Dried Plasma for Major Trauma: Past, Present, and Future
Abstract
:1. Introduction
2. History of FDP
3. Current Status of Dried Plasma
- Starting plasma: LyoPlas—single-donor FFP; LyoPlas is ABO-specific and has unit-to-unit variability similar to single-donor FFP. FLyP and Bioplasma—mini- and large-pooled plasma; pooled, pathogen-reduced FDP (FLyP, Bioplasma FDP) are ABO-universal but have improved unit-to-unit consistency.
- Pathogen reduction: LyoPlas—not valid. FLyP—amotosalen with UV light. Bioplasma FDP—S/D treatment.
- Freeze-drying process and water content: LyoPlas—maintains a water content below 1% through its freeze-drying process.
- pH after rehydration: FLyP—achieves a pH of 8.
- Shelf life: LyoPlas—15 months under storage conditions of 2–25 °C. FLyP—two years under similar storage conditions.
- Other: differences in the type of additive(s) may affect stability, functional profile and biological composition have also been mentioned.
Name | Plasma Source | Production Process and Reconstitution | Properties | Current Status | References |
---|---|---|---|---|---|
French FDP (FLyP) | Pooled apheresis plasma (mixed of A, B, and AB blood group) from <11 donors screened. Plasma quarantine and donor retesting, and a robust hemovigilance program via hemovigiliance program, leukocyte reduced, no HLA antibody women; ultraviolet light process (amotosalen) for pathogen inactivation. | Quickly frozen in a glass bottle before being freeze-dried in a freeze dryer for 4 days with no need for additional compound. Reconstituted in 200 mL of water with a transfer kit within 3–6 min, allowing for immediate transfusion with a transfusion kit with vented air intake. | Normal clotting factor levels, ABO-universal, shelf-life of 2 years at RT, the fibrinogen and clotting factor levels of FLyP are equivalent to FFP | Use by French Military since 1994, US military since 2018; licensed by ANSM (Agence nationale de sécurité du médicament et des produits de santé) for civilian use in France since 2012. No reactions or infectious complications have been reported out of more than 1100 units transfused since 1994. | Cuenca et al., 2020 [54]; Curry et al., 2019 [67]; Daban et al., 2010 [70]; Martinaud et al., 2011 [68] and 2012 [69]; Sailliol et al., 2013 [48] |
German FDP (LyoPlas) | Single-donor plasma. Screened via hemovigiliance program, quarantine-stored for at least 4 months, leukocyte reduced. No HLA antibody in women. | One unit of plasma (200 mL) transferred and filtered to a glass bottle via steam-sterilized “bottle-in-bag” system is frozen below −30 °C in a separate step, followed by lyophilization in specially designed freeze dryers by a stepwise increase in the temperature from −45 °C to 15 °C. Reconstituted in 200 mL water within 10 min or less depending on the individual plasma composition (proteins and lipids) and the temperature of the water bag. | Normal clotting factor levels, ABO type specific, shelf life of 24 months at 2–8 °C, most factors remained stable, with only 10% reduction in FV, VIII and vWF, while storage at RT led to 54% decrease in fibrinogen levels and vWF activity, recommended shelf life of 15 months. | Use in general population in German, Israeli, and UK militaries, as well as in civilian population. Used by Norwegian helicopter EMS. The rates and types of transfusion-related complications were similar for FFP and LyoPlas. No viral transmission has been reported since its inception in 2007 | Curry et al., 2019 [67]; Gokhale et al., 2016 [71]; Glassberg et al., 2013 [23]; Bux et al., 2013 [49] |
Bioplasma FDP (National Bioproducts Institute, Pinetown, South Africa) | Pooled plasma from up to 1500 donors. Screened and comprehensive tested via hemovigilance program, solvent detergent treatment for pathogen inactivation. | Freeze-dried in 50 mL and 200 mL glass bottles. Reconstituted with either 50 or 200 mL of water in a glass bottle in <10 min (median time of 1.5 min). | Clotting factor levels ≥040 IU/mL, ABO-universal, shelf life of 2 years when stored below 25 °C. Contraindicated in severe protein S deficiency, no increase in adverse events compared to FFP. | Use in general population and all types of patients in South Africa and surrounding countries since 1996 with a high degree of safety. | Chapanduka et al., 2002 [83]; Curry et al., 2019 [67]; Solheim et al., 2008 [72]; Wise et al., 2020 [73] |
Next-generation single-donor FDP (RePlas/EZPLAZ) manufactured by Vascular Solution LLC (acquired by Teleflex Inc., Wayne, PA, USA) | Single-donor apheresis-derived FFPs (ACD-A anticoagulant) and whole blood-derived FFPs (CPD anticoagulant). | Magnum shelf freeze dryer (Millrock Technology) in plastic IV bag containers. Reconstituted with approximately 260–270 mL (250 mL bag with overage) of sterile water for injection through fluid transfer set. | The average time of reconstitution was 67 s (range: 43–106); FDP coagulation factors, clotting times, and product quality (pH, total protein, and osmolality) post-lyophilization were preserved, ABO type specific. | Clinical dose escalation safety trial in healthy volunteer subjects. | Cancelas et al., 2022 [93]; Pusateri et al., 2019 [90]; Pusateri et al., 2022 [22]; Teleflex 2021 [95] |
Terumo BCT FDP (TFDP) | Fresh frozen plasma (FFP) units were thawed, sampled, pooled in groups of 10 units or single donor | Using Terumo’s freeze-drying system in a durable, light-weight plastic package suitable for field use. Reconstituted within 3 min with 250 mL water for injection to provide a 1:1 reconstitution ratio back to the original plasma volume. | Coagulation factor activities, which were within clinical ranges, ABO type specific, stored for up to 2 years at room temperature and 4 °C. | Not approved for human use. | Flaumenhaft et al., 2021 [91]; Pusateri et al., 2019 [90] |
Canadian FDP (CFDP) | 10 units of Canadian-sourced FFP were pooled using a kit provided by the manufacturer (Terumo BCT). | Using Terumo’s freeze-drying system in a durable, light-weight plastic package suitable for field use. Reconstituted with 250 mL sterile water in less than 5 min | Equivalent to initial frozen plasma with respect to global hemostasis. Changes in coagulation and fibrinolysis factors were <15%; ABO type specific. | Not approved for human use. | Peng et al., 2021 [58]; Sheffield et al., 2022 [94] |
Single-donor FDP (HemCon) | Derived from licensed FFP from nonremunerated single-donor volunteer donors. Transferred into a container consisting of spike ports, semi-permeable GORE® membrane, heat transfer film and a novel closure system, lyophilized using a unique cycle that results in a stable, dry cake in a closed container system | Licensed FFP is aseptically placed into single-unit lyophilization containers and frozen under vacuum for 4 to 6 days in a commercial-scale lyophilizer and stored in a ruggedized administration container suitable for the field. Reconstituted with 200–250 mL of pH-adjusted sterile water in 2 min | Factors within normal range, with a loss of less than 15% activity for all measured factors, compared to FFP, the retention for FVIIa (−14%), protein S (12%) and F1+2 (28%) appeared to have larger changes. | Successful phase I clinical trial with no serious adverse events or safety concerns. Further development discontinued due to business reasons | Cancelas et al., 2011 [101]; Winata et al., 2011 [100]; Pusateri et al., 2016 [45]; HemCon 2012 [102] |
Pooled S/D-treated FDP (OctaplasLG Lyo) | S/D-treated coagulation active plasma product (630–1520 units of single-donor FFP of the same ABO blood group), manufactured at Octapharma AB (Stockholm, Sweden). | Filter and lyophilized in glass bottles. Reconstituted within 10–15 min with water for injection provided in a flexible bag. | Stored at room temperature for up to 2 years ABO-universal | Approved for prehospital transfusion regulatory assessment for marketing authorization in selected countries of the European Union. | Heger and Gruber 2022 [92]; Octapharma 2023 [96] |
Pooled spray-dried plasma (Resusix) by Entegrion | Plasmapheresis solvent/detergent pathogen-reduced, pooled, tested for HIV, HAV, HBV, HCV, and B19 Parvovirus pooled (1000–1500 units). | A spray-drying technique where a stream of plasma is exposed to high-temperature nitrogen gas (55 °C) for 15 milliseconds. Reconstituted with citrate phosphate buffer before use. | ABO-universal; similar to that obtained by freeze-drying and within EU and FDA limits. | Phase I clinical trial completed in 2016. | Pusateri et al., 2019 [90]; Pusateri et al., 2016 [45]; Entegrion 2017 [97] |
Single-donor spray-dried plasma (Frontline on-demand plasma (ODP) by Velico Medical | Single-donor plasma pretreated with glycine–hydrochloric acid and stored at 1 to 6 °C. | A prototype spray continuous-flow spray-drying in an open-system plastic disposable that was integrally attached to the finished product bag dryer by Velico Medical: one unit at a time at local blood centers. Reconstituted in 3.65 ± 0.44 min (n = 60) in water. Reconstituted in water (190 mL) and 1.5% glycine within 5 min. | Comparable global coagulation function PT, PTT and TEG, greater than 80% levels of functional coagulation factors and related proteins and chemistry analytes except for Factor XIII (74%) and 60% vWF/RiCoF. When reconstituted in water 25% recovery rates for FV and FVIII compared to FFP control were 58% for FVIII, 72% for protein S, and 75% for V; ABO type specific. | Approved for phase I clinical trial. | Pusateri et al., 2022 [22]; Liu et al., 2019 [98]; Booth et al., 2012 [61]; Velico Medical [99] |
4. In Vitro Characterization of Dried Plasma
4.1. Hemostatic Properties before and after Drying Process
4.1.1. FLyP
4.1.2. LyoPlas
4.1.3. Bioplasma FDP
4.1.4. Teleflex FDP
4.1.5. HemCon FDP
4.1.6. Terumo BCT FDP
4.1.7. OctaplasLG Lyo
4.1.8. Lab-Made FDP
4.2. Hemostatic Stability of FDP during Storage
4.2.1. LyoPlas
4.2.2. Terumo BCT FDP
4.2.3. Lab-Grade FDP
4.2.4. Other FDP Storage Stability Studies
4.3. Hemostatic Stability of FDP after Reconstitution
4.3.1. FLyP
4.3.2. LyoPlas
4.3.3. Canadian FDP
4.4. Spray-Dried Plasma (SDP)
4.4.1. Velico Medical ODP
4.4.2. Entegrion Resusix
4.4.3. Assessing Drying Effects of FDP and SDP Using Porcine FFP
5. Discussion
- Physiological relevance, thereby preventing hemodilution and acidosis;
- Provision of coagulation factors and reduction in hyperfibrinolysis;
- Correction of the endotheliopathy of the trauma;
- Reduction in intestinal permeability;
- Reduction in metabolic derangements;
- Provision of logistical advantages in scenarios when storing and thawing frozen plasma is not feasible and rapid plasma transfusion is required, such as prehospital and battlefield conditions.
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eastridge, B.J.; Mabry, R.L.; Seguin, P.; Cantrell, J.; Tops, T.; Uribe, P.; Mallett, O.; Zubko, T.; Oetjen-Gerdes, L.; Rasmussen, T.E.; et al. Death on the battlefield (2001–2011): Implications for the future of combat casualty care. J. Trauma Acute Care Surg. 2012, 73, S431–S437. [Google Scholar] [CrossRef] [PubMed]
- Pannell, D.; Brisebois, R.; Talbot, M.; Trottier, V.; Clement, J.; Garraway, N.; McAlister, V.; Tien, H.C. Causes of death in canadian afghanistan and implications on tactical combat casualty care provision. J. Trauma 2011, 71, S401–S407. [Google Scholar] [PubMed]
- Eastridge, B.J. Injuries to the abdomen from explosion. Curr. Trauma Rep. 2017, 3, 69–74. [Google Scholar] [CrossRef]
- Tisherman, S.A.; Schmicker, R.H.; Brasel, K.J.; Bulger, E.M.; Kerby, J.D.; Minei, J.P.; Powell, J.L.; Reiff, D.A.; Rizoli, S.B.; Schreiber, M.A. Detailed description of all deaths in both the shock and traumatic brain injury hypertonic saline trials of the resuscitation outcomes consortium. Ann. Surg. 2015, 261, 586–590. [Google Scholar] [CrossRef] [PubMed]
- U.S. Burden of Disease Collaborators. The state of US health, 1990–2010: Burden of diseases, injuries, and risk factors. JAMA 2013, 310, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Hess, J.R.; Brohi, K.; Dutton, R.P.; Hauser, C.J.; Holcomb, J.B.; Kluger, Y.; Mackway-Jones, K.; Parr, M.J.; Rizoli, S.B.; Yukioka, T.; et al. The coagulopathy of trauma: A review of mechanisms. J. Trauma Acute Care Surg. 2008, 65, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Davenport, R.A.; Brohi, K. Cause of trauma-induced coagulopathy. Curr. Opin. Anaesthesiol. 2015, 29, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Stephens, C.T.; Gumbert, S.; Holcomb, J.B. Trauma-associated bleeding: Management of massive transfusion. Curr. Opin. Anaesthesiol. 2016, 29, 250–255. [Google Scholar] [CrossRef]
- Kauvar, D.S.; Lefering, R.; Wade, C.E. Impact of hemorrhage on trauma outcome: An overview of epidemiology, clinical presentations, and therapeutic considerations. J. Trauma 2006, 60, S3–S9. [Google Scholar] [CrossRef]
- Fox, E.E.; Holcomb, J.B.; Wade, C.E.; Bulger, E.M.; Tilley, B.C. Earlier endpoints are required for hemorrhagic shock trials among severely injured patients. Shock 2017, 47, 567–573. [Google Scholar] [CrossRef]
- Lier, H.; Böttiger, B.W.; Hinkelbein, J.; Krep, H.; Bernhard, M. Coagulation management in multiple trauma: A systematic review. Intensive Care Med. 2011, 37, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.T. Hemostatic agents for prehospital hemorrhage control: A narrative review. Mil. Med. Res. 2020, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Klages, M.; Zacharowski, K.; Weber, C.F. Coagulation management in trauma-associated coagulopathy: Allogenic blood products versus coagulation factor concentrates in trauma care. Curr. Opin. Anaesthesiol. 2016, 29, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.M.; Kent, A.; Scantling, D.; Joseph, B.; Haut, E.R.; Sakran, J.V. Association of whole blood with survival among patients presenting with severe hemorrhage in us and canadian adult civilian trauma centers. JAMA Surg. 2023, 158, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Pidcoke, H.F.; Spinella, P.C. Rdcr symposium fifth-year anniversary edition: Global prehospital care rooted in a history of military innovation. Transfusion 2016, 56, S107–S109. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Eastridge, B.J.; Holcomb, J.B. Remote damage control resuscitation in austere environments. Wilderness Environ. Med. 2017, 28, S124–S134. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.V.; Swiatkowski, S.A. Scientific aspects of supplying blood to distant military theaters. Curr. Opin. Hematol. 2007, 14, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Kotitschke, R.; Morfeld, F.; Kirchmaier, C.M.; Koerner, K.; Köhler, M. Stability of fresh frozen plasma: Results of 36-month storage at –20 °C, –25 °C, –30 °C and –40 °C. Multicenter study of the section ‘blood plasma constituents’ of the deutsche gesellschaft für transfusionsmedizin und immunhämatologie (dgti). Transfus. Med. Hemotherapy 2000, 27, 174–180. [Google Scholar] [CrossRef]
- Association for the Advancement of Blood & Biotherapies; American Red Cross; America’s Blood Centers; Armed Services Blood Program. Circular of Information for the Use of Human Blood and Blood Components. 2013. Available online: https://www.aabb.org/docs/default-source/default-document-library/resources/circular-of-information-10-17.pdf (accessed on 13 April 2023).
- Hmel, P.J.; Kennedy, A.; Quiles, J.G.; Gorogias, M.; Seelbaugh, J.P.; Morrissette, C.R.; Van Ness, K.; Reid, T.J. Physical and thermal properties of blood storage bags: Implications for shipping frozen components on dry ice. Transfusion 2002, 42, 836–846. [Google Scholar] [CrossRef]
- Adams, P.W.; Warren, K.A.; Guyette, F.X.; Yazer, M.H.; Brown, J.B.; Daily, B.J.; Miller, R.S.; Harbrecht, B.G.; Claridge, J.A.; Phelan, H.A.; et al. Implementation of a prehospital air medical thawed plasma program: Is it even feasible? J. Trauma Acute Care Surg. 2019, 87, 1077–1081. [Google Scholar] [CrossRef]
- Pusateri, A.E.; Malloy, W.W.; Sauer, D.; Benov, A.; Corley, J.B.; Rambharose, S.; Wallis, L.; Tiller, M.M.; Cardin, S.; Glassberg, E.; et al. Use of dried plasma in prehospital and austere environments. Anesthesiology 2022, 136, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Glassberg, E.; Nadler, R.; Gendler, S.; Abramovich, A.; Spinella, P.C.; Gerhardt, R.T.; Holcomb, J.B.; Kreiss, Y. Freeze-dried plasma at the point of injury: From concept to doctrine. Shock 2013, 40, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Boye, M.; Py, N.; Libert, N.; Chrisment, A.; Pissot, M.; Dedome, E.; Martinaud, C.; Ausset, S.; Boutonnet, M.; De Rudnicki, S.; et al. Step by step transfusion timeline and its challenges in trauma: A retrospective study in a level one trauma center. Transfusion 2022, 62 (Suppl. S1), S30–S42. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Bordes, J.; Cungi, P.-J.; Esnault, P.; Cardinale, M.; Mathais, Q.; Cotte, J.; Beaume, S.; Sailliol, A.; Prunet, B.; et al. Use of french lyophilized plasma transfusion in severe trauma patients is associated with an early plasma transfusion and early transfusion ratio improvement. J. Trauma Acute Care Surg. 2018, 84, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Stanworth, S.J.; New, H.V.; Apelseth, T.O.; Brunskill, S.; Cardigan, R.; Doree, C.; Germain, M.; Goldman, M.; Massey, E.; Prati, D.; et al. Effects of the COVID-19 pandemic on supply and use of blood for transfusion. Lancet Haematol. 2020, 7, e756–e764. [Google Scholar] [CrossRef] [PubMed]
- Remondelli, M.H.; Remick, K.N.; Shackelford, S.A.; Gurney, J.M.; Pamplin, J.C.; Polk, T.M.; Potter, B.K.; Holt, D.B. Casualty care implications of large-scale combat operations. J. Trauma Acute Care Surg. 2023, 95, S180–S184. [Google Scholar] [CrossRef] [PubMed]
- Schiroli, D.; Merolle, L.; Molinari, G.; Di Bartolomeo, E.; Seligardi, D.; Canovi, L.; Pertinhez, T.A.; Mancuso, P.; Giorgi Rossi, P.; Baricchi, R.; et al. The impact of COVID-19 outbreak on the transfusion medicine unit of a northern italy hospital and cancer centre. Vox Sang. 2022, 117, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Tien, H.; Beckett, A. Medical support for future large-scale combat operations. J. Mil. Veteran Fam. Health 2022, 8, 18–28. [Google Scholar] [CrossRef]
- Polk, T.M.; Gurney, J.M.; Riggs, L.E.; Cannon, J.W.; Cap, A.P.; Friedrichs, P.A. Dried plasma: An urgent priority for trauma readiness. J. Trauma Acute Care Surg. 2023, 95, S4–S6. [Google Scholar] [CrossRef]
- Zielinski, M.D.; Stubbs, J.R.; Berns, K.S.; Glassberg, E.; Murdock, A.D.; Shinar, E.; Sunde, G.A.; Williams, S.; Yazer, M.H.; Zietlow, S.; et al. Prehospital blood transfusion programs: Capabilities and lessons learned. J. Trauma Acute Care Surg. 2017, 82, S70–S78. [Google Scholar] [CrossRef]
- Mok, G.; Hoang, R.; Khan, M.W.; Pannell, D.; Peng, H.; Tien, H.; Nathens, A.; Callum, J.; Karkouti, K.; Beckett, A.; et al. Freeze-dried plasma for major trauma—Systematic review and meta-analysis. J. Trauma Acute Care Surg. 2021, 90, 589–602. [Google Scholar] [CrossRef]
- Zaza, M.; Kalkwarf, K.J.; Holcomb, J.B. Dried plasma. In Damage Control Resuscitation; Springer: Cham, Switzerland, 2019; pp. 145–162. [Google Scholar] [CrossRef]
- Feuerstein, S.J.; Skovmand, K.; Møller, A.M.; Wildgaard, K. Freeze-dried plasma in major haemorrhage: A systematic review. Vox Sang. 2020, 115, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Strumia, M.M.; McGraw, J.J. Frozen and dried plasma for civil and military use. J. Am. Med. Assoc. 1941, 116, 2378–2382. [Google Scholar] [CrossRef]
- Edwards, F.R.; Kay, J.; Davie, T.B. Preparation and use of dried plasma for transfusion. Br. Med. J. 1940, 1, 377–381. [Google Scholar] [CrossRef]
- Aylward, F.X.; Mainwaring, B.R.; Wilkinson, J.F. The concentration and drying of plasma. Br. Med. J. 1940, 2, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Allott, E. Discussion on the factors concerned in blood coagulation and their clinical significance. Proc. R. Soc. Med. 1945, 38, 399–408. [Google Scholar]
- Moore, M.A.; Beckett, A. A brief history of canadian freeze-dried blood products: Ingenuity, collaboration, and leadership. J. Mil. Veteran Fam. Health 2022, 8, 115–122. [Google Scholar] [CrossRef]
- Flosdorf, E.W.; Mudd, S. Procedure and apparatus for preservation in “lyophile” form of serum and other biological substances. J. Immunol. 1935, 29, 389–425. [Google Scholar] [CrossRef]
- Mahoney, E.B. A study of experimental and clinical shock with special reference to its treatment by the intravenous injection of preserved plasma. Ann. Surg. 1938, 108, 178–193. [Google Scholar] [CrossRef]
- Bond, D.D.; Wright, D.G. Treatment of hemorrhage and traumatic shock by the intravenous use of lyophile serum. Ann. Surg. 1938, 107, 500. [Google Scholar] [CrossRef]
- Strumia, M.M.; Wagner, J.A.; Monaghan, J.F. The intravenous use of serum and plasma, fresh and preserved. Ann. Surg. 1940, 111, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Rose, B.; Weil, P.G.; Browne, J.S. On the use of concentrated pooled human serum and pooled lyophile serum in the treatment of shock. Can. Med. Assoc. J. 1941, 44, 442–448. [Google Scholar] [PubMed]
- Pusateri, A.E.; Given, M.B.; Schreiber, M.A.; Spinella, P.C.; Pati, S.; Kozar, R.A.; Khan, A.; Dacorta, J.A.; Kupferer, K.R.; Prat, N.; et al. Dried plasma: State of the science and recent developments. Transfusion 2016, 56, S128–S139. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, E.M. Hepatitis following blood or plasma transfusions. J. Am. Med. Assoc. 1945, 128, 932–939. [Google Scholar] [CrossRef]
- Anonymous. Statement on normal (whole, pooled) human plasma prepared by committee on plasma and plasma substitutes of the division of medical sciences, national research council. Transfusion 1968, 8, 57–59. [Google Scholar] [CrossRef]
- Sailliol, A.; Martinaud, C.; Cap, A.P.; Civadier, C.; Clavier, B.; Deshayes, A.V.; Mendes, A.C.; Pouget, T.; Demazeau, N.; Chueca, M.; et al. The evolving role of lyophilized plasma in remote damage control resuscitation in the french armed forces health service. Transfusion 2013, 53 (Suppl. S1), 65S–71S. [Google Scholar] [CrossRef]
- Bux, J.; Dickhörner, D.; Scheel, E. Quality of freeze-dried (lyophilized) quarantined single-donor plasma. Transfusion 2013, 53, 3203–3209. [Google Scholar] [CrossRef]
- Candotti, D. Viruses special issue “transfusion-transmitted viral infections”. Viruses 2022, 15, 86. [Google Scholar] [CrossRef]
- Simmonds, P. Transfusion virology: Progress and challenges. Blood Rev. 1998, 12, 171–177. [Google Scholar] [CrossRef]
- Otrock, Z.K.; Liu, C.; Grossman, B.J. Transfusion-related acute lung injury risk mitigation: An update. Vox Sang. 2017, 112, 694–703. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Fda Takes Action to Support American Military Personnel by Granting an Authorization for Freeze-Dried Plasma Product to Enable Broader Access while the Agency Works toward Approval of the Product. 2018. Available online: https://www.fda.gov/news-events/press-announcements/fda-takes-action-support-american-military-personnel-granting-authorization-freeze-dried-plasma#:~:text=Today%2C%20the%20U.S%20Food%20and,des%20Arm%C3%A9es%20(referred%20to%20in (accessed on 18 December 2023).
- Cuenca, C.M.; Chamy, G.; Schauer, S.G. Freeze dried plasma administration within the department of defense trauma registry. J. Spec. Oper. Med. Peer Rev. J. SOF Med. Prof. 2020, 20, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Steil, L.; Thiele, T.; Hammer, E.; Bux, J.; Kalus, M.; Völker, U.; Greinacher, A. Proteomic characterization of freeze-dried human plasma: Providing treatment of bleeding disorders without the need for a cold chain. Transfusion 2008, 48, 2356–2363. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; Ricketts, M.N. A third episode of transfusion-derived vcjd. Lancet 2006, 368, 2037–2039. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Peng, H.T.; Moes, K.; Kretz, C.A.; Beckett, A. Past meets present: Reviving 80-year-old canadian dried serum from World War Ii and its significance in advancing modern freeze-dried plasma for prehospital management of haemorrhage. Br. J. Haematol. 2024, 204, 1515–1522. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.T.; Rhind, S.G.; Devine, D.; Jenkins, C.; Beckett, A. Ex vivo hemostatic and immuno-inflammatory profiles of freeze-dried plasma. Transfusion 2021, 61 (Suppl. S1), S119–S130. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.T.; Rhind, S.G.; Moes, K.; Devine, D.; Jenkins, C.; Beckett, A. Freeze-dried plasma: From damage control resuscitation to coronavirus disease 2019 therapy. Transfusion 2022, 62, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, W.P.; Devine, V.D. Rejuvenated and safe: Freeze-dried plasma for the 21st century. Transfusion 2022, 62, 257–260. [Google Scholar] [CrossRef]
- Booth, G.S.; Lozier, J.N.; Nghiem, K.; Clibourn, D.; Klein, H.G.; Flegel, W.A. Spray: Single-donor plasma product for room temperature storage. Transfusion 2012, 52, 828–833. [Google Scholar] [CrossRef]
- Spinella, P.C.; Frazier, E.; Pidcoke, H.F.; Dietzen, D.J.; Pati, S.; Gorkun, O.; Aden, J.K.; Norris, P.J.; Cap, A.P. All plasma products are not created equal: Characterizing differences between plasma products. J. Trauma Acute Care Surg. 2015, 78, S18–S25. [Google Scholar] [CrossRef]
- Chipman, A.M.; Pati, S.; Potter, D.; Wu, F.; Lin, M.; Kozar, R.A. Is all plasma created equal? A pilot study of the effect of interdonor variability. J. Trauma Acute Care Surg. 2020, 88, 121–127. [Google Scholar] [CrossRef]
- Spoerke, N.; Zink, K.; Cho, S.D.; Differding, J.; Muller, P.; Karahan, A.; Sondeen, J.; Holcomb, J.B.; Schreiber, M. Lyophilized plasma for resuscitation in a swine model of severe injury. Arch. Surg. 2009, 144, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Kozar, R.A.; Pati, S. Syndecan-1 restitution by plasma after hemorrhagic shock. J. Trauma Acute Care Surg. 2015, 78, S83–S86. [Google Scholar] [CrossRef]
- Greatorex, B. Freeze dried plasma: A cost efficient alternative to fresh frozen plasma? Intensive Care Med. 2011, 37, S235. [Google Scholar] [CrossRef]
- Curry, N.S.; Davenport, R. Transfusion strategies for major haemorrhage in trauma. Br. J. Haematol. 2019, 184, 508–523. [Google Scholar] [CrossRef]
- Martinaud, C.; Ausset, S.; Deshayes, A.V.; Cauet, A.; Demazeau, N.; Sailliol, A. Use of freeze-dried plasma in french intensive care unit in afghanistan. J. Trauma Acute Care Surg. 2011, 71, 1761–1765. [Google Scholar] [CrossRef]
- Martinaud, C.; Civadier, C.; Ausset, S.; Verret, C.; Deshayes, A.V.; Sailliol, A. In vitro hemostatic properties of french lyophilized plasma. Anesthesiology 2012, 117, 339–346. [Google Scholar] [CrossRef]
- Daban, J.L.; Clapson, P.; Ausset, S.; Deshayes, A.V.; Sailliol, A. Freeze dried plasma: A french army specialty. Crit. Care 2010, 14, 412. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, S.G.; Scorer, T.; Doughty, H. Freedom from frozen: The first british military use of lyophilised plasma in forward resuscitation. J. R. Army Med. Corp. 2016, 162, 63–65. [Google Scholar] [CrossRef]
- Solheim, B.G.; Chetty, R.; Flesland, O. Indications for use and cost-effectiveness of pathogen-reduced abo-universal plasma. Curr. Opin. Hematol. 2008, 15, 612–617. [Google Scholar] [CrossRef]
- Wise, R.; Bishop, D.G.; Gibbs, M.; Govender, K.; James, M.; Kabambi, F.; Louw, V.; Mdladla, N.; Moipalai, L.; Motchabi-Chakane, P.; et al. South african society of anaesthesiologists perioperative patient blood management guidelines 2020. S. Afr. J. Anaesth. Analg. 2020, 26, S1–S68. [Google Scholar] [CrossRef]
- Popovsky, M.A.; White, N. Spray-dried plasma: A post-traumatic blood “bridge” for life-saving resuscitation. Transfusion 2021, 61, S294–S300. [Google Scholar] [CrossRef]
- Shlaifer, A.; Siman-Tov, M.; Radomislensky, I.; Peleg, K.; Shina, A.; Baruch, E.N.; Glassberg, E.; Yitzhak, A.; Israel Trauma Group. Prehospital administration of freeze-dried plasma, is it the solution for trauma casualties? J. Trauma Acute Care Surg. 2017, 83, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Sunde, G.A.; Vikenes, B.; Strandenes, G.; Flo, K.-C.; Hervig, T.A.; Kristoffersen, E.K.; Heltne, J.-K. Freeze dried plasma and fresh red blood cells for civilian prehospital hemorrhagic shock resuscitation. J. Trauma Acute Care Surg. 2015, 78, S26–S30. [Google Scholar] [CrossRef] [PubMed]
- Oakeshott, J.E.; Griggs, J.E.; Wareham, G.M.; Lyon, R.M. Feasibility of prehospital freeze-dried plasma administration in a uk helicopter emergency medical service. Eur. J. Emerg. Med. Off. J. Eur. Soc. Emerg. Med. 2019, 26, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Shlaifer, A.; Siman-Tov, M.; Radomislensky, I.; Peleg, K.; Klein, Y.; Glassberg, E.; Yitzhak, A. The impact of pre hospital administration of freeze dried plasma on casualty outcome. J. Trauma Acute Care Surg. 2018, 86, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Garrigue, D.; Godier, A.; Glacet, A.; Labreuche, J.; Kipnis, E.; Paris, C.; Duhamel, A.; Resch, E.; Bauters, A.; Machuron, F.; et al. French lyophilized plasma versus fresh frozen plasma for the initial management of trauma-induced coagulopathy: A randomized open-label trial. J. Thromb. Haemost. 2018, 16, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Jost, D.; Lemoine, S.; Lemoine, F.; Derkenne, C.; Beaume, S.; Lanoe, V.; Maurin, O.; Louis-Delauriere, E.; Delacote, M.; Dang-Minh, P.; et al. Prehospital lyophilized plasma transfusion for trauma-induced coagulopathy in patients at risk for hemorrhagic shock: A randomized clinical trial. JAMA Netw. Open 2022, 5, e2223619. [Google Scholar] [CrossRef] [PubMed]
- Crombie, N.; Doughty, H.A.; Bishop, J.R.B.; Desai, A.; Dixon, E.F.; Hancox, J.M.; Herbert, M.J.; Leech, C.; Lewis, S.J.; Nash, M.R.; et al. Resuscitation with blood products in patients with trauma-related haemorrhagic shock receiving prehospital care (rephill): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Haematol. 2022, 9, e250–e261. [Google Scholar] [CrossRef] [PubMed]
- Mitra, B.; Meadley, B.; Bernard, S.; Maegele, M.; Gruen, R.L.; Bradley, O.; Wood, E.M.; McQuilten, Z.K.; Fitzgerald, M.; St Clair, T.; et al. Pre-hospital freeze-dried plasma for critical bleeding after trauma: A pilot randomized controlled trial. Acad. Emerg. Med. 2023, 30, 1013–1019. [Google Scholar] [CrossRef]
- Chapanduka, Z.C.; Fernandes-Costa, F.J.; Rochat, C.; Blyth, D.F. Comparative safety and efficacy of bioplasma fdp versus single-donor fresh-dried plasma in cardiopulmonary bypass patients. S. Afr. Med. J. 2002, 92, 356–357. [Google Scholar]
- Mould-Millman, N.K.; Wogu, A.F.; Fosdick, B.K.; Dixon, J.M.; Beaty, B.L.; Bhaumik, S.; Lategan, H.J.; Stassen, W.; Schauer, S.G.; Steyn, E.; et al. Association of freeze-dried plasma with 24-h mortality among trauma patients at risk for hemorrhage. Transfusion 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, W.P.; Singh, K.; Beckett, A.; Devine, D.V. Prehospital freeze-dried plasma in trauma: A critical review. Transfus. Med. Rev. 2023, 38, 150807. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.B.; Moore, E.E.; Chapman, M.P.; McVaney, K.; Bryskiewicz, G.; Blechar, R.; Chin, T.; Burlew, C.C.; Pieracci, F.; West, F.B.; et al. Plasma-first resuscitation to treat haemorrhagic shock during emergency ground transportation in an urban area: A randomised trial. Lancet 2018, 392, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Sperry, J.L.; Guyette, F.X.; Brown, J.B.; Yazer, M.H.; Triulzi, D.J.; Early-Young, B.J.; Adams, P.W.; Daley, B.J.; Miller, R.S.; Harbrecht, B.G.; et al. Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock. N. Engl. J. Med. 2018, 379, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Yazer, M.H.; Cap, A.P.; Glassberg, E.; Green, L.; Holcomb, J.B.; Khan, M.A.; Moore, E.E.; Neal, M.D.; Perkins, G.D.; Sperry, J.L.; et al. Toward a more complete understanding of who will benefit from prehospital transfusion. Transfusion 2022, 62, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Pusateri, A.E.; Given, M.B.; Macdonald, V.W.; Homer, M.J. Comprehensive us government program for dried plasma development. Transfusion 2016, 56, S16–S23. [Google Scholar] [CrossRef] [PubMed]
- Pusateri, A.E.; Butler, F.K.; Shackelford, S.A.; Sperry, J.L.; Moore, E.E.; Cap, A.P.; Taylor, A.L.; Homer, M.J.; Hoots, W.K.; Weiskopf, R.B.; et al. The need for dried plasma—A national issue. Transfusion 2019, 59, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Flaumenhaft, E.J.; Khat, T.; Marschner, S. Retention of coagulation factors and storage of freeze-dried plasma. Mil. Med. 2021, 186, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Heger, A.; Gruber, G. Frozen and freeze-dried solvent/detergent treated plasma: Two different pharmaceutical formulations with comparable quality. Transfusion 2022, 62, 2621–2630. [Google Scholar] [CrossRef]
- Cancelas, J.A.; Nestheide, S.; Rugg, N.; Eckerman, A.; Macdonald, V.W.; Charles, M.L.; Markstrom, L.; Atkinson, A.J.; King, M.R.; Snyder, M.; et al. Characterization and first-in-human clinical dose-escalation safety evaluation of a next-gen human freeze-dried plasma. Transfusion 2022, 62, 406–417. [Google Scholar] [CrossRef]
- Sheffield, W.P.; Bhakta, V.; Howell, A.; Jenkins, C.; Serrano, K.; Johnson, N.; Lin, Y.J.; Colwill, K.; Rathod, B.; Greenberg, B.; et al. Retention of hemostatic and immunological properties of frozen plasma and COVID-19 convalescent apheresis fresh-frozen plasma produced and freeze-dried in canada. Transfusion 2022, 62, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Teleflex Incorporated. Teleflex Announces Submission of Biologics License Application for Its Investigational Freeze Dried Plasma. 2021. Available online: https://investors.teleflex.com/news/news-details/2021/Teleflex-Announces-Submission-of-Biologics-License-Application-forIts-Investigational-Freeze-Dried-Plasma/default.aspx (accessed on 18 December 2023).
- Octapharma AG. European Authorities Approve Lyophilised S/D Treated Plasma Octaplaslg® for Pre-Hospital Transfusion. 2023. Available online: https://www.octapharma.com/news/press-release/2023/european-authorities-approve-octaplaslg-for-pre-hospital-transfusion (accessed on 5 January 2024).
- Entegrion Inc. Safety Study of Spray-Dried Solvent/Detergent-Treated Plasma for Infusion in Healthy Volunteers. 2017. Available online: https://clinicaltrials.gov/study/NCT01589666 (accessed on 30 November 2023).
- Liu, Q.P.; Carney, R.; Sohn, J.; Sundaram, S.; Fell, M.-A. Single-donor spray-dried plasma. Transfusion 2019, 59, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Velico Medical Inc. Frontlineodp™. 2023. Available online: https://www.veli.co/frontlineodp/ (accessed on 14 December 2023).
- Winata, E.; Culbertson, K.E.; Egan, A.; Wold, A.C.; Kimball, J.; Pepper, C.B.; McCarthy, S.J.; Buckley, L. Production of single donor lyophilized plasma for phase i clinical trials. Transfusion 2011, 51, 49A. [Google Scholar]
- Cancelas, J.; Rugg, N.; Pratt, P.; Worsham, D.; Hartman, E.; Dunn, S.; McAdams, S.; Buckley, L.; Rossiter, E.; Pehta, J. A safety clinical trial of dose-escalation of autologous lyophilized plasma versus fresh frozen plasma in normal healthy subjects. Transfusion 2011, 51, 38A–39A. [Google Scholar]
- HemCon Medical Technologies Inc. The Safety of Autologous Lyophilized Plasma versus Fresh Frozen Plasma in Healthy Volunteers. 2012. Available online: https://clinicaltrials.gov/ct2/show/NCT00968487 (accessed on 28 November 2023).
- Schriner, J.B.; Van Gent, J.M.; Meledeo, M.A.; Olson, S.D.; Cotton, B.A.; Cox, C.S., Jr.; Gill, B.S. Impact of transfused citrate on pathophysiology in massive transfusion. Crit. Care Explor. 2023, 5, e0925. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.; Gonzales, R. Challenges to producing novel therapies—Dried plasma for use in trauma and critical care. Transfusion 2019, 59, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Rittblat, M.; Gavish, L.; Tsur, A.M.; Gelikas, S.; Benov, A.; Shlaifer, A. Intraosseous administration of freeze-dried plasma in the prehospital setting. Isr. Med. Assoc. J. 2022, 24, 591–595. [Google Scholar] [PubMed]
- Rottenstreich, M.; Malka, I.; Glassberg, E.; Schwartz, O.; Tarif, B. Pre-hospital intra-osseous freeze dried plasma transfusion: A case report. Disaster Mil. Med. 2015, 1, 8. [Google Scholar] [CrossRef]
- Iapichino, G.E.; Ponschab, M.; Cadamuro, J.; Sussner, S.; Gabriel, C.; Dieplinger, B.; Egger, M.; Schlimp, C.J.; Bahrami, S.; Schochl, H. Concentrated lyophilized plasma used for reconstitution of whole blood leads to higher coagulation factor activity but unchanged thrombin potential compared with fresh-frozen plasma. Transfusion 2017, 57, 1763–1771. [Google Scholar] [CrossRef]
- Meledeo, M.A.; Peltier, G.C.; McIntosh, C.S.; Taylor, A.S.; Bynum, J.A.; Pusateri, A.E.; Cap, A.P. Freeze-dried plasma mitigates the dilution effects of a hemoglobin-based oxygen carrier (hboc-201) in a model of resuscitation for hemorrhage and hemodilution. J. Trauma Acute Care Surg. 2019, 87, S83–S90. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; Food and Drug Administration Center for Drug Evaluation and Research (CDER). Statistical Approaches to Establishing Bioequivalence. 2022. Available online: https://www.fda.gov/media/163638/download (accessed on 28 October 2023).
- Pati, S.; Peng, Z.; Wataha, K.; Miyazawa, B.; Potter, D.R.; Kozar, R.A. Lyophilized plasma attenuates vascular permeability, inflammation and lung injury in hemorrhagic shock. PLoS ONE 2018, 13, e0192363. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Soguel, L.; Shenkin, A.; Revelly, J.P.; Pinget, C.; Baines, M.; Chiolero, R.L. Influence of early antioxidant supplements on clinical evolution and organ function in critically ill cardiac surgery, major trauma, and subarachnoid hemorrhage patients. Crit. Care 2008, 12, R101. [Google Scholar] [CrossRef] [PubMed]
- Huebner, B.R.; Moore, E.E.; Moore, H.B.; Sauaia, A.; Stettler, G.; Dzieciatkowska, M.; Hansen, K.; Banerjee, A.; Silliman, C.C. Freeze-dried plasma enhances clot formation and inhibits fibrinolysis in the presence of tissue plasminogen activator similar to pooled liquid plasma. Transfusion 2017, 57, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Zur, M.; Glassberg, E.; Gorenbein, P.; Epstein, E.; Eisenkraft, A.; Misgav, M.; Avramovich, E. Freeze-dried plasma stability under prehospital field conditions. Transfusion 2019, 59, 3485–3490. [Google Scholar] [CrossRef] [PubMed]
- Zur, M.; Gorenbein, P.; Nachshon, A.; Radomislensky, I.; Tsur, A.M.; Benov, A.; Wagnert-Avraham, L.; Glassberg, E. Post-expiry stability of freeze-dried plasma under field conditions—Can shelf life be extended? Transfusion 2021, 61, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, J.; Hoang, T.; Ajambo, J.; Florentinus-Mefailoski, A.; Bowden, P.; Marshall, J. Freeze-dried plasma proteins are stable at room temperature for at least 1 year. Clin. Proteom. 2017, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Dombrose, F.A.; Barnes, C.C., Jr.; Gaynor, J.J.; Elston, R.C. A lyophilized human reference plasma for coagulation factors. Evidence for stability of factors i, ii, v, and vii through xii. Am. J. Clin. Pathol. 1982, 77, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, R.B.; Evatt, B.L.; McDougal, J.S.; Feorino, P.; Jackson, D. Antibody to human immunodeficiency virus in factor-deficient plasma. Effect of heat treatment on lyophilized plasma. Am. J. Clin. Pathol. 1987, 87, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Myhre, B. Chemical analysis of a 30-year-old bottle of lyophilized plasma. Transfusion 1977, 17, 73–74. [Google Scholar] [CrossRef]
- Schoenfeld, H.; Pruss, A.; Keller, M.; Schuster, M.; Meinck, K.; Neuner, B.; von Heymann, C. Lyophilised plasma: Evaluation of clotting factor activity over 6 days after reconstitution for transfusion. J. Clin. Pathol. 2010, 63, 726–730. [Google Scholar] [CrossRef]
- Peng, H.T.; Moes, K.; Singh, K.; Rhind, S.G.; Pambrun, C.; Jenkins, C.; da Luz, L.; Beckett, A. Post-reconstitution hemostatic stability profiles of canadian and german freeze-dried plasma. Life 2024, 14, 172. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.L.; Sampson, S.; Germishuizen, W.A.; Goonesekera, S.; Caponetti, G.; Sadoff, J.; Bloom, B.R.; Edwards, D. Drying a tuberculosis vaccine without freezing. Proc. Natl. Acad. Sci. USA 2007, 104, 2591–2595. [Google Scholar] [CrossRef] [PubMed]
- Meledeo, M.A.; Liu, Q.P.; Peltier, G.C.; Carney, R.C.; McIntosh, C.S.; Taylor, A.S.; Bynum, J.A.; Pusateri, A.E.; Cap, A.P. Spray-dried plasma deficient in high-molecular-weight multimers of von willebrand factor retains hemostatic properties. Transfusion 2019, 59, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Bercovitz, R.S.; Drew, C.S.; Bushee, C.L.; Popovsky, M.A.; Friedman, K.D.; Anani, W.Q. A microfluidic analysis of thrombus formation in reconstituted whole blood samples comparing spray-dried plasma versus fresh frozen plasma. Vox Sang. 2021, 116, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Wataha, K.; Menge, T.; Deng, X.; Shah, A.; Bode, A.; Holcomb, J.B.; Potter, D.; Kozar, R.; Spinella, P.C.; Pati, S. Spray-dried plasma and fresh frozen plasma modulate permeability and inflammation in vitro in vascular endothelial cells. Transfusion 2013, 53, 80S–90S. [Google Scholar] [CrossRef] [PubMed]
- Potter, D.R.; Baimukanova, G.; Keating, S.M.; Deng, X.; Chu, J.A.; Gibb, S.L.; Peng, Z.; Muench, M.O.; Fomin, M.E.; Spinella, P.C.; et al. Fresh frozen plasma and spray-dried plasma mitigate pulmonary vascular permeability and inflammation in hemorrhagic shock. J. Trauma Acute Care Surg. 2015, 78, S7–S17. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, S.; Golla, S.; Moore, A.N.; Dash, P.K.; Jing, Z.; DaCorta, J.; Bode, A.; Pati, S.; Zhao, J. Resuscitation of hypotensive traumatic brain injured animals with spray-dried plasma does not adversely alter physiology and improves blood-brain barrier function. Mil. Med. 2017, 182, e1706–e1711. [Google Scholar] [CrossRef] [PubMed]
- Shuja, F.; Shults, C.; Duggan, M.; Tabbara, M.; Butt, M.U.; Fischer, T.H.; Schreiber, M.A.; Tieu, B.; Holcomb, J.B.; Sondeen, J.L.; et al. Development and testing of freeze-dried plasma for the treatment of trauma-associated coagulopathy. J. Trauma Acute Care Surg. 2008, 65, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Shuja, F.; Finkelstein, R.A.; Fukudome, E.; Duggan, M.; Kheirbek, T.; Hamwi, K.; Fischer, T.H.; Fikry, K.; deMoya, M.; Velmahos, G.C.; et al. Development and testing of low-volume hyperoncotic, hyperosmotic spray-dried plasma for the treatment of trauma-associated coagulopathy. J. Trauma Acute Care Surg. 2011, 70, 664–671. [Google Scholar] [CrossRef]
- Alam, H.B.; Hamwi, K.B.; Duggan, M.; Fikry, K.; Lu, J.; Fukudome, E.Y.; Chong, W.; Bramos, A.; Kim, K.; Velmahos, G. Hemostatic and pharmacologic resuscitation: Results of a long-term survival study in a swine polytrauma model. J. Trauma Acute Care Surg. 2011, 70, 636–645. [Google Scholar] [CrossRef]
- Glassberg, E.; Nadler, R.; Rasmussen, T.E.; Abramovich, A.; Erlich, T.; Blackbourne, L.H.; Kreiss, Y. Point-of-injury use of reconstituted freeze dried plasma as a resuscitative fluid: A special report for prehospital trauma care. J. Trauma Acute Care Surg. 2013, 75, S111–S114. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, R.; Afshari, A.; Bouillon, B.; Cerny, V.; Cimpoesu, D.; Curry, N.; Duranteau, J.; Filipescu, D.; Grottke, O.; Gronlykke, L.; et al. The european guideline on management of major bleeding and coagulopathy following trauma: Sixth edition. Crit. Care 2023, 27, 80. [Google Scholar] [CrossRef] [PubMed]
- Martinaud, C.; Travers, S.; Pasquier, P.; Sailliol, A.; Ausset, S. Blood far forward program: Update on french armed forces policy. Transfusion 2021, 61 (Suppl. S1), S354–S355. [Google Scholar] [CrossRef]
- Fernandez-Moure, J.; Maisha, N.; Lavik, E.B.; Cannon, J. The chemistry of lyophilized blood products. Bioconjugate Chem. 2018, 29, 2150–2160. [Google Scholar] [CrossRef] [PubMed]
- Bakaltcheva, I.; O’Sullivan, A.M.; Hmel, P.; Ogbu, H. Freeze-dried whole plasma: Evaluating sucrose, trehalose, sorbitol, mannitol and glycine as stabilizers. Thromb. Res. 2007, 120, 105–116. [Google Scholar] [CrossRef]
- McCully, S.P.; Martin, D.T.; Cook, M.R.; Gordon, N.T.; McCully, B.H.; Lee, T.H.; Dean, R.K.; Rick, E.A.; Moren, A.M.; Fair, K.A.; et al. Effect of ascorbic acid concentrations on hemodynamics and inflammation following lyophilized plasma transfusion. J. Trauma Acute Care Surg. 2015, 79, 30–38. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Considerations for the Development of Dried Plasma Products Intended for Transfusion. 2019. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-development-dried-plasma-products-intended-transfusion (accessed on 19 February 2024).
- Lamboo, M.; Poland, D.C.W.; Eikenboom, J.C.J.; Harvey, M.S.; Groot, E.; Brand, A.; De Vries, R.R.P. Coagulation parameters of thawed fresh-frozen plasma during storage at different temperatures. Transfus. Med. 2007, 17, 182–186. [Google Scholar] [CrossRef]
- Bundesarztekammer and Paul Ehrlich Institute. Guidelines for Preparation of Blood and Blood Components and Use of Blood Products; Amendment 2005 with Changes and Completions 2007; Deutscher Arzteverlag: Koln, Germany, 2008; pp. 13–45. [Google Scholar]
- Heger, A.; Romisch, J.; Svae, T.E. Stability of solvent/detergent-treated plasma and single-donor fresh-frozen plasma during 48 h after thawing. Transfus. Apher. Sci. 2005, 33, 257–267. [Google Scholar] [CrossRef]
- Inaba, K. Freeze-dried plasma. J. Trauma 2011, 70, S57–S58. [Google Scholar] [CrossRef]
- von Heymann, C.; Keller, M.K.; Spies, C.; Schuster, M.; Meinck, K.; Sander, M.; Wernecke, K.D.; Kiesewetter, H.; Pruss, A. Activity of clotting factors in fresh-frozen plasma during storage at 4 degrees c over 6 days. Transfusion 2009, 49, 913–920. [Google Scholar] [CrossRef]
- Oktavec, W.A., Jr.; Smetana, E.J. Lyophilized normal human plasma control in the prothrombin-time clotting test. Am. J. Clin. Pathol. 1954, 24, 250. [Google Scholar] [CrossRef] [PubMed]
- Matijevic, N.; Wang, Y.W.; Cotton, B.A.; Hartwell, E.; Barbeau, J.M.; Wade, C.E.; Holcomb, J.B. Better hemostatic profiles of never-frozen liquid plasma compared with thawed fresh frozen plasma. J. Trauma Acute Care Surg. 2013, 74, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Liumbruno, G.M.; Franchini, M. Solvent/detergent plasma: Pharmaceutical characteristics and clinical experience. J. Thromb. Thrombolysis 2015, 39, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Heger, A.; Svae, T.E.; Neisser-Svae, A.; Jordan, S.; Behizad, M.; Romisch, J. Biochemical quality of the pharmaceutically licensed plasma octaplaslg after implementation of a novel prion protein (prpsc) removal technology and reduction of the solvent/detergent (s/d) process time. Vox Sang. 2009, 97, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Heger, A.; Janisch, S.; Pock, K.; Romisch, J. Comparative biochemical studies of fresh frozen plasma and pooled solvent/detergent-treated plasma (octaplaslg((r))) with focus on protein s and its impact in different thrombin generation assay set-ups. Vox Sang. 2016, 111, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Samborska, K.; Poozesh, S.; Barańska, A.; Sobulska, M.; Jedlińska, A.; Arpagaus, C.; Malekjani, N.; Jafari, S.M. Innovations in spray drying process for food and pharma industries. J. Food Eng. 2022, 321, 110960. [Google Scholar] [CrossRef]
- Mumenthaler, M.; Hsu, C.C.; Pearlman, R. Feasibility study on spray-drying protein pharmaceuticals: Recombinant human growth hormone and tissue-type plasminogen activator. Pharm. Res. 1994, 11, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Rezvankhah, A.; Emam-Djomeh, Z.; Askari, G. Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Dry. Technol. 2020, 38, 235–258. [Google Scholar] [CrossRef]
- Thiele, T.; Steil, L.; Völker, U.; Greinacher, A. Proteomics of blood-based therapeutics: A promising tool for quality assurance in transfusion medicine. BioDrugs 2007, 21, 179–193. [Google Scholar] [CrossRef]
- Patil, P.; Sehgal, T.; Goswami, P.; Gaur, M.; Khan, M.; Pandey, S.; Datta, S.K. Assessment of stability of prothrombin time, international normalized ratio, and activated partial thromboplastin time under different storage conditions in human plasma. Cureus 2022, 14, e21268. [Google Scholar] [CrossRef]
- Cardigan, R.; Green, L. Thawed and liquid plasma—What do we know? Vox Sang. 2015, 109, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, R.C.; Marshall, C.; Dwyre, D.M.; Gresens, C.; Davis, D.; Scherer, L.; Taylor, D. Coagulation profile of liquid-state plasma. Transfusion 2013, 53, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Y.J.; Kelner, D.N. Coagulation factor viii: Structure and stability. Int. J. Pharm. 2003, 259, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Nifong, T.P.; Light, J.; Wenk, R.E. Coagulant stability and sterility of thawed s/d-treated plasma. Transfusion 2002, 42, 1581–1584. [Google Scholar] [CrossRef] [PubMed]
- Reitz, K.M.; Gruen, D.S.; Guyette, F.; Brown, J.B.; Yazer, M.H.; Vodovotz, Y.; Johanssen, P.I.; Stensballe, J.; Daley, B.; Miller, R.S.; et al. Age of thawed plasma does not affect clinical outcomes or biomarker expression in patients receiving prehospital thawed plasma: A pamper secondary analysis. Trauma Surg. Acute Care Open 2021, 6, e000648. [Google Scholar] [CrossRef] [PubMed]
- Schlimp, C.J.; Schochl, H. The role of fibrinogen in trauma-induced coagulopathy. Hamostaseologie 2014, 34, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Rizoli, S.B.; Scarpelini, S.; Callum, J.; Nascimento, B.; Mann, K.G.; Pinto, R.; Jansen, J.; Tien, H.C. Clotting factor deficiency in early trauma-associated coagulopathy. J. Trauma 2011, 71, S427–S434. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Cardenas, J.C.; Wade, C.E.; Holcomb, J.B. Advances in the understanding of trauma-induced coagulopathy. Blood 2016, 128, 1043–1049. [Google Scholar] [CrossRef]
- Acker, J.P.; Marks, D.C.; Sheffield, W.P. Quality assessment of established and emerging blood components for transfusion. J. Blood Transfus. 2016, 2016, 4860284. [Google Scholar] [CrossRef]
- Karkouti, K.; Bartoszko, J.; Grewal, D.; Bingley, C.; Armali, C.; Carroll, J.; Hucke, H.-P.; Kron, A.; McCluskey, S.A.; Rao, V.; et al. Comparison of 4-factor prothrombin complex concentrate with frozen plasma for management of hemorrhage during and after cardiac surgery: A randomized pilot trial. JAMA Netw. Open 2021, 4, e213936. [Google Scholar] [CrossRef]
- Gratz, J.; Oberladstatter, D.; Schochl, H. Trauma-induced coagulopathy and massive bleeding: Current hemostatic concepts and treatment strategies. Hamostaseologie 2021, 41, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.; Panasenko, S.I.; Leshchenko, Y.; Gumeniuk, K.; Onderkova, A.; Stewart, D.; Gimpelson, A.J.; Buriachyk, M.; Martinez, M.; Parnell, T.A.; et al. Prehospital lessons from the war in ukraine: Damage control resuscitation and surgery experiences from point of injury to role 2. Mil. Med. 2024, 189, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Khorram-Manesh, A.; Goniewicz, K.; Burkle, F.M.; Robinson, Y. Review of military casualties in modern conflicts-the re-emergence of casualties from armored warfare. Mil. Med. 2022, 187, e313–e321. [Google Scholar] [CrossRef] [PubMed]
- Lauby, R.S.; Johnson, S.A.; Meledeo, M.A.; Bynum, J.; Schauer, S.G. A scoping review of promising alternative blood products for prolonged field care. Med. J. 2022, 47–55. [Google Scholar]
- Lee, T.H.; Watson, K.; Fabricant, L.; Barton, J.; Differding, J.; Kremenevskiy, I.; Sands, C.; Wiles, C.; Watters, J.M.; Schreiber, M.A. Hyperosmolar reconstituted lyophilized plasma is an effective low-volume hemostatic resuscitation fluid for trauma. J. Trauma Acute Care Surg. 2013, 75, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.F.; Ludlam, C.A. Plasma microparticles and vascular disorders. Br. J. Haematol. 2007, 137, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, A.S.; Harrison, P.; Cardigan, R.A.; Mackie, I.J. The characterization and impact of microparticles on haemostasis within fresh-frozen plasma. Vox Sang. 2008, 95, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Zwicker, J.I.; Trenor, C.C., 3rd; Furie, B.C.; Furie, B. Tissue factor-bearing microparticles and thrombus formation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 728–733. [Google Scholar] [CrossRef] [PubMed]
- McVey, M.; Tabuchi, A.; Kuebler, W.M. Microparticles and acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 303, L364–L381. [Google Scholar] [CrossRef]
- Chan, K.S.; Sparrow, R.L. Microparticle profile and procoagulant activity of fresh-frozen plasma is affected by whole blood leukoreduction rather than 24-hour room temperature hold. Transfusion 2014, 54, 1935–1944. [Google Scholar] [CrossRef]
- Schenk, S.; Schoenhals, G.J.; de Souza, G.; Mann, M. A high confidence, manually validated human blood plasma protein reference set. BMC Med. Genom. 2008, 1, 41. [Google Scholar] [CrossRef] [PubMed]
Product Name | FLyP (% Changes Relative to Source Plasma) | LyoPlas (% Changes Relative to Source Plasma) | Normal Range/ Physiological Norms/Reference Range/Clinical Reference | Teleflex FDP (% Changes Relative to Source Plasma) | CFDP (% Changes Relative to Source Plasma) | TFDP (% Changes Relative to Source Plasma) | OctaplasLG Lyo (% Changes Relative to Source Plasma) | Spray-Dried Plasma (ODP) (% Changes Relative to Source Plasma) |
---|---|---|---|---|---|---|---|---|
INR | 1.05 ± 0.12 | 0.8–1.2///0.9–1.1 | 1.11 ± 0.1 a/1.1 ± 0.1 b (7.06/8.33%) | |||||
PT (s) | /1.2 ± 0.1 c (8%) | Not reported | 9.4–12.5 | 12.9 ± 1.0 a/12.6 ± 0.9 b (7.19/8.52%) | 14.6 ± 0.6/13.6 ± 0.3 (7.35/5.9%) | 11.3 ± 0.67 (4.1%) | 11.4 (−3.39%) | 12.5 ± 0.9 (10%) |
PTT (s) | 41.0–41.5/39.0 ± 2.4 (/11%) | 37.9 ± 4.3/32.22 ± 3.46 (12.8%) | 26–37/30–40/30–40/25.1–36.5 | 31.1 ± 2.1/33.2 ± 2.7 (5.15/6.41%) | 40.7 ± 3.3/36 ± 2 (8.53/6.9%) | 29.4 ± 2.5 (4.9%) | 29 (3.57%) | 29.9 ± 3.4 (2%) |
Fibrinogen (g/L) | 2.4 ± 0.3 (−11.1%/0%) | 2.6 ± 0.3/3.256 ± 0.139 (−3.7%) | 2–4/2–4/2–4/2–3.93 | 2.372 ± 0.408/ 2.509 ± 0.557 (−6.83/−4.81%) | 2.54 ± 0.23/2.9 ± 0.1 (−3.42/−3.0%) | 3.02 ± 0.58 (0.5%) | 3.1 (3.33%) | 2.14 ± 0.39 (−18%) |
Pro-thrombin (%) | 86 ± 11 (−11%) | |||||||
FII (%) | ///79%–131% | 82.2 ± 9.6/77.7 ± 7.9 (−11.87/−10.19%) | /78 ± 4 (−4.9%) | 115 (6.48%) | ||||
FV (%) | 70/0.51 ± 16 (−30%/−25%) | 98.9 ± 7.5/107.38 ± 8.2 (−9.1%) | 65–150/0.7–1.2/70–120/62–139 | 73.8 ± 13.7/79 ± 12.9 (−10.05/−14.67%) | 61 ± 7/83 ± 8 (−20.78/−9.8%) | 81 ± 14 (−3.5%) | 90 (−3.23%) | 104.4 ± 20.2 (6%) |
FVII (%) | ///50–129 | 75.4 ± 18.5/77.1 ± 18.0 (−7.15/−10.12%) | /92 ± 4 (/−7.1%) | 113 (5.61%) | 92.3 ± 20.2 (−9%) | |||
FVIII (%) | 70/62 ± 10 (−12.5%/−20%) | 80 ± 20/79.12 ± 12.44 (−21.6%) | 60–150/0.5–1.5/0.5–1.5/50–150 | 129.8 ± 28.9/107.9 ± 29.1 (−10.11%/−6.85%) | 52 ± 14/60 ± 20 (/−14.3%) | 75 ± 23.5 (−12.8%) | 93 (−13.89%) | 106.5 ± 27.2 (−17%) |
FIX (%) | 65–150 | 92.8 ± 13.4/95.3 ± 17.2 (−13.08%/−13.50%) | /73 ± 5 (−5.2%) | 120 (4.35%) | 109.4 ± 17.0 (−9%) | |||
FX (%) | 77–131 | 73.4 ± 11.7/81.2 ± 13.2 (−11.65%/−14.35%) | 125 (14.68%) | 88.9 ± 14.6 (−12%) | ||||
FXI (%) | 70/79 ± 11 (16.7%/6%) | 81.7 ± 6.6/98.48 ± 12.47 (−10.5%) | 65–150/0.5–1.4/50–140/65–150 | 97.9 ± 24.0/102.9 ± 17.8 (−10.94%/−4.63%) | /100 ± 8 (−2.2%) | 80 (−13.98%) | 105.4 ± 19.8 (−5%) | |
FXII (%) | 50–150 | 80.9 ± 17.0/83.1 ± 21.2 (−11.37%/−15.73%) | 100 (−15.97%) | 88.8 ± 21.4 (−15%) | ||||
FXIII (%) | /103 ± 12 (/3%) | //20–120 | /110 ± 2 (−3.0%) | 90 (−2.17%) | 98.2 ± 18.3 (−26%) | |||
Antiplasmin (%) | 90/95 ± 30 (12.5%/1%) | 82.4 ± 4.6 | /80–120/80–120/98–122 | 86.9 ± 9.9/92.5 ± 6.8 (−6.53%/−9.28%) | /60 ± 10 (−14.3%) | 47 (9.30%) | 99 ± 8 (−1%) | |
Antithrombin (%) | 1.0/1.01 ± 0.05 (0%/−3%) | 0.91 ± 0.05/92.2 ± 6.37% (−9%) | 80–135/0.8–1.2/80–120/83%–128% | 0.850 ± 0.096/0.907 ± 0.098 (−5.49%/−7.07%) | 0.90 ± 0.04/0.84 ± 0.05 (−6.25/−8.7%) | 1.06 (10.42%) | 0.91± 0.13 (−1%) | |
D-dimer (%) | 30 ± 7/29 ± 8 (0/−3.3%) | 10.8 (−12.90%) | 46 ± 23 (−10%) | |||||
Plasminogen (%) | 91.1 ± 2.9 (−11.2%) | ///80.2–132.5 | 82.3 ± 13.5/86.8 ± 17.4 (−4.92%/−8.49%) | 100 ± 3 (−4%) | 86 (−1.15%) | 103 ± 13 (3%) | ||
Protein C (%) | 90/96 ± 9 (0%/0%) | /100.4 ± 14.23 | 80–150/0.7–1.2/70–120/70–140 | 89.2 ± 15.5/90.5 ± 15.6 (−6.33%/−9.28%) | 86 ± 10/91 ± 7 (/−1.6%) | 108 ± 19.7 (1.9%) | 103 (3%) | 98 ± 20 (−7%) |
Protein S activity (%) | 90/77 ± 16 (−11.1%/−7%) | 78.3 ± 7.2 (2.2%) | 60–150/0.7–1.4/70–140/54.7–146.1 | 90.8 ± 15.4/92.7 ± 13.5 (−1.17%/−7.48%) | 69 ± 5/79 ± 7 (−6.76/−12.1%) | 96 ± 14.1 (3.2%) | 67 (1.52%) | 98.0 ± 19.2 (−8%) |
Free Protein S (%) | /92.36 ± 19.67 | 81 (−6.90%) | 96.4 ± 20.5 (−7%) | |||||
vWF/RiCoF (%) | 60.7 ± 18.1 (−25.0%) | 95 (9.20%) | 62.3 ± 23.5 (−40%) | |||||
vWF activity (%) | ///40.3–163.4 | 121.4 ± 35.5/111.4 ± 40.0 (−7.13%/−10.52%) | ||||||
vWF antigen (%) | /76.72 ± 38.3 | 60–160//42.0–176.3 | 142.8 ± 40.1/123.0 ± 44.0 (−9.87%/−9.13%) | /100 ± 40 (/−9.1%) | 142 ± 42 (6%) | |||
ADAMTS13 (%) | /120 ± 10 (/−14.3%) | 92 (−7.07%) | 135.0 ± 5.3 (5%) | |||||
References | Sailliol et al., 2013 [48]/Martinaud et al., 2012 [69] | Bux et al., 2013 [49]/Zur et al., 2019 [113] | Zur et al., 2019 [113]/Sailliol et al., 2013 [48]/Martinaud et al., 2012 [69]/Cancelas et al., 2022 [93] | Cancelas et al., 2022 [93] | Peng et al., 2022 [59]/Sheffield et al., 2022 [94] | Flaumenhaft et al., 2021 [91] | Heger and Gruber 2022 [92] | Liu et al., 2019 [98] |
Parameter | Spray-Dried Plasma | Freeze-Dried Plasma |
---|---|---|
Highest retention of clotting factors in reference to fibrinogen, FV and FVIII | −18%, +6%, −17% | 0%, −3%, −7% |
Particle size | Powder from droplets | Bulk material (no droplets) |
Rate of formation | Few hours or less | One to several days |
Reconstitution time | One to few minutes | Few minutes |
Plasma source | Intended for single donor | Single or pooled donors |
Autologous plasma | Easy to apply | Possible |
Throughput | Low to medium | Medium to high |
Equipment | Desk top | Mainframe |
Cost | Cheaper, more energy efficient | Two to three times more than frozen plasma |
Production sites | Possibly many, distributed | Often few, centralized |
Current status | Preclinical development and phase I clinical trial | Well-studied clinical safety and efficacy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.T.; Singh, K.; Rhind, S.G.; da Luz, L.; Beckett, A. Dried Plasma for Major Trauma: Past, Present, and Future. Life 2024, 14, 619. https://doi.org/10.3390/life14050619
Peng HT, Singh K, Rhind SG, da Luz L, Beckett A. Dried Plasma for Major Trauma: Past, Present, and Future. Life. 2024; 14(5):619. https://doi.org/10.3390/life14050619
Chicago/Turabian StylePeng, Henry T., Kanwal Singh, Shawn G. Rhind, Luis da Luz, and Andrew Beckett. 2024. "Dried Plasma for Major Trauma: Past, Present, and Future" Life 14, no. 5: 619. https://doi.org/10.3390/life14050619
APA StylePeng, H. T., Singh, K., Rhind, S. G., da Luz, L., & Beckett, A. (2024). Dried Plasma for Major Trauma: Past, Present, and Future. Life, 14(5), 619. https://doi.org/10.3390/life14050619