Role of Natural Binding Proteins in Therapy and Diagnostics
Abstract
:1. Introduction
2. Proteins in Conjunction with Nanoparticles
2.1. Various Nanoparticles
2.1.1. Biomimetic Materials
2.1.2. Natural Binding Proteins
3. Exploring the Role of Binding Domains in Cancer Treatment: Applications, Innovations, and Impact in Oncology
3.1. DNA-Binding Domains
3.1.1. Classification, Characteristics, and Function
3.1.2. The Role of DBDs in Oncology and Applications
3.2. Protein-Binding Domains
3.2.1. Characteristics and Functions of PPI Domains
3.2.2. The Role of PPI Domains in Cellular Processes and Infections
3.3. Fatty Acid-Binding Domains
Gene | Common Name | Aliases for Proteins | Localization |
---|---|---|---|
FABP 1 | Liver FABP | L-FABP, hepatic FABP, Z-protein, heme-binding protein | Liver, intestine, pancreas, kidney, lung, stomach |
FABP 2 | Intestinal FABP | I-FABP, gut FABP (gFABP) | Intestine, liver |
FABP 3 | Heart FABP | H-FABP, O-FABP, mammary-derived growth inhibitor (MDGI) | Cardiac and skeletal muscle, brain, kidney, lung, stomach, testis, adrenal gland, mammary gland, placenta, ovary, brown adipose tissue |
FABP 4 | Adipocyte FABP | A-FABP, aP2 | Adipocytes, macrophages, dendritic cells, skeletal muscle fibers |
FABP 5 | Epidermal FABP | E-FABP, keratinocyte-type FABP (KFABP), psoriasis-associated-FABP (PA-FABP) | Skin, tongue, adipocyte, macrophage, dendritic cells, mammary gland, brain, stomach, intestine, kidney, liver, lung, heart, skeletal, muscle, testis, retina, lens, spleen, placenta |
FABP 6 | Ileal FABP | Il-FABP, ileal lipid-binding protein (ILLBP), intestinal bile acid-binding protein (I-BABP), gastrophin | Ileum, ovary, adrenal gland, stomach |
FABP 7 | Brain FABP | B-FABP, brain lipid-binding protein (BLBP), MRG | Brain, central nervous system (CNS), glial cell, retina, mammary gland |
FABP 8 | Myelin FABP | M-FABP, peripheral myelin protein 2 (PMP2) | Peripheral nervous system, Schwann cells |
FABP 9 | Testis FABP | T-FABP, testis lipid-binding protein (TLBP), PERF, PERF 15 | Testis, salivary gland, mammary gland |
FABP 12 | / | / | Retinoblastoma cell 1, retina (ganglion and inner nuclear layer cells) 2, testicular germ cells 2, cerebral cortex 2, kidney 2, epididymis 2 |
3.3.1. Function and Specificity of FABDs
3.3.2. Structural Characteristics of FABDs
3.4. Carbohydrate-Binding Domains: Chitin-, Chitosan-, and Cellulose-Binding Domains
3.4.1. Chitosan-Binding Domain
3.4.2. Chitin-Binding Domain
3.4.3. Cellulose-Binding Domain
3.5. RNA-Binding Domains
3.5.1. Structure and Function of RNA-Binding Proteins
3.5.2. Important RNA-Binding Proteins in Therapeutic Applications
3.6. Aptamers: The Nucleic Acid Antibodies
3.6.1. Stability and Viability of Aptamers
3.6.2. Binding Mechanism
3.6.3. Applications and Regulatory Milestones
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Family | Protein Fold | Demonstrated Binding Specificities |
---|---|---|
CBM1 | Cysteine knot | Cellulose (chitin one case) |
CBM2 | -sandwich | Cellulose, chitin, xylan |
CBM3 | -sandwich | Cellulose and chitin |
CBM4 | -sandwich | Xylan, -1,3-glucan, -1,3-1,4-glucan, -1,6-glucan, and amorphous cellulose |
CBM5 | Unique | Chitin |
CBM6 | -sandwich | Amorphous cellulose, -1,4-xylan, -1,3-glucan, -1,3-1,4-glucan, and -1,4-glucan |
CBM7 | Deleted | |
CBM8 | Unknown | Cellulose |
CBM9 | -sandwich | Cellulose |
CBM10 | OB fold | Cellulose |
CBM11 | -sandwich | -1,4-glucan and -1,3-1,4-mixed-linked glucans |
CBM12 | Unique | Chitin |
CBM13 | -trefoil | Mannose, xylan, N-acetylgalactosamine |
CBM14 | Unique | Chitin |
CBM15 | -sandwich | Xylan and xylooligosaccharides |
CBM16 | -sandwich | Cellulose and glucomannan |
CBM17 | -sandwich | Amorphous cellulose, cellooligosaccharides, and derivatized cellulose |
CBM18 | Hevein fold | Chitin |
CBM19 | Unknown | Chitin |
CBM20 | -sandwich | Granular starch, cyclodextrines |
CBM21 | -sandwich | Starch |
CBM22 | -sandwich | Xylan, -1,3/-1,4-glucans |
CBM23 | Unknown | Mannan |
CBM24 | Unknown | -1,3-glucan |
CBM25 | -sandwich | Starch |
CBM26 | -sandwich | Starch |
CBM27 | -sandwich | Mannan |
CBM28 | -sandwich | Noncrystalline cellulose, cello-oligosaccharides, and -(1,3)(1,4)-glucans |
CBM29 | -sandwich | Mannan and glucomannan |
CBM30 | -sandwich | Cellulose |
CBM31 | -sandwich | -1,3-xylan |
CBM32 | -sandwich | Galactose, lactose, polygalacturonic acid, -D-galactosyl-1,4--D-N-acetylglucosamine |
CBM33 | -sandwich | Chitin and chitosan |
CBM34 | -sandwich | Granular starch |
CBM35 | -sandwich | 4,5-deoxygalaturonic acid, glucuronic acid, xylan, -galactan |
CBM36 | -sandwich | Xylan and xylooligosaccharides |
CBM37 | Unknown | Xylan, chitin, microcrystalline and phosphoric acid-swollen cellulose, alfalfa cell walls, banana stem, and wheat straw |
CBM38 | Unknown | Inulin |
CBM39 | -sandwich | -1,3-glucan, lipopolysaccharide, and lipoteichoic acid |
CBM40 | -sandwich | Sialic acid |
CBM41 | -sandwich | Amylose, amylopectin, pullulan, and -glucan oligosaccharide fragments |
CBM42 | -trefoil | Arabinofuranose |
CBM43 | CtD-Ole e 9 | -1,3-glucan |
CBM44 | -sandwich | Cellulose and xyloglucan |
CBM45 | Unknown | Starch |
CBM46 | Unknown | Cellulose |
CBM47 | -sandwich | Fucose |
CBM48 | -sandwich | Glycogen |
CBM49 | Unknown | Cellulose |
CBM50 | LysM-domain | Chitopentaose |
CBM51 | -sandwich | Galactose and to blood group A/B-antigens |
CBM52 | Unknown | -1,3-glucan |
CBM53 | Unknown | Starch |
CBM54 | Unknown | Xylan, yeast cell wall glucan, and chitin |
CBM55 | Unknown | Chitin |
CBM56 | Unknown | -1,3-glucan |
CBM57 | -sandwich | Glucose oligomers |
CBM58 | -sandwich | Maltoheptaose |
CBM59 | -sandwich | Mannan, xylan, and cellulose |
CBM60 | -sandwich | Xylan |
CBM61 | -sandwich | -1,4-galactan |
CBM62 | -sandwich | Galactose moieties found on xyloglucan, arabinogalactan, and galactomannan |
CBM63 | Expansin-like | Cellulose |
CBM64 | Unknown | Cellulose |
CBM65 | -sandwich | -glucan, xyloglucan |
CBM66 | -sandwich | Fructans |
CBM67 | Multidomain structure | L-rhamnose |
CBM68 | Unknown | Maltotriose, maltotetraose |
CBM69 | Unknown | Starch |
CBM70 | -sandwich | Hyaluronan |
CBM71 | -sandwich | Lactose, LacNAc |
CBM72 | Unknown | Various polysaccharides, including cellulose, -1,3/1,4-mixed linked glucans, xylan, and -mannan |
CBM73 | -sheet containing structure | Chitin |
CBM74 | Unknown | Starch |
CBM75 | Unknown | Xyloglucan |
CBM76 | Unknown | -glucan, xyloglucan, glucomannan |
CBM77 | -sandwich | Pectin |
CBM78 | -sandwich | Decorated -glucans, xyloglucan |
CBM79 | -sandwich | -glucans |
CBM80 | -sandwich | Xylocglucan, glucomannan, galactomannan, barley -glucan |
CBM81 | -sandwich | -1,4-, -1,3-glucans, xyloglucan, avicel, cellooligosaccharides |
CBM82 | Unknown | Starch |
CBM83 | Unknown | Starch |
CBM84 | Unknown | Xanthan |
CBM85 | Unknown | Cellulose, glucuronoxylan, -1,3-1,4-glucan, and glucomannan |
CBM86 | -sandwich | Xylan |
CBM87 | -domain | -1,4-N-acetylgalactosamine-rich regions of galactosaminogalactan |
CBM88 | Unknown | Terminal galactose in galactoxyloglucan and galactomannan |
CBM89 | -helix | Beechwood xylan and rye arabinoxylan binding |
CBM90 | Unknown | Ulvan |
CBM91 | Unknown | Xylans (birchwood and oat spelt) |
CBM92 | Unknown | -1,3- and -1,6-glucan |
CBM93 | Unknown | Glycan |
CBM94 | Unknown | N-Acetylglucosamine |
CBM95 | Unknown | Pectic rhamnogalacturonan-I |
CBM96 | Unknown | Alginate |
CBM97 | Unknown | Polygalacturonic acid |
CBM98 | Unknown | Amylopectin |
CBM99 | Unknown | Porphyran |
CBM100 | -sandwich | Chondroitin sulfate |
CBM101 | -sandwich | Agarose |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- WHO. Breast Cancer. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 5 February 2024).
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Corbex, M.; Burton, R.; Sancho-Garnier, H. Breast cancer early detection methods for low and middle income countries, a review of the evidence. Breast 2012, 21, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Waks, A.G.; Winer, E.P. Breast Cancer Treatment: A Review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef]
- American Cancer Society. Radiation Therapy Side Effects. 2023. Available online: https://www.cancer.org/cancer/managing-cancer/treatment-types/radiation/effects-on-different-parts-of-body.html (accessed on 7 May 2024).
- Swain, S.M.; Miles, D.; Kim, S.B.; Im, Y.H.; Im, S.A.; Semiglazov, V.; Ciruelos, E.; Schneeweiss, A.; Loi, S.; Monturus, E.; et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): End-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 519–530. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute at the National Institutes of Health. Trastuzumab. 2006. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/trastuzumab (accessed on 5 February 2024).
- Patel, A.; Unni, N.; Peng, Y. The Changing Paradigm for the Treatment of HER2-Positive Breast Cancer. Cancers 2020, 12, 2081. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Im, S.A.; Cardoso, F.; Cortes, J.; Curigliano, G.; Musolino, A.; Pegram, M.D.; Bachelot, T.; Wright, G.S.; Saura, C.; et al. Margetuximab Versus Trastuzumab in Patients With Previously Treated HER2-Positive Advanced Breast Cancer (SOPHIA): Final Overall Survival Results From a Randomized Phase 3 Trial. J. Clin. Oncol. 2022, 41, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Pan, W.; Jin, L.; Huang, W.; Li, Y.; Wu, D.; Gao, C.; Ma, D.; Liao, S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020, 471, 88–102. [Google Scholar] [CrossRef]
- Papahadjopoulos, D.; Poste, G.; Schaeffer, B.E. Fusion of mammalian cells by unilamellar lipid vesicles: Influence of lipid surface charge, fluidity and cholesterol. Biochim. Biophys. Acta Biomembr. 1973, 323, 23–42. [Google Scholar] [CrossRef]
- Adams, D.H.; Joyce, G.; Richardson, V.J.; Ryman, B.E.; Wiśniewski, H.M. Liposome toxicity in the mouse central nervous system. J. Neurol. Sci. 1977, 31, 173–179. [Google Scholar] [CrossRef]
- Shi, M.; Anantha, M.; Wehbe, M.; Bally, M.B.; Fortin, D.; Roy, L.O.; Charest, G.; Richer, M.; Paquette, B.; Sanche, L. Liposomal formulations of carboplatin injected by convection-enhanced delivery increases the median survival time of F98 glioma bearing rats. J. Nanobiotechnol. 2018, 16, 77. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Sahdev, P.; Ochyl, L.J.; Akerberg, J.J.; Moon, J.J. Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J. Control. Release 2015, 208, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Bui, T.A.; Yang, X.; Aksoy, Y.; Goldys, E.M.; Deng, W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater. Au 2023, 3, 600–619. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S.; Tong, R.; Miao, Y.B.; Cai, L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020, 12, 604. [Google Scholar] [CrossRef] [PubMed]
- Khramtsov, P.; Kalashnikova, T.; Bochkova, M.; Kropaneva, M.; Timganova, V.; Zamorina, S.; Rayev, M. Measuring the concentration of protein nanoparticles synthesized by desolvation method: Comparison of Bradford assay, BCA assay, hydrolysis/UV spectroscopy and gravimetric analysis. Int. J. Pharm. 2021, 599, 120422. [Google Scholar] [CrossRef] [PubMed]
- Shome, A.; Rather, A.M.; Manna, U. Chemically reactive protein nanoparticles for synthesis of a durable and deformable superhydrophobic material. Nanoscale Adv. 2019, 1, 1746–1753. [Google Scholar] [CrossRef]
- Turrina, C.; Klassen, A.; Milani, D.; Rojas-González, D.M.; Ledinski, G.; Auer, D.; Sartori, B.; Cvirn, G.; Mela, P.; Berensmeier, S.; et al. Superparamagnetic iron oxide nanoparticles for their application in the human body: Influence of the surface. Heliyon 2023, 9, e16487. [Google Scholar] [CrossRef]
- Barenholz, Y. (Chezy) Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304. [Google Scholar] [CrossRef]
- Avval, Z.M.; Malekpour, L.; Raeisi, F.; Babapoor, A.; Mousavi, S.M.; Hashemi, S.A.; Salari, M. Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application. Drug Metab. Rev. 2020, 52, 157–184. [Google Scholar] [CrossRef]
- Hernandes, E.P.; Lazarin-Bidóia, D.; Bini, R.D.; Nakamura, C.V.; Cótica, L.F.; de Oliveira Silva Lautenschlager, S. Doxorubicin-Loaded Iron Oxide Nanoparticles Induce Oxidative Stress and Cell Cycle Arrest in Breast Cancer Cells. Antioxidants 2023, 12, 237. [Google Scholar] [CrossRef]
- Dilnawaz, F.; Singh, A.; Mohanty, C.; Sahoo, S.K. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 2010, 31, 3694–3706. [Google Scholar] [CrossRef] [PubMed]
- Amsalem, O.; Nassar, T.; Benhamron, S.; Lazarovici, P.; Benita, S.; Yavin, E. Solid nano-in-nanoparticles for potential delivery of siRNA. J. Control. Release 2017, 257, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, H.; Wen, C.; Bai, S.; Wei, P.; Xu, B.; Xu, Y.; Liang, C.; Zhang, Y.; Zhang, G.; et al. Effects of iron oxide nanoparticles as T2-MRI contrast agents on reproductive system in male mice. J. Nanobiotechnol. 2022, 20, 98. [Google Scholar] [CrossRef]
- Oberdick, S.D.; Jordanova, K.V.; Lundstrom, J.T.; Parigi, G.; Poorman, M.E.; Zabow, G.; Keenan, K.E. Iron oxide nanoparticles as positive T1 contrast agents for low-field magnetic resonance imaging at 64 mT. Sci. Rep. 2023, 13, 11520. [Google Scholar] [CrossRef]
- Peng, Y.K.; Tsang, S.C.E.; Chou, P.T. Chemical design of nanoprobes for T1-weighted magnetic resonance imaging. Mater. Today 2016, 19, 336–348. [Google Scholar] [CrossRef]
- Chiarelli, P.A.; Revia, R.A.; Stephen, Z.R.; Wang, K.; Jeon, M.; Nelson, V.; Kievit, F.M.; Sham, J.; Ellenbogen, R.G.; Kiem, H.P.; et al. Nanoparticle Biokinetics in Mice and Nonhuman Primates. ACS Nano 2017, 11, 9514–9524. [Google Scholar] [CrossRef]
- Khandhar, A.P.; Ferguson, R.M.; Arami, H.; Krishnan, K.M. Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 2013, 34, 3837–3845. [Google Scholar] [CrossRef]
- Weber, C.; Coester, C.; Kreuter, J.; Langer, K. Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm. 2000, 194, 91–102. [Google Scholar] [CrossRef]
- Forest, V.; Cottier, M.; Pourchez, J. Electrostatic interactions favor the binding of positive nanoparticles on cells: A reductive theory. Nano Today 2015, 10, 677–680. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, W.; Jiang, W.; Kumar, A.; Zhou, S.; Cao, Z.; Zhan, S.; Yang, W.; Liu, R.; Teng, Y.; et al. Nanoconjugates to enhance PDT-mediated cancerimmunotherapy by targeting the indoleamine-2,3-dioxygenase pathway. J. Nanobiotechnol. 2021, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Shaban, M.; Hasanzadeh, M.; Solhi, E. An Fe3O4/PEDOT:PSS nanocomposite as an advanced electroconductive material for the biosensing of the prostate-specific antigen in unprocessed human plasma samples. Anal. Methods 2019, 11, 5661–5672. [Google Scholar] [CrossRef]
- Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010, 62, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm. Res. 2016, 33, 2373–2387. [Google Scholar] [CrossRef] [PubMed]
- Ranade, A.A.; Joshi, D.A.; Phadke, G.K.; Patil, P.P.; Kasbekar, R.B.; Apte, T.G.; Dasare, R.R.; Mengde, S.D.; Parikh, P.M.; Bhattacharyya, G.S.; et al. Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Ann. Oncol. 2013, 24, v6–v12. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Wu, W.; Xu, X.M.; Xu, H.; Zhang, T. Recent Progress of Paclitaxel Delivery Systems: Covalent and Noncovalent Approaches. Adv. Ther. 2023, 6, 2200281. [Google Scholar] [CrossRef]
- Mahmoudi, K.; Bouras, A.; Bozec, D.; Ivkov, R.; Hadjipanayis, C. Magnetic hyperthermia therapy for the treatment of glioblastoma: A review of the therapy’s history, efficacy and application in humans. Int. J. Hyperth. 2018, 34, 1316–1328. [Google Scholar] [CrossRef]
- Makita, M.; Manabe, E.; Kurita, T.; Takei, H.; Nakamura, S.; Kuwahata, A.; Sekino, M.; Kusakabe, M.; Ohashi, Y. Moving a neodymium magnet promotes the migration of a magnetic tracer and increases the monitoring counts on the skin surface of sentinel lymph nodes in breast cancer. BMC Med. Imaging 2020, 20, 58. [Google Scholar] [CrossRef]
- Jain, A.; Singh, S.K.; Arya, S.K.; Kundu, S.C.; Kapoor, S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater. Sci. Eng. 2018, 4, 3939–3961. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Parodi, A.; Molinaro, R.; Sushnitha, M.; Evangelopoulos, M.; Martinez, J.O.; Arrighetti, N.; Corbo, C.; Tasciotti, E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 2017, 147, 155–168. [Google Scholar] [CrossRef]
- Silva, R.C.; Lourenço, B.G.; Ulhoa, P.H.F.; Dias, E.A.F.; da Cunha, F.L.; Tonetto, C.P.; Villani, L.G.; Vimieiro, C.B.S.; Lepski, G.A.; Monjardim, M.; et al. Biomimetic Design of a Tendon-Driven Myoelectric Soft Hand Exoskeleton for Upper-Limb Rehabilitation. Biomimetics 2023, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafiz, M.H.; Andreasen Struijk, L.N.S.; Dosen, S.; Spaich, E.G. Biomimetic Tendon-Based Mechanism for Finger Flexion and Extension in a Soft Hand Exoskeleton: Design and Experimental Assessment. Sensors 2023, 23, 2272. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, S.; Luo, D.; He, D.; Shi, C.; Zhu, L.; Guan, B.; Li, Z.; Zhang, T.; Zhou, Y.; et al. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin. Nat. Commun. 2021, 12, 1293. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Yao, H.; Mao, A.S.; Zhu, Y.; Qi, D.; Jia, Y.; Gao, M.; Chen, Y.; Wang, L.; Wang, D.A.; et al. Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nat. Biomed. Eng. 2021, 5, 1189–1201. [Google Scholar] [CrossRef]
- Zafar, M.S.; Amin, F.; Fareed, M.A.; Ghabbani, H.; Riaz, S.; Khurshid, Z.; Kumar, N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics 2020, 5, 34. [Google Scholar] [CrossRef]
- Palazzo, B.; Iafisco, M.; Laforgia, M.; Margiotta, N.; Natile, G.; Bianchi, C.; Walsh, D.; Mann, S.; Roveri, N. Biomimetic Hydroxyapatite–Drug Nanocrystals as Potential Bone Substitutes with Antitumor Drug Delivery Properties. Adv. Funct. Mater. 2007, 17, 2180–2188. [Google Scholar] [CrossRef]
- Rao, L.; Bu, L.L.; Xu, J.H.; Cai, B.; Yu, G.T.; Yu, X.; He, Z.; Huang, Q.; Li, A.; Guo, S.S.; et al. Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small 2015, 11, 6225–6236. [Google Scholar] [CrossRef]
- Sushnitha, M.; Evangelopoulos, M.; Tasciotti, E.; Taraballi, F. Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Front. Bioeng. Biotechnol. 2020, 8, 627. [Google Scholar] [CrossRef]
- Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 2013, 166, 182–194. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Ma, C.; Zhang, H.; Liu, K. Biomimetic Structural Proteins: Modular Assembly and High Mechanical Performance. Accounts Chem. Res. 2023, 56, 2664–2675. [Google Scholar] [CrossRef]
- Lavickova, B.; Laohakunakorn, N.; Maerkl, S.J. A partially self-regenerating synthetic cell. Nat. Commun. 2020, 11, 6340. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, X.; Li, J. Natural protein bioinspired materials for regeneration of hard tissues. J. Mater. Chem. B 2020, 8, 2199–2215. [Google Scholar] [CrossRef]
- Bernaudat, F.; Frelet-Barrand, A.; Pochon, N.; Dementin, S.; Hivin, P.; Boutigny, S.; Rioux, J.B.; Salvi, D.; Seigneurin-Berny, D.; Richaud, P.; et al. Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host. PLoS ONE 2011, 6, e29191. [Google Scholar] [CrossRef] [PubMed]
- Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Rohovie, M.J.; Nagasawa, M.; Swartz, J.R. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med. 2017, 2, 43–57. [Google Scholar] [CrossRef]
- Sari-Ak, D.; Bahrami, S.; Laska, M.J.; Drncova, P.; Fitzgerald, D.J.; Schaffitzel, C.; Garzoni, F.; Berger, I. High-Throughput Production of Influenza Virus-Like Particle (VLP) Array by Using VLP-factory™, a MultiBac Baculoviral Genome Customized for Enveloped VLP Expression. In High-Throughput Protein Production and Purification: Methods and Protocols; Vincentelli, R., Ed.; Springer: New York, NY, USA, 2019; pp. 213–226. [Google Scholar] [CrossRef]
- Brillault, L.; Jutras, P.V.; Dashti, N.; Thuenemann, E.C.; Morgan, G.; Lomonossoff, G.P.; Landsberg, M.J.; Sainsbury, F. Engineering Recombinant Virus-like Nanoparticles from Plants for Cellular Delivery. ACS Nano 2017, 11, 3476–3484. [Google Scholar] [CrossRef]
- Huo, Y.; Wan, X.; Ling, T.; Wu, J.; Wang, W.; Shen, S. Expression and purification of norovirus virus like particles in Escherichia coli and their immunogenicity in mice. Mol. Immunol. 2018, 93, 278–284. [Google Scholar] [CrossRef]
- Wetzel, D.; Rolf, T.; Suckow, M.; Kranz, A.; Barbian, A.; Chan, J.A.; Leitsch, J.; Weniger, M.; Jenzelewski, V.; Kouskousis, B.; et al. Establishment of a yeast-based VLP platform for antigen presentation. Microb. Cell Factories 2018, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, J.; Yin, J.; Gan, Y.; Xu, S.; Gu, Y.; Huang, W. Alternative approaches to target Myc for cancer treatment. Signal Transduct. Target. Ther. 2021, 6, 117. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.; Jambon, S.; Depauw, S.; David-Cordonnier, M.H. Targeting Transcription Factors for Cancer Treatment. Molecules 2018, 23, 1479. [Google Scholar] [CrossRef] [PubMed]
- Corsico, B.; Cistola, D.P.; Frieden, C.; Storch, J. The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proc. Natl. Acad. Sci. USA 1998, 95, 12174–12178. [Google Scholar] [CrossRef] [PubMed]
- Boraston, A.B.; Bolam, D.N.; Gilbert, H.J.; Davies, G.J. Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochem. J. 2004, 382, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Hashimoto, M.; Ikegami, T.; Seino, S.; Ohuchi, N.; Fukada, H.; Sugiyama, J.; Shirakawa, M.; Watanabe, T. Expression and Characterization of the Chitin-Binding Domain of Chitinase A1 from Bacillus circulans WL-12. J. Bacteriol. 2000, 182, 3045–3054. [Google Scholar] [CrossRef] [PubMed]
- Nampally, M.; Moerschbacher, B.M.; Kolkenbrock, S. Fusion of a Novel Genetically Engineered Chitosan Affinity Protein and Green Fluorescent Protein for Specific Detection of Chitosan In Vitro and In Situ. Appl. Environ. Microbiol. 2012, 78, 3114–3119. [Google Scholar] [CrossRef]
- Hudson, W.H.; Ortlund, E.A. The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol. 2014, 15, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Costa, G. RNA-binding proteins and translation control in angiogenesis. FEBS J. 2022, 289, 7788–7809. [Google Scholar] [CrossRef]
- Eigenfeld, M.; Kerpes, R.; Becker, T. Recombinant protein linker production as a basis for non-invasive determination of single-cell yeast age in heterogeneous yeast populations. RSC Adv. 2021, 11, 31923–31932. [Google Scholar] [CrossRef]
- Vogt, S.; Kelkenberg, M.; Nöll, T.; Steinhoff, B.; Schönherr, H.; Merzendorfer, H.; Nöll, G. Rapid determination of binding parameters of chitin binding domains using chitin-coated quartz crystal microbalance sensor chips. Analyst 2018, 143, 5255–5263. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Osaki, T.; Minami, S.; Okamoto, Y. Anticancer and Anti-Inflammatory Properties of Chitin and Chitosan Oligosaccharides. J. Funct. Biomater. 2015, 6, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, D.; Liu, H.; Yang, Q.; Yao, K.; Wang, X.; Wang, L.; Yang, X. Effect of Low Molecular Weight Chitosans on Drug Permeation through Mouse Skin: 1. Transdermal Delivery of Baicalin. J. Pharm. Sci. 2010, 99, 2991–2998. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Wen, Z.S.; Huang, Y.J.; Xia, M.S.; Xiang, X.W.; Qu, Y.L. Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-kB and AP-1 Signaling Pathways in RAW264.7 Macrophages. Mar. Drugs 2016, 14, 169. [Google Scholar] [CrossRef] [PubMed]
- Madu, C.O.; Lu, Y. Novel diagnostic biomarkers for prostate cancer. J. Cancer 2010, 1, 150–177. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, X.; Lei, Y.; Wang, G.; Liu, M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 824208. [Google Scholar] [CrossRef]
- Janski, N.; Masoud, K.; Batzenschlager, M.; Herzog, E.; Evrard, J.L.; Houlné, G.; Bourge, M.; Chabouté, M.E.; Schmit, A.C. The GCP3-interacting proteins GIP1 and GIP2 are required for γ-tubulin complex protein localization, spindle integrity, and chromosomal stability. Plant Cell 2012, 24, 1171–1187. [Google Scholar] [CrossRef]
- Aggarwal, D.; Yang, J.; Salam, M.A.; Sengupta, S.; Al-Amin, M.Y.; Mustafa, S.; Khan, M.A.; Huang, X.; Pawar, J.S. Antibody-drug conjugates: The paradigm shifts in the targeted cancer therapy. Front. Immunol 2023, 14, 1203073. [Google Scholar] [CrossRef] [PubMed]
- Rassy, E.; Heard, J.M.; Andre, F. The paradigm shift to precision oncology between political will and cultural acceptance. ESMO Open 2023, 8, 101622. [Google Scholar] [CrossRef]
- Rhee, S.; Martin, R.G.; Rosner, J.L.; Davies, D.R. A novel DNA-binding motif in MarA: The first structure for an AraC family transcriptional activator. Proc. Natl. Acad. Sci. USA 1998, 95, 10413–10418. [Google Scholar] [CrossRef]
- Gonzalez, D.H. Chapter 1—Introduction to Transcription Factor Structure and Function. In Plant Transcription Factors; Gonzalez, D.H., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 3–11. [Google Scholar] [CrossRef]
- Corbella, M.; Liao, Q.; Moreira, C.; Parracino, A.; Kasson, P.M.; Kamerlin, S.C.L. The N-terminal Helix-Turn-Helix Motif of Transcription Factors MarA and Rob Drives DNA Recognition. J. Phys. Chem. B 2021, 125, 6791–6806. [Google Scholar] [CrossRef] [PubMed]
- McColl, D.J.; Honchell, C.D.; Frankel, A.D. Structure-based design of an RNA-binding zinc finger. Proc. Natl. Acad. Sci. USA 1999, 96, 9521–9526. [Google Scholar] [CrossRef] [PubMed]
- Ransom, M.; Dennehey, B.K.; Tyler, J.K. Chaperoning Histones during DNA Replication and Repair. Cell 2010, 140, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Stracy, M.; Schweizer, J.; Sherratt, D.J.; Kapanidis, A.N.; Uphoff, S.; Lesterlin, C. Transient non-specific DNA binding dominates the target search of bacterial DNA-binding proteins. Mol. Cell 2021, 81, 1499–1514.e6. [Google Scholar] [CrossRef] [PubMed]
- Keith, J.M. Bioinformatics; Book Section 7—The Classification of Protein Domains; Springer: New York, NY, USA, 2017; pp. 137–164. [Google Scholar]
- Charoensawan, V.; Wilson, D.; Teichmann, S.A. Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res. 2010, 38, 7364–7377. [Google Scholar] [CrossRef] [PubMed]
- Wingender, E. Available online: http://gene-regulation.com/ (accessed on 29 April 2024).
- Liptak, C.; Loria, J.P. Movement and Specificity in a Modular DNA Binding Protein. Structure 2015, 23, 973–974. [Google Scholar] [CrossRef] [PubMed]
- Bochkarev, A.; Barwell, J.A.; Pfuetzner, R.A.; Furey, W.; Edwards, A.M.; Frappier, L. Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein EBNA1. Cell 1995, 83, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Bochkarev, A.; Barwell, J.A.; Pfuetzner, R.A.; Bochkareva, E.; Frappier, L.; Edwards, A.M. Crystal Structure of the DNA-Binding Domain of the Epstein-Barr Virus Origin-Binding Protein, EBNA1, Bound to DNA. Cell 1996, 84, 791–800. [Google Scholar] [CrossRef]
- Schleif, R. DNA Binding by Proteins. Science 1988, 241, 1182–1187. [Google Scholar] [CrossRef]
- Chaible, L.M.; Kinoshita, D.; Finzi Corat, M.A.; Zaidan Dagli, M.L. Chapter 27—Genetically Modified Animal Models. In Animal Models for the Study of Human Disease, 2nd ed.; Conn, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 703–726. [Google Scholar] [CrossRef]
- Suzuki, T.; Kimura, A.; Nagai, R.; Horikoshi, M. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 2002, 5, 29–41. [Google Scholar] [CrossRef]
- Grove, A.; Lim, L. High-affinity DNA binding of HU protein from the hyperthermophile Thermotoga maritima11Edited by T. Richmond. J. Mol. Biol. 2001, 311, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sass, L.E.; Du, C.; Hsieh, P.; Erie, D.A. Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res. 2005, 33, 4322–4334. [Google Scholar] [CrossRef] [PubMed]
- Radaeva, M.; Ton, A.T.; Hsing, M.; Ban, F.; Cherkasov, A. Drugging the ‘undruggable’. Therapeutic targeting of protein-DNA interactions with the use of computer-aided drug discovery methods. Drug Discov. Today 2021, 26, 2660–2679. [Google Scholar] [CrossRef] [PubMed]
- Chahrour, M.; Zoghbi, H.Y. The Story of Rett Syndrome: From Clinic to Neurobiology. Neuron 2007, 56, 422–437. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; Ali, A.M.; Naik, A.; Eldaw, M.; Decock, J.; Kolatkar, P.R. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front. Oncol. 2021, 11, 681377. [Google Scholar] [CrossRef] [PubMed]
- Bushweller, J.H. Targeting transcription factors in cancer—From undruggable to reality. Nat. Rev. Cancer 2019, 19, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Herz, H.M.; Hu, D.; Shilatifard, A. Enhancer Malfunction in Cancer. Mol. Cell 2014, 53, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xue, S.t.; Gao, Y.; Li, Y.; Zhou, Z.; Wang, J.; Li, Z.; Liu, Z. Small molecule targeting FOXM1 DNA binding domain exhibits anti-tumor activity in ovarian cancer. Cell Death Discov. 2022, 8, 280. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, Y.; Takahashi, R.U.; Yamamoto, Y.; Tahara, H. Targeting DNA binding proteins for cancer therapy. Cancer Sci. 2020, 111, 1058–1064. [Google Scholar] [CrossRef]
- Yingling, J.M.; Datto, M.B.; Wong, C.; Frederick, J.P.; Liberati, N.T.; Wang, X.F. Tumor Suppressor Smad4 Is a Transforming Growth Factor β-Inducible DNA Binding Protein. Mol. Cell. Biol. 1997, 17, 7019–7028. [Google Scholar] [CrossRef]
- Stefanoudakis, D.; Kathuria-Prakash, N.; Sun, A.W.; Abel, M.; Drolen, C.E.; Ashbaugh, C.; Zhang, S.; Hui, G.; Tabatabaei, Y.A.; Zektser, Y.; et al. The Potential Revolution of Cancer Treatment with CRISPR Technology. Cancers 2023, 15, 1813. [Google Scholar] [CrossRef] [PubMed]
- Ketron, A.C.; Denny, W.A.; Graves, D.E.; Osheroff, N. Amsacrine as a Topoisomerase II Poison: Importance of Drug–DNA Interactions. Biochemistry 2012, 51, 1730–1739. [Google Scholar] [CrossRef] [PubMed]
- Finlay, G.J.; Riou, J.F.; Baguley, B.C. From amsacrine to DACA (N-[2-(dimethylamino)ethyl]acridine-4-carboxamide): Selectivity for topoisomerases I and II among acridine derivatives. Eur. J. Cancer 1996, 32, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Baguley, B.C.; Drummond, C.J.; Chen, Y.Y.; Finlay, G.J. DNA-Binding Anticancer Drugs: One Target, Two Actions. Molecules 2021, 26, 552. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.F. DNA Damaging Drugs. In Molecular Therapies of Cancer; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–112. [Google Scholar] [CrossRef]
- Ivanov, A.A. Explore Protein–Protein Interactions for Cancer Target Discovery Using the OncoPPi Portal. In Protein-Protein Interaction Networks: Methods and Protocols; Canzar, S., Ringeling, F.R., Eds.; Springer US: New York, NY, USA, 2020; pp. 145–164. [Google Scholar] [CrossRef]
- Hugo, W.; Sung, W.K.; Ng, S.K. Discovering Interacting Domains and Motifs in Protein–Protein Interactions. In Data Mining for Systems Biology: Methods and Protocols; Mamitsuka, H., DeLisi, C., Kanehisa, M., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 9–20. [Google Scholar] [CrossRef]
- Bardwell, V.J.; Treisman, R. The POZ domain: A conserved protein-protein interaction motif. Genes Dev. 1994, 8, 1664–1677. [Google Scholar] [CrossRef] [PubMed]
- Zollman, S.; Godt, D.; Privé, G.G.; Couderc, J.L.; Laski, F.A. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc. Natl. Acad. Sci. USA 1994, 91, 10717–10721. [Google Scholar] [CrossRef] [PubMed]
- Brayer, K.J.; Kulshreshtha, S.; Segal, D.J. The Protein-Binding Potential of C2H2 Zinc Finger Domains. Cell Biochem. Biophys. 2008, 51, 9–19. [Google Scholar] [CrossRef]
- Das, S.; Chakrabarti, S. Classification and prediction of protein–protein interaction interface using machine learning algorithm. Sci. Rep. 2021, 11, 1761. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Reyes, J.A.; Gilbert, D.R.; Kim, J.W.; Kim, S. Prediction of protein-protein interaction types using association rule based classification. BMC Bioinform. 2009, 10, 36. [Google Scholar] [CrossRef]
- Urquiza, J.M.; Rojas, I.; Pomares, H.; Herrera, J.; Florido, J.P.; Valenzuela, O.; Cepero, M. Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification. Comput. Biol. Med. 2012, 42, 639–650. [Google Scholar] [CrossRef]
- Dunne, M.; Hupfeld, M.; Klumpp, J.; Loessner, M.J. Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages. Viruses 2018, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Dunne, M.; Prokhorov, N.S.; Loessner, M.J.; Leiman, P.G. Reprogramming bacteriophage host range: Design principles and strategies for engineering receptor binding proteins. Curr. Opin. Biotechnol. 2021, 68, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Taslem Mourosi, J.; Awe, A.; Guo, W.; Batra, H.; Ganesh, H.; Wu, X.; Zhu, J. Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key “Blueprint” for Reprogramming Phage Host Range. Int. J. Mol. Sci. 2022, 23, 12146. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, R.A.; Pickard, D.; Dougan, S.; Goulding, D.; Cormie, C.; Hardy, J.; Li, F.; Grinter, R.; Harcourt, K.; Yu, L.; et al. The flagellotropic bacteriophage YSD1 targets Salmonella Typhi with a Chi-like protein tail fibre. Mol. Microbiol. 2019, 112, 1831–1846. [Google Scholar] [CrossRef] [PubMed]
- Berg, H.C.; Purcell, E.M. Physics of chemoreception. Biophys. J. 1977, 20, 193–219. [Google Scholar] [CrossRef]
- Axelrod, D.; Wang, M.D. Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors. Biophys. J. 1994, 66, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Langer, M.; Malykhin, A.; Maeda, K.; Chakrabarty, K.; Williamson, K.S.; Feasley, C.L.; West, C.M.; Metcalf, J.P.; Coggeshall, K.M. Bacillus anthracis peptidoglycan stimulates an inflammatory response in monocytes through the p38 mitogen-activated protein kinase pathway. PLoS ONE 2008, 3, e3706. [Google Scholar] [CrossRef]
- Aucher, W.; Davison, S.; Fouet, A. Characterization of the Sortase Repertoire in Bacillus anthracis. PLoS ONE 2011, 6, e27411. [Google Scholar] [CrossRef]
- Davison, S.; Couture-Tosi, E.; Candela, T.; Mock, M.; Fouet, A. Identification of the Bacillus anthracis lambda Phage Receptor. J. Bacteriol. 2005, 187, 6742–6749. [Google Scholar] [CrossRef]
- Wang, F.; Yang, W.; Hu, X. Discovery of High Affinity Receptors for Dityrosine through Inverse Virtual Screening and Docking and Molecular Dynamics. Int. J. Mol. Sci. 2019, 20, 115. [Google Scholar] [CrossRef] [PubMed]
- Smathers, R.L.; Petersen, D.R. The human fatty acid-binding protein family: Evolutionary divergences and functions. Human Genom. 2011, 5, 170. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 2008, 7, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Richieri, G.V.; Ogata, R.T.; Zimmerman, A.W.; Veerkamp, J.H.; Kleinfeld, A.M. Fatty Acid Binding Proteins from Different Tissues Show Distinct Patterns of Fatty Acid Interactions. Biochemistry 2000, 39, 7197–7204. [Google Scholar] [CrossRef] [PubMed]
- Toelzer, C.; Gupta, K.; Yadav, S.K.N.; Borucu, U.; Davidson, A.D.; Kavanagh Williamson, M.; Shoemark, D.K.; Garzoni, F.; Staufer, O.; Milligan, R.; et al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science 2020, 370, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Curry, S.; Mandelkow, H.; Brick, P.; Franks, N. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 1998, 5, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, G.Z.; Yang, D. Effects of ligand binding on dynamics of fatty acid binding protein and interactions with membranes. Biophys. J. 2022, 121, 4024–4032. [Google Scholar] [CrossRef]
- Ghosh, S.; Dey, J. Binding of Fatty Acid Amide Amphiphiles to Bovine Serum Albumin: Role of Amide Hydrogen Bonding. J. Phys. Chem. B 2015, 119, 7804–7815. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.H.; Goswami, D.; Griffin, P.R.; Noy, N.; Ortlund, E.A. Structural Basis for Ligand Regulation of the Fatty Acid-binding Protein 5, Peroxisome Proliferator-activated Receptor β/δ (FABP5-PPAR β/δ) Signaling Pathway. J. Biol. Chem. 2014, 289, 14941–14954. [Google Scholar] [CrossRef]
- Guillén, D.; Sánchez, S.; Rodríguez-Sanoja, R. Carbohydrate-binding domains: Multiplicity of biological roles. Appl. Microbiol. Biotechnol. 2010, 85, 1241–1249. [Google Scholar] [CrossRef]
- Henrissat, B.; Terrapon, N.; Coutinho, P.M.; Lombard, V.; Drula, E.; Garron, M.L.; Boulinguiez, M. Carbohydrate-Binding-Modules; Université d’Aix-Marseille: Marseille, France, 1998; Available online: http://www.cazy.org/Carbohydrate-Binding-Modules.html (accessed on 5 February 2024).
- Abbott, D.W.; Boraston, A.B. Chapter eleven—Quantitative Approaches to The Analysis of Carbohydrate-Binding Module Function. In Methods in Enzymology; Gilbert, H.J., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 510, pp. 211–231. [Google Scholar] [CrossRef]
- Das, S.N.; Wagenknecht, M.; Nareddy, P.K.; Bhuvanachandra, B.; Niddana, R.; Balamurugan, R.; Swamy, M.J.; Moerschbacher, B.M.; Podile, A.R. Amino Groups of Chitosan Are Crucial for Binding to a Family 32 Carbohydrate Binding Module of a Chitosanase from Paenibacillus elgii. J. Biol. Chem. 2016, 291, 18977–18990. [Google Scholar] [CrossRef]
- Mathieu, S.V.; Aragão, K.S.; Imberty, A.; Varrot, A. Discoidin I from Dictyostelium discoideum and Interactions with Oligosaccharides: Specificity, Affinity, Crystal Structures, and Comparison with Discoidin II. J. Mol. Biol. 2010, 400, 540–554. [Google Scholar] [CrossRef]
- Kimoto, H.; Kusaoke, H.; Yamamoto, I.; Fujii, Y.; Onodera, T.; Taketo, A. Biochemical and Genetic Properties of Paenibacillus Glycosyl Hydrolase Having Chitosanase Activity and Discoidin Domain. J. Biol. Chem. 2002, 277, 14695–14702. [Google Scholar] [CrossRef]
- Desai, N.; Rana, D.; Salave, S.; Gupta, R.; Patel, P.; Karunakaran, B.; Sharma, A.; Giri, J.; Benival, D.; Kommineni, N. Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics 2023, 15, 1313. [Google Scholar] [CrossRef]
- Banki, M.R.; Wood, D.W. Inteins and affinity resin substitutes for protein purification and scale up. Microb. Cell Fact. 2005, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Noren, C.J.; Wang, J.; Perler, F.B. Dissecting the Chemistry of Protein Splicing and Its Applications. Angew. Chem. Int. Ed. 2000, 39, 450–466. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Tokuhisa, H.; Shingai, H.; Hiraishi, T.; Houjou, H.; Kanesato, M.; Imanaka, T.; Tanaka, T. Interaction Force of Chitin-Binding Domains onto Chitin Surface. Biomacromolecules 2008, 9, 2126–2131. [Google Scholar] [CrossRef] [PubMed]
- Eigenfeld, M.; Kerpes, R.; Whitehead, I.; Becker, T. Autofluorescence prediction model for fluorescence unmixing and age determination. Biotechnol. J. 2022, 17, 2200091. [Google Scholar] [CrossRef] [PubMed]
- Eigenfeld, M.; Wittmann, L.; Kerpes, R.; Schwaminger, S.P.; Becker, T. Studying the impact of cell age on the yeast growth behaviour of Saccharomyces pastorianus var. carlsbergensis by magnetic separation. Biotechnol. J. 2023, 18, 2200610. [Google Scholar] [CrossRef]
- Manjeet, K.; Purushotham, P.; Neeraja, C.; Podile, A.R. Bacterial chitin binding proteins show differential substrate binding and synergy with chitinases. Microbiol. Res. 2013, 168, 461–468. [Google Scholar] [CrossRef]
- Vaaje-Kolstad, G.; Horn, S.J.; van Aalten, D.M.F.; Synstad, B.; Eijsink, V.G.H. The Non-catalytic Chitin-binding Protein CBP21 from Serratia marcescens Is Essential for Chitin Degradation. J. Biol. Chem. 2005, 280, 28492–28497. [Google Scholar] [CrossRef] [PubMed]
- Nimlos, M.R.; Beckham, G.T.; Matthews, J.F.; Bu, L.; Himmel, M.E.; Crowley, M.F. Binding preferences, surface attachment, diffusivity, and orientation of a family 1 carbohydrate-binding module on cellulose. J. Biol. Chem. 2012, 287, 20603–20612. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Carvalho, J.; Mota, M.; Gama, M. Large-scale production of cellulose-binding domains. Adsorption studies using CBD-FITC conjugates. Cellulose 2006, 13, 557–569. [Google Scholar] [CrossRef]
- Linder, M.; Winiecka-Krusnell, J.; Linder, E. Use of Recombinant Cellulose-Binding Domains of Trichoderma reesei Cellulase as a Selective Immunocytochemical Marker for Cellulose in Protozoa. Appl. Environ. Microbiol. 2002, 68, 2503–2508. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.K.; Xiong, W.; Chen, F.Y.; Xu, L.; Han, Z.G. Aromatic amino acids in the cellulose binding domain of Penicillium crustosum endoglucanase EGL1 differentially contribute to the cellulose affinity of the enzyme. PLoS ONE 2017, 12, e0176444. [Google Scholar] [CrossRef] [PubMed]
- Carrard, G.; Koivula, A.; Söderlund, H.; Béguin, P. Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc. Natl. Acad. Sci. USA 2000, 97, 10342–10347. [Google Scholar] [CrossRef] [PubMed]
- Griffo, A.; Rooijakkers, B.J.M.; Hähl, H.; Jacobs, K.; Linder, M.B.; Laaksonen, P. Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterials. Biomacromolecules 2019, 20, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Richins, R.D.; Mulchandani, A.; Chen, W. Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. Biotechnol. Bioeng. 2000, 69, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Tomme, P.; Boraston, A.; McLean, B.; Kormos, J.; Creagh, A.L.; Sturch, K.; Gilkes, N.R.; Haynes, C.A.; Warren, R.A.J.; Kilburn, D.G. Characterization and affinity applications of cellulose-binding domains. Presented at the 2nd Conference on Affinity Technology, Arlington, VA, USA, 29–30 September 1997. J. Chromatogr. B Biomed. Sci. Appl. 1998, 715, 283–296. [Google Scholar] [CrossRef]
- Terpe, K. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 2003, 60, 523–533. [Google Scholar] [CrossRef]
- Gardner, K.H.; Blackwell, J. The structure of native cellulose. Biopolymers 1974, 13, 1975–2001. [Google Scholar] [CrossRef]
- Hong, S. RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment. J. Cancer Prev. 2017, 22, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Corley, M.; Burns, M.C.; Yeo, G.W. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Mol. Cell 2020, 78, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Lunde, B.M.; Moore, C.; Varani, G. RNA-binding proteins: Modular design for efficient function. Nat. Rev. Mol. Cell Biol. 2007, 8, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Jahandideh, S.; Srinivasasainagendra, V.; Zhi, D. Comprehensive comparative analysis and identification of RNA-binding protein domains: Multi-class classification and feature selection. J. Theor. Biol. 2012, 312, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Treger, M.; Westhof, E. Statistical analysis of atomic contacts at RNA–protein interfaces. J. Mol. Recognit. 2001, 14, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Ye, W.; Jiang, C.; Luo, R.; Chen, H.F. Specific Recognition Mechanism between RNA and the KH3 Domain of Nova-2 Protein. J. Phys. Chem. B 2014, 118, 12426–12434. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Phukan, P.D.; Zeeb, M.; Martinez-Yamout, M.A.; Dyson, H.J.; Wright, P.E. Structural Basis for Interaction of the Tandem Zinc Finger Domains of Human Muscleblind with Cognate RNA from Human Cardiac Troponin T. Biochemistry 2017, 56, 4154–4168. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, Q.; Xia, L.; Shi, M.; Cai, J.; Zhang, H.; Li, J.; Lin, G.; Xie, W.; Zhang, Y.; et al. RNA-binding protein CELF6 is cell cycle regulated and controls cancer cell proliferation by stabilizing p21. Cell Death Dis. 2019, 10, 688. [Google Scholar] [CrossRef]
- Nasiri-Aghdam, M.; Garcia-Garduño, T.C.; Jave-Suárez, L.F. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int. J. Mol. Sci. 2021, 22, 11056. [Google Scholar] [CrossRef]
- Lin, G.; Li, J.; Cai, J.; Zhang, H.; Xin, Q.; Wang, N.; Xie, W.; Zhang, Y.; Xu, N. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J. Cancer 2021, 12, 6715–6726. [Google Scholar] [CrossRef] [PubMed]
- Vaishali; Dimitrova-Paternoga, L.; Haubrich, K.; Sun, M.; Ephrussi, A.; Hennig, J. Validation and classification of RNA binding proteins identified by mRNA interactome capture. RNA 2021, 27, 1173–1185. [Google Scholar] [CrossRef]
- Dallastella, M.; Oliveira, W.K.d.; Rodrigues, M.L.; Goldenberg, S.; Alves, L.R. The characterization of RNA-binding proteins and RNA metabolism-related proteins in fungal extracellular vesicles. Front. Cell. Infect. Microbiol. 2023, 13, 1247329. [Google Scholar] [CrossRef]
- Sidali, A.; Teotia, V.; Solaiman, N.S.; Bashir, N.; Kanagaraj, R.; Murphy, J.J.; Surendranath, K. AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. Int. J. Mol. Sci. 2022, 23, 96. [Google Scholar] [CrossRef] [PubMed]
- Löblein, M.T.; Falke, I.; Eich, H.T.; Greve, B.; Götte, M.; Troschel, F.M. Dual Knockdown of Musashi RNA-Binding Proteins MSI-1 and MSI-2 Attenuates Putative Cancer Stem Cell Characteristics and Therapy Resistance in Ovarian Cancer Cells. Int. J. Mol. Sci. 2021, 22, 11502. [Google Scholar] [CrossRef]
- Dolicka, D.; Foti, M.; Sobolewski, C. The Emerging Role of Stress Granules in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2021, 22, 9428. [Google Scholar] [CrossRef]
- Kang, D.; Lee, Y.; Lee, J.S. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers 2020, 12, 2699. [Google Scholar] [CrossRef]
- Niehrs, C.; Luke, B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Biol. 2020, 21, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Yadav, T.; Zhang, J.M.; Yang, H.; Rheinbay, E.; Guo, H.; Haber, D.A.; Lan, L.; Zou, L. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 2021, 594, 283–288. [Google Scholar] [CrossRef]
- Murphy, J.J.; Surendranath, K.; Kanagaraj, R. RNA-Binding Proteins and Their Emerging Roles in Cancer: Beyond the Tip of the Iceberg. Int. J. Mol. Sci. 2023, 24, 9612. [Google Scholar] [CrossRef]
- Adachi, T.; Nakamura, Y. Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019, 24, 4229. [Google Scholar] [CrossRef] [PubMed]
- Limsirichai, P.; Gaj, T.; Schaffer, D.V. CRISPR-mediated Activation of Latent HIV-1 Expression. Mol. Ther. 2016, 24, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Yin, J.; Chen, Y.; Guo, C.; Hu, H.; Su, J. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Front. Bioeng. Biotechnol. 2022, 10, 972933. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.D.; Kim, D.; Liu, R. Highly stable aptamers selected from a 2’-fully modified fGmH RNA library for targeting biomaterials. Biomaterials 2015, 36, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Song, K.M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [PubMed]
- Mascini, M. Aptamers and their applications. Anal. Bioanal. Chem. 2008, 390, 987–988. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Ó’Fágáin, C.; O’Kennedy, R. Antibody stability: A key to performance—Analysis, influences and improvement. Biochimie 2020, 177, 213–225. [Google Scholar] [CrossRef]
- Hayashi, T.; Oshima, H.; Mashima, T.; Nagata, T.; Katahira, M.; Kinoshita, M. Binding of an RNA aptamer and a partial peptide of a prion protein: Crucial importance of water entropy in molecular recognition. Nucleic Acids Res. 2014, 42, 6861–6875. [Google Scholar] [CrossRef]
- Cai, S.; Yan, J.; Xiong, H.; Liu, Y.; Peng, D.; Liu, Z. Investigations on the interface of nucleic acid aptamers and binding targets. Analyst 2018, 143, 5317–5338. [Google Scholar] [CrossRef]
- Johansson, H.E.; Liljas, L.; Uhlenbeck, O.C. RNA Recognition by the MS2 Phage Coat Protein. Semin. Virol. 1997, 8, 176–185. [Google Scholar] [CrossRef]
- Miyakawa, S.; Nomura, Y.; Sakamoto, T.; Yamaguchi, Y.; Kato, K.; Yamazaki, S.; Nakamura, Y. Structural and molecular basis for hyperspecificity of RNA aptamer to human immunoglobulin G. RNA 2008, 14, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Izuo, N.; Bitan, G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J. Biol. Chem. 2022, 298, 101478. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Kim, H.G.; Kim, Y.M.; Han, H.S.; Cho, J.H.; Lim, S.C.; Lee, T.; Jahng, G.H. An aptamer-based magnetic resonance imaging contrast agent for detecting oligomeric amyloid-β in the brain of an Alzheimer’s disease mouse model. NMR Biomed. 2023, 36, e4862. [Google Scholar] [CrossRef] [PubMed]
- Kohlberger, M.; Gadermaier, G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol. Appl. Biochem. 2022, 69, 1771–1792. [Google Scholar] [CrossRef] [PubMed]
- Peinetti, A.S.; Lake, R.J.; Cong, W.; Cooper, L.; Wu, Y.; Ma, Y.; Pawel, G.T.; Toimil-Molares, M.E.; Trautmann, C.; Rong, L.; et al. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. Sci. Adv. 2021, 7, eabh2848. [Google Scholar] [CrossRef]
- Belikov, S.; Berg, O.G.; Wrange, Ö. Quantification of transcription factor-DNA binding affinity in a living cell. Nucleic Acids Res. 2015, 44, 3045–3058. [Google Scholar] [CrossRef]
- Hanaoka, S.; Nagadoi, A.; Nishimura, Y. Comparison between TRF2 and TRF1 of their telomeric DNA-bound structures and DNA-binding activities. Protein Sci. 2005, 14, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Pääkkönen, J.; Jänis, J.; Rouvinen, J. Calculation and Visualization of Binding Equilibria in Protein Studies. ACS Omega 2022, 7, 10789–10795. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Foster, E.R.; Nikolov, Z.L.; Fernando, S.D.; King, M.D. Binding behavior of spike protein and receptor binding domain of the SARS-CoV-2 virus at different environmental conditions. Sci. Rep. 2022, 12, 789. [Google Scholar] [CrossRef]
- Ikegami, T.; Okada, T.; Hashimoto, M.; Seino, S.; Watanabe, T.; Shirakawa, M. Solution Structure of the Chitin-binding Domain of Bacillus circulans WL-12 Chitinase A1. J. Biol. Chem. 2000, 275, 13654–13661. [Google Scholar] [CrossRef] [PubMed]
- Madland, E.; Forsberg, Z.; Wang, Y.; Lindorff-Larsen, K.; Niebisch, A.; Modregger, J.; Eijsink, V.G.H.; Aachmann, F.L.; Courtade, G. Structural and functional variation of chitin-binding domains of a lytic polysaccharide monooxygenase from Cellvibrio japonicus. J. Biol. Chem. 2021, 297, 101084. [Google Scholar] [CrossRef] [PubMed]
- Zeltins, A.; Schrempp, H. Specific Interaction of the Streptomyces Chitin-Binding Protein Chb1 with α-Chitin. Eur. J. Biochem. 1997, 246, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Schnellmann, J.; Zeltins, A.; Blaak, H.; Schrempf, H. The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline α-chitin of fungi and other organisms. Mol. Microbiol. 1994, 13, 807–819. [Google Scholar] [CrossRef] [PubMed]
- Shinya, S.; Fukamizo, T. Interaction between chitosan and its related enzymes: A review. Int. J. Biol. Macromol. 2017, 104, 1422–1435. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M.A.; Takagi, M.; Hashida, S.; Shoseyov, O.; Doi, R.H.; Segel, I.H. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J. Bacteriol. 1993, 175, 5762–5768. [Google Scholar] [CrossRef] [PubMed]
- Consortium, T.C. Ten years of CAZypedia: A living encyclopedia of carbohydrate-active enzymes. Glycobiology 2017, 28, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Boraston, A.B.; Warren, R.A.J.; Kilburn, D.G. β-1,3-Glucan Binding by a Thermostable Carbohydrate-Binding Module from Thermotoga maritima. Biochemistry 2001, 40, 14679–14685. [Google Scholar] [CrossRef] [PubMed]
- Hurlburt, N.K.; Chen, L.H.; Stergiopoulos, I.; Fisher, A.J. Structure of the Cladosporium fulvum Avr4 effector in complex with (GlcNAc)6 reveals the ligand-binding mechanism and uncouples its intrinsic function from recognition by the Cf-4 resistance protein. PLoS Pathog. 2018, 14, e1007263. [Google Scholar] [CrossRef]
- Georgelis, N.; Tabuchi, A.; Nikolaidis, N.; Cosgrove, D.J. Structure-Function Analysis of the Bacterial Expansin EXLX1. J. Biol. Chem. 2011, 286, 16814–16823. [Google Scholar] [CrossRef]
- Forsberg, Z.; Nelson, C.E.; Dalhus, B.; Mekasha, S.; Loose, J.S.M.; Crouch, L.I.; Røhr, Å.K.; Gardner, J.G.; Eijsink, V.G.H.; Vaaje-Kolstad, G. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus. J. Biol. Chem. 2016, 291, 7300–7312. [Google Scholar] [CrossRef] [PubMed]
- Leth, M.L.; Ejby, M.; Workman, C.; Ewald, D.A.; Pedersen, S.S.; Sternberg, C.; Bahl, M.I.; Licht, T.R.; Aachmann, F.L.; Westereng, B.; et al. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nat. Microbiol. 2018, 3, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Jalak, J.; Väljamäe, P. Multi-Mode Binding of Cellobiohydrolase Cel7A from Trichoderma reesei to Cellulose. PLoS ONE 2014, 9, e108181. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.J.; Borch, K.; Westh, P. Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. Biotechnol. Biofuels 2011, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Mitsumori, M.; Xu, L.; Kajikawa, H.; Kurihara, M. Properties of cellulose-binding modules in endoglucanase F from Fibrobacter succinogenes S85 by means of surface plasmon resonance. FEMS Microbiol. Lett. 2002, 214, 277–281. [Google Scholar] [CrossRef]
- Mitsumori, M.; Minato, H. Identification of the cellulose-binding domain of Fibrobacter succinogenes endoglucanase F. FEMS Microbiol. Lett. 2000, 183, 99–103. [Google Scholar] [CrossRef]
- Jouravleva, K.; Vega-Badillo, J.; Zamore, P.D. Principles and pitfalls of high-throughput analysis of microRNA-binding thermodynamics and kinetics by RNA Bind-n-Seq. Cell Rep. Methods 2022, 2, 100185. [Google Scholar] [CrossRef]
- Cléry, A.; Blatter, M.; Allain, F.H.T. RNA recognition motifs: Boring? Not quite. Curr. Opin. Struct. Biol. 2008, 18, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Teng, I.T.; Zhang, L.; Guo, Y.; Cai, R.; Zhang, X.; Qiu, L.; Tan, W. Comprehensive Regression Model for Dissociation Equilibria of Cell-Specific Aptamers. Anal. Chem. 2018, 90, 10487–10493. [Google Scholar] [CrossRef]
- Chang, A.L.; McKeague, M.; Liang, J.C.; Smolke, C.D. Kinetic and Equilibrium Binding Characterization of Aptamers to Small Molecules using a Label-Free, Sensitive, and Scalable Platform. Anal. Chem. 2014, 86, 3273–3278. [Google Scholar] [CrossRef]
Superclass | Class | Family |
---|---|---|
Basic domain | ||
Leucine zipper factors | ||
AP-1(-like) components | ||
CREB | ||
C/EBP-like factors | ||
bZIP/PAR | ||
Plant-G-box binding factors | ||
ZIP only | ||
Other bZIP factors | ||
Helix–loop–helix factors (bHLH) | ||
Ubiquitous (class A) factors | ||
Myogenic transcription factors | ||
Achaete–scute | ||
Tal/Twist/Atonal/Hen | ||
Hairy | ||
Factors with PAS domain | ||
INO | ||
HLH domain only | ||
Other bHLH factors | ||
Helix–loop–helix/leucine zipper factors (bHLH-ZIP) | ||
Ubiquitous bHLH-ZIP factors | ||
Cell-cycle controlling factors | ||
NF-1 | ||
NF-1 | ||
RF-X | ||
RF-X | ||
bHSH | ||
AP-2 | ||
Zinc-coordinating DNA-binding domains | ||
Cys4 zinc finger of nuclear receptor type | ||
Cys4 zinc finger of nuclear receptor type | ||
Thyroid hormone receptor-like factors | ||
Diverse Cys4 zinc fingers | ||
GATA factors | ||
Trithorax | ||
Other factors | ||
Cys2His2 zinc finger domain | ||
Ubiquitous factors | ||
Developmental/cell cycle regulators | ||
Metabolic regulators in fungi | ||
Large factors with NF-6B-like binding properties | ||
Viral regulator | ||
Cys6 cysteine–zinc cluster | ||
Metabolic regulators in fungi | ||
Zinc fingers of alternating composition | ||
Cx7Hx8Cx4C zinc fingers | ||
Cx2Hx4Hx4C zinc fingers | ||
Helix–turn–helix | ||
Homeodomain | ||
Homeodomain only | ||
POU domain factors | ||
Homeodomain with LIM region | ||
Homeodomain plus zinc finger motifs | ||
Paired box | ||
Paired plus homeodomain | ||
Paired domain only | ||
Fork head/winged helix | ||
Developmental regulators | ||
Tissue-specific regulators | ||
Cell-cycle controlling factors | ||
Other regulators | ||
Heat shock factors | ||
HSF | ||
Tryptophan clusters | ||
Myb | ||
Ets-type | ||
Interferon-regulating factors | ||
TEA domain | ||
TEA | ||
Beta scaffold factors with minor groove contacts | ||
Rel homology region (RHR) | ||
Rel/ankyrin | ||
Ankyrin only | ||
NF-AT | ||
STAT | ||
STAT | ||
P53 | ||
P53 | ||
MADS box | ||
Regulators of differentiation | ||
Responders to external signals | ||
Metabolic regulators | ||
-Barrel -helix transcription factors | ||
E2 | ||
TATA-binding proteins | ||
TBP | ||
HMG | ||
SOX | ||
TCF-1 | ||
HMG2-related | ||
UBF | ||
MATA | ||
Other HMG box factors | ||
Heteromeric CCAAT factors | ||
Heteromeric CCAAT factors | ||
Grainyhead | ||
Grainyhead | ||
Cold-shock domain factors | ||
csd | ||
Runt | ||
Runt | ||
Other transcription factors | ||
HMGI(Y) | ||
HMGI(Y) | ||
Pocket domain | ||
Rb | ||
CBP | ||
E1 A-like factors | ||
E1A | ||
AP2/EREBP-related factors | ||
AP2 | ||
EREBP | ||
AP2/B3 |
Domain | Topology | RNA Recognition Surface Notes |
---|---|---|
RRM | Surface of -sheet | |
KH type I | Hydrophobic cleft formed by variable loop between , , and GXXG loop | |
KH type II | Same as type I, except variable loop is between and | |
dsRBD | Helix , N-terminal of helix , and loop between and | |
Znf-CCHH | Primarily residues in -helices | |
Znf-CCHH | Little regular secondary structure | Aromatic side chains form hydrophobic binding pockets for bases that make direct hydrogen bonds to protein backbone |
S1 | Core formed by two -strands with contributions from surrounding loops | |
PAZ | Hydrophobic pocket formed by OB-like -barrel and small motif | |
PIWI | Highly conserved pocket, including a metal ion that is bound to the exposed C-terminal carboxylate | |
TRAP | Edges of -sheets between each of the 11 subunits that form the entire protein structure | |
Pumilio | Two repeats combine to form binding pocket for individual bases, helix provides specificity-determining residues | |
SAM | Hydrophobic cavity between three helices surrounded by an electropositive region |
Protein Class | Specific Protein | Binding Affinity [nM] | Size [Amino Acids] | Reference |
---|---|---|---|---|
DNA-binding domain | DNA binding by glucocorticoid receptor | 1.000 | [201] | |
DNA binding by androgen receptor | 130 | [201] | ||
DNA-binding proteins telomer repeat binding factor TRF1 and TRF2 | 200 and 750 | 63 | [202] | |
Prokaryotic transcriptional regulators of multiple antibiotic resistance in E. coli | 129 | [85] | ||
Protein-binding domain | Competitive binding of a ligand to two receptors | 100–80,000 | Simulation data | [203] |
Spike protein and receptor-binding domain | 314–3137 | [204] | ||
Fatty acid-binding protein | Human FABP1 | 127 | 17–23 | [134] |
Carbohydrate-binding domain | Chitin-binding domain of chitinase A1 from Bacillus circulans | 149–228 | 45 | [75,205] |
Chitin-binding domain of a lytic polysaccharide monooxygenase from Cellvibrio japonicus | 2900–8500 | 58 | [206] | |
Chitin-binding domain from Streptomyces | 110–2170 | 100/200/201 | [207,208] | |
Chitosan-binding module from Paenibacillus elgii | 132 | [209] | ||
Chitosan-binding module from Paenibacillus sp. 1K-5 | 260 | [209] | ||
DD1 | 27,200–3,770,000 | [146] | ||
Clostridium cellulovorans cellulose-binding protein A | 500–1400 | 161 | [210] | |
Scaffoldin (CipA) containing a CBM3 family domain of Gram-positive bacterias such as Clostridium thermocellulum | 400 | 150 | [211,212] | |
CBM4 glycanases from thermophilic and mesophilic bacteria | 000– 0,000 | 150 | [211,212] | |
CBM10 families | 4000 towards cellulose | 45 | [211,212] | |
CBM14 from fungal tomato pathogen Cladosporium fulvum towards | 6700 | 70 | [211,213] | |
CBM63 based on C-terminus of expansin BsEXLX1 from Bacillus subtilis | 2100 towards cellulose | 100 | [211,214] | |
CBM73 of trimodular LPMO | 4300 towards -chitin | 60 | [211,215,216] | |
CBM86 of xylanase in Roseburia intestinalis | 480,000 towards xylohexaose, 490,000 towards xylopentaose, 998,000 towards xylotetraose, and 1,900,000 towards xylotriose | 138 | [211,216] | |
Cellobiohydrolase TrCel7A from Trichoderma reesei | 2.9 | 36 | [217,218] | |
AD2 from Fibrobacter succinogenes S85 | 397.95 | 411 | [219,220] | |
AD4 from Fibrobacter succinogenes S85 | 838.51 | 207 | [219,220] | |
RNA-binding domain | AGO2 let-7a | 0.004–0.8 | [221] | |
90 | [222] | |||
Aptamer | JHIT-1–JHIT-7; LZH-1–LZH-17 against HepG2 target cells | 3.9-2516.3 | [223] | |
Target: flavin mononucleotide | 1100 ± 400 | [224] | ||
Malachite green | 950 ± 340 | [224] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eigenfeld, M.; Lupp, K.F.M.; Schwaminger, S.P. Role of Natural Binding Proteins in Therapy and Diagnostics. Life 2024, 14, 630. https://doi.org/10.3390/life14050630
Eigenfeld M, Lupp KFM, Schwaminger SP. Role of Natural Binding Proteins in Therapy and Diagnostics. Life. 2024; 14(5):630. https://doi.org/10.3390/life14050630
Chicago/Turabian StyleEigenfeld, Marco, Kilian F. M. Lupp, and Sebastian P. Schwaminger. 2024. "Role of Natural Binding Proteins in Therapy and Diagnostics" Life 14, no. 5: 630. https://doi.org/10.3390/life14050630
APA StyleEigenfeld, M., Lupp, K. F. M., & Schwaminger, S. P. (2024). Role of Natural Binding Proteins in Therapy and Diagnostics. Life, 14(5), 630. https://doi.org/10.3390/life14050630