, 148–152. [Google Scholar] [CrossRef]
- Hosseini, N.; Nejad Ebrahimi, S.; Salehi, P.; Asghari, B.; Ahmadi, M. Simultaneous Determination of Atropine and Scopolamine in Different Parts of Hyoscyamus Arachnoideus Pojark Plants by High-Performance Liquid Chromatography (HPLC). J. Med. Plants Res. 2011, 5, 3552–3557. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
MJ Concentration (µM) | Scopolamine (Leaf) | Scopolamine (Root) | Hyoscyamine (Leaf) | Hyoscyamine (Root) |
---|---|---|---|---|
0 | 3.05 ± 0.09 | 3.11 ± 0.15 | 20.54 ± 0.79 | 8.19 ± 0.22 |
150 | 3.15 ± 0.06 | 4 ± 0.06 | 23.85 ± 0.85 | 15.75 ± 0.06 |
300 | 3.19 ± 0.15 | 3.73 ± 0.12 | 10.68 ± 0.1 | 6.66 ± 0.22 |
Target Gene | Primer Sequences (Sequence in 5′-3′ Direction) |
---|---|
h6h | F: 5′GAACGACGCTGTAATGAGGAG3′ R: 5′GTCAACTTCCTCACTTCCACT3′ |
PMT | F: 5′GCTTCGTTATCCTACCGTTG3′ R: 5′ACGAGGATCATTAAAGTTAGCC3′ |
TR1 | F: 5′CCTTGTTACTGGTGGCTCTAA3′ R: 5′CCAAATTTCAAGGCATTCGT3′ |
TR2 | F: 5′AGGAGCAATGGATCAACTCA3′ R: 5′TCGACCAGAGAAGTTGCAATA3′ |
TUB | F: 5’CCATAAGTTTGATCTCATGTATGC3 R: 5’CAAGGTCCTCACGAGCCT3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasi, A.; Sabokdast, M.; Naghavi, M.R.; Jariani, P.; Dedičová, B. Modulation of Tropane Alkaloids’ Biosynthesis and Gene Expression by Methyl Jasmonate in Datura stramonium L.: A Comparative Analysis of Scopolamine, Atropine, and Hyoscyamine Accumulation. Life 2024, 14, 618. https://doi.org/10.3390/life14050618
Rasi A, Sabokdast M, Naghavi MR, Jariani P, Dedičová B. Modulation of Tropane Alkaloids’ Biosynthesis and Gene Expression by Methyl Jasmonate in Datura stramonium L.: A Comparative Analysis of Scopolamine, Atropine, and Hyoscyamine Accumulation. Life. 2024; 14(5):618. https://doi.org/10.3390/life14050618
Chicago/Turabian StyleRasi, Arash, Manijeh Sabokdast, Mohammad Reza Naghavi, Parisa Jariani, and Beáta Dedičová. 2024. "Modulation of Tropane Alkaloids’ Biosynthesis and Gene Expression by Methyl Jasmonate in Datura stramonium L.: A Comparative Analysis of Scopolamine, Atropine, and Hyoscyamine Accumulation" Life 14, no. 5: 618. https://doi.org/10.3390/life14050618
APA StyleRasi, A., Sabokdast, M., Naghavi, M. R., Jariani, P., & Dedičová, B. (2024). Modulation of Tropane Alkaloids’ Biosynthesis and Gene Expression by Methyl Jasmonate in Datura stramonium L.: A Comparative Analysis of Scopolamine, Atropine, and Hyoscyamine Accumulation. Life, 14(5), 618. https://doi.org/10.3390/life14050618