Optimizing Allelopathy Screening Bioassays by Using Nano Silver
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reidsma, P.; Accatino, F.; Appel, F.; Gavrilescu, C.; Krupin, V.; Tasevska, G.M.; Meuwissen, M.P.M.; Peneva, M.; Severini, S.; Soriano, B.; et al. Alternative systems and strategies to improve future sustainability and resilience of farming systems across Europe: From adaptation to transformation. Land Use Policy 2023, 134, 106881. [Google Scholar] [CrossRef]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The Problem of Weed Infestation of Agricultural Plantations vs. the Assumptions of the European Biodiversity Strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- Ofosu, R.; Agyemang, E.; Márton, A.; Pásztor, G.; Taller, J.; Kazinczi, G. Herbicide resistance: Managing weeds in a changing world. Agronomy 2023, 13, 1595. [Google Scholar] [CrossRef]
- Abu-Nassar, J.; Matzrafi, M. Effect of Herbicides on the Management of the Invasive Weed Solanum rostratum Dunal (Solanaceae). Plants 2021, 10, 284. [Google Scholar] [CrossRef]
- Sharma, A.; Vinod, K.; Babar, S.; Mohsin, T.; Gagan, S.; Neha, H.; Sukhmeen, K.; Poonam, Y.; Aditi, B.; Ripu, P.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Pilet-Nayel, M.-L.; Moury, B.; Caffier, V.; Montarry, J.; Kerlan, M.-C.; Fournet, S.; Durel, C.-E.; Delourme, R. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front. Plant Sci. 2017, 8, 1838. [Google Scholar] [CrossRef]
- Raimundo, R.; Silva, T.; Ferreira, A.; Santos, B.; Fonseca, D.C.T.R.; Silva, O.; Castanha, C.; Guerrero, B.; Fonseca, F. Agrochemicals residues in human milk, scientific evidence or overestimated risk? Curr. Nutr. Food Sci. 2020, 17, 189–195. [Google Scholar] [CrossRef]
- Goulson, D.; Nicholls, E.; Botlas, C.; Rotheray, E.L. Bee declines driven by combined Stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Patel, S.K.S.; Rasool, K.; Lone, N.; Bhatia, S.K.; Seth, C.S.; Ghodake, G.S. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. Sci. Total Environ. 2024, 908, 168318. [Google Scholar] [CrossRef]
- Khamare, Y.; Chen, J.; Marble, S.C. Allelopathy and its application as a weed management tool: A review. Front. Plant Sci. 2022, 13, 1034649. [Google Scholar] [CrossRef]
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 2020, 40, 24. [Google Scholar] [CrossRef]
- Mallik, A.; Inderjit, K. Problems and prospects in the study of plant allelochemicals: A brief introduction. In Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems; Mallik, A.U., Inderjit, K., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2002; pp. 1–5. [Google Scholar]
- Duke, S.O. Proving allelopathy in crop–weed interactions. Weed Sci. 2015, 63, 121–132. [Google Scholar] [CrossRef]
- Hickman, D.; Comont, D.; Rasmussen, A.; Birkett, M. Novel and holistic approaches are required to realize allelopathic potential for weed management. Ecol. Evol. 2023, 13, e10018. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Rajeswari, G.; Nirmal, L.; Jacob, S. Synthesis and extraction routes of allelochemicals from plants and microbes: A review. Rev. Anal. Chem. 2021, 40, 293–311. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, L.; Ye, W. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Y.; Yuan, L.; Weber, E.; Van-Kleunen, M. Effect of allelopathy on plant performance: A meta-analysis. Ecol. Lett. 2021, 24, 348–362. [Google Scholar] [CrossRef]
- Girotto, L.; Franco, A.C.; Nunez, C.V.; Oliveira, S.C.; Scheffer De Souza, M.C.; Fachin-Espinar, M.T.; Ferreira, C.S. Phytotoxicity and allelopathic potential of extracts from rhizomes and leaves of Arundo donax, an invasive grass in neotropical savannas. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12440. [Google Scholar] [CrossRef]
- Borghetti, F.; Coutinho de Lima, E.; Ramos Silva, L. A simple procedure for the purification of active fractions in aqueous extracts of plants with allelopathic properties. Acta Bot. Bras. 2013, 27, 50–53. [Google Scholar] [CrossRef]
- Marinov-Serafimov, P.; Golubinova, I. A study of suitability of some conventional chemical preservatives and natural antimicrobial compounds in allelopathic research. Pestic. I Fitomedicina 2015, 30, 233–241. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W.; Molaei, R.; Rezaei, Z. Carbon quantum dots-based antifungal coating film for active packaging application of avocado. Food Packag. Shelf Life 2022, 33, 100878. [Google Scholar] [CrossRef]
- Dazon, C.; Fierro, V.; Celzard, A.; Witschger, O. Identification of nanomaterials by the volume specific surface area (VSSA) criterion: Application to powder mixes. Nanoscale Adv. 2020, 2, 4908–4917. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.T.; Adil, S.F.; Shaik, M.R.; Alkhathlan, H.Z.; Khan, M.; Khan, M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants 2022, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Bakand, S.; Hayes, A. Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int. J. Mol. Sci. 2016, 17, 929. [Google Scholar] [CrossRef] [PubMed]
- Afshar, P.; Sedaghat, S. Bio-synthesis of silver nanoparticles using water extract of Satureja hortensis L. and evaluation of the antibacterial properties. Curr. Nanosci. 2016, 12, 90–93. [Google Scholar] [CrossRef]
- Boverhof, D.; Bramante, C.M.; Butala, J.; Clancy, S.F.; Lafranconi, M.; West, J.; Gordon, S. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 2015, 73, 137–150. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
- Durán, N.; Nakazato, G.; Seabra, A. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: An overview and comments. Appl. Microbiol. Biotechnol. 2016, 100, 6555–6570. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, M.; Shaheen, M.; El-Nekeety, A.; Abdel-Wahhab, M. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J. Saudi Chem. Soc. 2014, 18, 356–363. [Google Scholar] [CrossRef]
- Budhani, S.; Egboluche, N.; Arslan, Z.; Yu, H.; Deng, H. Phytotoxic effect of silver nanoparticles on seed germination and growth of terrestrial plants. J. Environ. Sci. Health 2019, 37, 330–355. [Google Scholar] [CrossRef]
- Lyu, J.; Park, J.; Pandey, L.; Choi, S.; Lee, H.; Saeger, J.; Depuydt, S.; Han, T. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L. Ecotoxicol. Environ. Saf. 2018, 149, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Mardani, H.; Maninang, J.; Appiah, K.; Oikawa, Y.; Azizi, M.; Fujii, Y. Evaluation of biological response of lettuce (Lactuca sativa L.) and weeds to safranal allelochemical of saffron (Crocus sativus) by using static exposure method. Molecules 2019, 24, 1788. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jiang, K.; Wu, B.; Zhou, J.; Lv, Y. Silver nanoparticles with different particle sizes enhance the allelopathic effects of Canada goldenrod on the seed germination and seedling development of lettuce. Ecotoxicology 2018, 27, 1116–1125. [Google Scholar] [CrossRef]
- Vieira, C.; Droste, A. Biomonitors to evaluate the toxic potential of urban solid waste landfill leachate. Ambiente Água 2019, 14, e2326. [Google Scholar] [CrossRef]
- Vieira, C.; Marcona, C.; Droste, A. Phytotoxic and cytogenotoxic assessment of glyphosate on Lactuca sativa L. Braz. J. Biol. 2024, 84, e257039. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Parvez, S.S.; Parvez, M.; Ohmae, Y.; Iida, O. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biol. Manag. 2003, 3, 233–241. [Google Scholar] [CrossRef]
- Petrova, S.; Nikolov, B.; Marinov-Serafimov, P.; Golubinova, I.; Valchevа, E. Screening of temperature tolerance and adaptive potential of Sorghum vulgare var. technicum [Körn] genotypes. Вulgarian J. Agric. Sci. 2021, 27 (Suppl. S1), 119–124. [Google Scholar]
- Li, Y.; Feng, Y.; Kang, Z.; Zheng, Y.; Zhang, J.; Chen, Y. Changes in soil microbial communities due to biological invasions can reduce allelopathic effects. J. Appl. Ecol. 2017, 54, 1281–1290. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, R.; Singh, R. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig. J. Nanomater. Biostructures 2010, 5, 427–432. [Google Scholar]
- Golubinova, I.; Nikolov, B.; Petrova, S.; Velcheva, I.; Valcheva, E.; Marinov-Serafimov, P. Effect of Cycocel 750 SL on Germination and Initial Development of Some Sorghum Species. Еcologia Balk. 2020, 12, 11–19. [Google Scholar]
- Thabet, S.G.; Moursi, Y.S.; Karam, M.A.; Graner, A.; Alqudah, A.M. Genetic basis of drought tolerance during seed germination in barley. PLoS ONE 2018, 13, e0206682. [Google Scholar] [CrossRef]
- Nasr, M.; Mansour, S. The use of allelochemicals to delay germination of Astragalus cycluphyllus seeds. J. Agron. 2005, 4, 147–150. [Google Scholar] [CrossRef]
- Gariglio, N.F.; Buyatti, M.; Pillati, R.; Gonzales, R.D.; Acosta, M. Use a germination biossay to test compost maturity of willow (Salix sp.) sawdust. N. Z. J. Crop Hortic. Sci. 2002, 30, 135–139. [Google Scholar] [CrossRef]
- Ayeb-Zakhama, A.; Harzallah-Skhiri, F. Allelopathic activity of extracts of Citharexylum spinosum L. from Tunisia. J. Plant Breed. Crop Sci. 2016, 8, 189–196. [Google Scholar] [CrossRef]
- Niklas, K. Plant height and the properties of some herbaceous stems. Ann. Bot. 1995, 75, 133–142. [Google Scholar] [CrossRef]
- Niklas, K.; Enquist, B. An allometric model for seed plant reproduction. Evol. Ecol. Res. 2003, 5, 79–88. [Google Scholar]
- Rice, E. Allelopathy; Academic Press: New York, NY, USA; Academic Press: San Francisco, CA, USA; Academic Press: London, UK, 1974; 392p. [Google Scholar]
- Reigosa, M.; Souto, X.; Gonzales, L. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 1999, 28, 83–88. [Google Scholar] [CrossRef]
- Dimitrova, T.; Serafimov, P. Ecological approach against invasion of Jonson grass (Sorghum halepense (L.) Pers.) though mixed stands of Lucerne with perennial grasses. Herbologia 2007, 8, 13–20. [Google Scholar]
- Cheng, F.; Cheng, Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef]
- Ain, Q.; Mushtaq, W.; Shadab, M.; Siddiqui, M.B. Allelopathy: An alternative tool for sustainable agriculture. Physiol. Mol. Biol. Plants 2023, 29, 495–511. [Google Scholar] [CrossRef]
- Aleksieva, A.; Serafimov, P. A study of allelopathyc effect of Amaranthus retroflexus (L.) and Solanum nigrum (L.) in different soybean genotypes. Herbologia 2008, 9, 47–58. [Google Scholar]
- Treber, I.; Baličević, R.; Ravlić, M. Assessment of allelopathic effect of pale persicaria on two soybean cultivars. Herbologia 2015, 15, 31–38. [Google Scholar] [CrossRef]
- Marinov-Serafimov, P.; Katova, A.; Golubinova, I. Allelopathic activity of rhizosphere soil in some perennial grasses. Proc. Union Sci.—Ruse Sect. Agric. Vet. Sci. 2015, 3, 209–215. [Google Scholar]
- Kadioglu, I.; Yanar, Y.; Asav, U. Alellopathic effects of weeds extracts against seed germination of some plants. J. Environ. Biol. 2005, 26, 169–173. [Google Scholar] [PubMed]
- Steven, J.; Burnside, O.; Specht, J.; Swisher, B. Competition and allelopathy between soybeans and weeds. Agron. J. 1984, 76, 523–528. [Google Scholar]
- Stoimenova, I.; Mikova, A.; Aleksieva, S. Role of allelopathy in weed management of crop production. Agric. Sci. 2008, 41, 3–13. (In Bulgarian) [Google Scholar]
- Colman, B.; Wang, S.; Auffan, M.; Wiesner, M.; Bernhardt, E. Antimicrobial effects of commercial silver nanoparticles are attenuated in natural stream water and sediment. Ecotoxicology 2012, 21, 1867–1877. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Rao, S. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J. Clust. Sci. 2015, 26, 693–701. [Google Scholar] [CrossRef]
- Wu, S.; Huang, L.; Head, J.; Chen, D.; Kong, I.C.; Tang, Y. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J. Pet. Environ. Biotechnol. 2012, 3, 126. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Gurunathan, S.; Chung, I. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 2015, 252, 1031–1046. [Google Scholar] [CrossRef]
- Elsharkawy, E. Allelopathy effects of silver nanoparticle synthesis by green method from Pulicaria undulate. Annu. Res. Rev. Biol. 2019, 32, 1–9. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Jagan, E.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Prażak, R.; Święciło, A.; Krzepiłko, A.; Michałek, S.; Arczewska, M. Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture 2020, 10, 312. [Google Scholar] [CrossRef]
Parameter/Reference | Formula | Explanation |
---|---|---|
Percentage of germinated seeds, GP% Saxena et al. (1996) [39] | NSG—number of germinated seeds TNS—total number of seeds used in all experimental variants and replicates | |
Length of root, hypocotyl and seedling, cm Golubinova et al. (2020) [40] | I—number of individual measurements of plant organs for all experimental variants and replicates n—number of all measurements | |
Percentage of inhibition, I% Golubinova et al. (2020) [40] | E1—response of plant seeds into the control E2—response of plant seeds from experimental variants | |
Reduction of studied parameters, R Thabet et al. (2018) [41] | Average values of biometric indicators of: Gi—experimental variants Gc—control (untreated) variant | |
Coefficient of allometry, CA Nasr and Mansour (2005) [42] | Ls—hypocotyl length, cm Lr—root length, cm | |
Global development index, GI Gariglio et al. (2002) [43] | G and G0—germinated seeds in the experimental variants and the control (%); L—seedling length in the experimental variants; L0—seedling length in the control variant, taken as 100% |
Concentration, % (v/v) | Percentage of Germinated Seeds, GP% | ±Standard Error, SE | Reduction of Percentage Germinated Seeds, R | Percentage of Inhibition, I% |
---|---|---|---|---|
0.0 * | 77.1 cd | 2.4 | 0.0 | 0.0 |
0.10 | 83.2 е | 3.75 | −6.1 | −7.91 |
0.20 | 71.6 bc | 2.89 | 5.5 | 7.13 |
0.39 | 71.6 bc | 2.04 | 5.5 | 7.13 |
0.78 | 69.1 c | 2.30 | 8 | 10.38 |
1.56 | 60.0 a | 3.48 | 17.1 | 22.18 |
3.13 | 63.4 ab | 3.75 | 13.7 | 17.77 |
6.25 | 60.0 a | 2.89 | 17.1 | 22.18 |
12.5 | 63.4 ab | 4.04 | 13.7 | 17.77 |
25.0 | 63.4 ab | 2.31 | 13.7 | 17.77 |
50.0 | 56.8 a | 3.21 | 20.3 | 26.33 |
100.0 | 56.8 a | 2.15 | 20.3 | 26.33 |
Parameter | 0.0 * % v/v | 0.10% v/v | 0.20% v/v | 0.39% v/v | 0.78% v/v | 1.56% v/v | 3.13% v/v | 6.25% v/v | 12.5% v/v | 25.0% v/v | 50.0% v/v | 100.0% v/v |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Root, cm | 1.60 e | 1.51 de | 1.00 cd | 0.99 cd | 0.66 bc | 0.31 ab | 0.38 ab | 0.38 abc | 0.29 ab | 0.22 ab | 0.21 ab | 0.07 a |
±SE | 0.13 | 0.18 | 0.20 | 0.20 | 0.18 | 0.22 | 0.20 | 0.25 | 0.21 | 0.20 | 0.20 | 0.22 |
R | 0.00 | 0.09 | 0.6 | 0.61 | 0.94 | 1.29 | 1.23 | 1.22 | 1.31 | 1.38 | 1.39 | 1.53 |
I% | 0.00 | 5.6 | 37.5 | 38.3 | 58.8 | 80.4 | 76.6 | 76.3 | 82.1 | 85.9 | 86.7 | 95.6 |
Hypocotyl, cm | 2.39 d | 1.97 cd | 1.32 abc | 1.65 bcd | 1.17 abc | 1.36 abc | 1.38 abc | 0.90 ab | 0.74 ab | 1.53 abc | 1.09 ab | 0.64 a |
±SE | 0.21 | 0.29 | 0.32 | 0.32 | 0.28 | 0.34 | 0.32 | 0.4 | 0.34 | 0.32 | 0.32 | 0.34 |
R | 0.00 | 0.42 | 1.07 | 0.74 | 1.22 | 1.04 | 1.02 | 1.49 | 1.65 | 0.87 | 1.31 | 1.75 |
I% | 0.00 | 17.7 | 44.7 | 31.1 | 51.1 | 43.3 | 42.6 | 62.4 | 69.0 | 36.3 | 54.6 | 73.1 |
Seedling, cm | 3.99 e | 3.48 de | 2.33 bcd | 2.64 cd | 1.83 abc | 1.67 abc | 1.75 abc | 1.28 abc | 1.03 ab | 1.75 abc | 1.30 abc | 0.71 a |
±SE | 0.33 | 0.44 | 0.49 | 0.49 | 0.44 | 0.52 | 0.50 | 0.63 | 0.53 | 0.50 | 0.49 | 0.52 |
R | 0.51 | 1.67 | 1.36 | 2.16 | 2.32 | 2.24 | 2.71 | 2.97 | 2.24 | 2.69 | 3.28 | |
I% | I% | 12.9 | 41.8 | 34.0 | 54.2 | 58.2 | 56.2 | 68.0 | 74.2 | 56.2 | 67.5 | 82.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinov-Serafimov, P.; Golubinova, I.; Zapryanova, N.; Valcheva, E.; Nikolov, B.; Petrova, S. Optimizing Allelopathy Screening Bioassays by Using Nano Silver. Life 2024, 14, 687. https://doi.org/10.3390/life14060687
Marinov-Serafimov P, Golubinova I, Zapryanova N, Valcheva E, Nikolov B, Petrova S. Optimizing Allelopathy Screening Bioassays by Using Nano Silver. Life. 2024; 14(6):687. https://doi.org/10.3390/life14060687
Chicago/Turabian StyleMarinov-Serafimov, Plamen, Irena Golubinova, Nadezhda Zapryanova, Ekaterina Valcheva, Bogdan Nikolov, and Slaveya Petrova. 2024. "Optimizing Allelopathy Screening Bioassays by Using Nano Silver" Life 14, no. 6: 687. https://doi.org/10.3390/life14060687
APA StyleMarinov-Serafimov, P., Golubinova, I., Zapryanova, N., Valcheva, E., Nikolov, B., & Petrova, S. (2024). Optimizing Allelopathy Screening Bioassays by Using Nano Silver. Life, 14(6), 687. https://doi.org/10.3390/life14060687