The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?
Abstract
:1. Introduction
2. The Potential of AgNPs in Nano-Oncology
2.1. The Role of Silver Nanoparticles in the Diagnosis of Cancer
2.2. Mechanisms of Antitumor Efects of AgNPs In Vitro
2.2.1. Effect of AgNPs on Cell Cycle Regulation
2.2.2. AgNPs as Cell Death Inducers
Apoptosis
Nonapoptotic Cell Death
Autophagy and Autophagic Cell Death
2.2.3. AgNPs and MAPK Pathways
Capping | Size | IC50 or Used Concentration | Tumor Model | Cell Line | Mechanism of Action | Reference |
---|---|---|---|---|---|---|
Annona muricata aqueous leaf extract | 80 ± 6.3 nm | 6 µg/mL | Human lung cancer | A549 | Induction of apoptosis ↓ Bcl-2, cyclin B, E, D ↑ Bax, p21, p53, caspases −3, −8, −9, Fas-L | [61] |
Glucose | 30 ± 5 nm | 13.5 μg/mL | Human cervix carcinoma | HeLa | Induction of apoptosis S and G2/M cell cycle arrest | [140] |
Polysaccharide | 11 ± 5 nm | 5.05–75 μg/mL | Human breast cancer | SKBR3, 8701-BC | Inhibition of colony formation and migration, ROS generation ↓ MMP-2, MMP-9, Akt, phospho-Akt, HSP70 ↑ Beclin-1, ATG5, ATG7, LC3A/B, p62 | [120] |
Bergenia ligulata aqueous extract | 5–10 μg/mL | Human breast cancer | MCF-7 | Induction of apoptosis, G2/M cell cycle arrest, ROS generation, inhibition of colony formation and migration ↓ MMP, Bcl-2 ↑ p53, phospho-p53, Bax, caspase −3 | [59] | |
Annona muricata leaf extract | 23 ± 14 nm | 5–25 μg/mL | Human lung cancer | A549, Calu-1, BEAS-2B | G1 and G2 cell cycle arrest, mitochondrial ROS generation, and protein oxidation | [141] |
Aqueous extract | 63.1 ± 8.3 nm | 150 μg/mL | Human breast cancer | MCF-7, T47D, MDA-MB-231 | Induction of apoptosis, G0/G1 and S cell cycle arrest ↓ XLOC_006390, SOX4 ↑ miR-338-3p | [142] |
Carica papaya leaf extract | 10–20 nm | 2.5/5 μg/mL | Human prostate cancer | DU145 | Induction of apoptosis, G1 and G2/M cell cycle arrest, ROS generation ↓cyclin D1 ↑ p21, p27, Bax, cleaved PARP, and cleaved caspase −3 | [62] |
Phlomis armeniaca aqueous extract | 10 µM | Human breast cancer | MCF-7, MDA-MB-231 | DNA fragmentation, ROS production ↑ endonuclease G | [143] | |
Macrotyloma uniflorum seed extracts | 91.8 nm | 20–50 μM | Human ovarian cancer | PA-1 | Induction of apoptosis, G2/M cell cycle arrest, mitochondrial membrane damage, and ROS generation ↑ caspase −3 | [144] |
Glucose | 61 nm | 860/1528 μg/mL | Human prostate cancer | DU145, PC-3 | Induction of apoptosis, S phase cell cycle arrest, mitochondrial membrane damage, and ROS production | [92] |
Moringa oleifera leaf extract | 10–100 nm | 7.5 µg/mL | Human leukemia | Kasumi-1 | Induction of apoptosis, S phase cell cycle arrest ↑ BID | [145] |
Juniperus chinensis extract | 12.96 ± 5.65 nm | 9.87 µg/mL | Human lung cancer | A549 | Induction of apoptosis, ROS production, inhibition of migration and invasion, chromatin condensation, DNA, and nuclear fragmentation↓cyclin D1, MMP-2, MMP-9 ↑ p53, and caspase −3, −9 | [29] |
Parmelia sulcata extract | 16 nm | 30 µg/mL | Human breast cancer | MCF-7 | Induction of apoptosis, ROS production↓TNF-α, IL-6, PCNA, cyclin D1, Bcl-2, and MMP ↑ Bax | [60] |
Artemisia arborescens extract | 4–30 nm | 7 µg/mL | Human and cervical cancer | MCF-7, HeLa | Inhibition of colony formation and induction of apoptosis, cell cycle arrest in G1 phase | [146] |
Catharanthus roseus aquoeus extract | 1–100 nm | 3.871 ± 0.18 µg/mL | Human hepatocellular carcinoma | HepG2 | Induction of apoptosis, DNA damage/fragmentation, ROS and nitrite generation, and G2/M cell cycle arrest ↓ MMP | [81] |
Mentha arvensis leaf extract | 3–9 nm | 1.56 μg/mL | Human breast cancer | MCF-7, MDA-MB-231 | Induction of apoptosis, nuclear fragmentation↓Bcl-2 ↑ cleaved PARP, cleaved caspase −3, −9, and Bax | [147] |
Naringeninaquoeus extract | 6 nm | 3 µg/mL | Human colorectal carcinoma | HCT116 | Induction of apoptosis, ROS generation and lipid peroxidation, and DNA fragmentation ↓MMP, ATP, CCNB1, CCNB2 ↑ CYP1A1, CYP1B1, and GADD45G | [89] |
Matricaria chamomilla aquoeus extract | 45.21 nm | 10–63 µg/mL | Human lung cancer | A549 | S phase cycle arrest ↓ Bcl-2↑ Bax, caspase −3, −7 | [148] |
Aquoeus solution | 2.6/18 nm | 3–26 µg/mL | Human pancreatic ductal adenocarcinoma | PANC-1 | Induction of apoptosis, ROS generation ↓ MMP, SOD1, SOD2, GPX-4, CAT ↑ nNOS, iNOS, eNOS, NO, NO2, and SOD3 | [149] |
Artemisia oliveriana extract | 10.63 nm | 3.6 µg/mL | Human lung cancer | A549 | Induction of apoptosis, DNA fragmentation ↓Bcl-2 ↑ cleaved caspase −3, −9, Bax, and miR-192 | [150] |
Nepeta deflersiana extract | 33 nm | 10–50 µg/mL | Human cervical cancer | HeLa | Induction of apoptosis, ROS generation, and lipid peroxidation ↓MMP, GSH | [151] |
Manilkara zapota (L.) leaf extracts | 24 nm | 8–25 µg/mL | Human colorectal carcinoma | HCT116 | Inhibition of colony formation and migration, induction of apoptosis, and ROS generation ↓MMP, Bcl-2 ↑ cleaved caspase −3, −8, −9, PUMA, Bax, and cleaved PARP | [86] |
Quinacrine-Based NPs | 50–100 nm | 0.6–1 µg/mL | Human squamous carcinoma | SCC-9 | DNA damage, induction of apoptosis, and S phase cell cycle arrest↓Bcl-xL, cyclin E1, B1, A2, Cdc-25A, Cdc-2, Chk-1, Topo-IIα, RFC-1, Helicase, MRE11, RPA, Fen-1, XRCC-1, Pol-β, Pol-ε, DNA PKcs, NfкB ↑ Bax, p53, p21, γH2AX, and Chk-2 | [63] |
Gossypium hirsutum leaf extract | 23.5–163.7 nm | 40 μg/mL | Human lung cancer | A549 | Induction of apoptosis, G2/M phase cell cycle arrest ↓ MMP ↑ caspase −3, −9, cytochrome c, p53, and Bax | [152] |
Zizyphus mauritiana fruit extract | 16 nm | 28 μg/mL | Human breast cancer | MCF-7 | Inhibition of colony formation, ROS generation ↓ total PARP ↑ caspase −8, FADD, and FAS | [75] |
Root extracts of Beta vulgaris L. | 30 nm | 20–40 μg/mL | Human hepatoma cells | HuH-7cells | ROS generation, lipid peroxidation, chromosome condensation, induction of apoptosis, and necrosis ↓ GSH, MMP, Bcl-2 ↑ caspase −3, and Bax | [80] |
Aqueous extract of Coptis chinensis | 6–45 nm | 5–20 µg/mL | Human lung cancer | A549 | Inhibition of migration and invasion, DNA fragmentation ↓ Bcl-2, Bcl-xL↑ Bax, caspase, and cleaved caspase −3 | [87] |
Geodorum densiflorum rhizome extracts | 25 nm | 21.5/28 µg/mL | Human breast cancer, glioblastoma stem cells | MCF-7, GSCsk | Induction of apoptosis ↑ NFκB, TNFα, p21, TLR9, caspase −3, −8, −9, MAPK, JNK, p53, and FAS | [132] |
Rubus fairholmianus extract | 30–150 nm | 2.5–10 µg/mL | Human breast cancer | MCF-7 | Induction of apoptosis, DNA damage, ROS production ↓ MMP↑cytochrome c release, activity od caspases −3/−7, and Bax | [79] |
Ginkgo biloba leaves aqueous extract | 40.2 ± 1.2 nm | 3/6 µg/mL | Human cervical cancer | HeLa, SiHa | Inhibition of proliferation and induction of apoptosis, inhibition of colony formation ↓ SOD, GSH-Px, mitochondrial cytochrome c, Bcl-2 ↑ cytosolic cytochrome c, Bax, and cleaved caspase −3, −9 | [93] |
AgNPs coated with polyvinylpyrrolidone (PVP) | 15 nm | 20–160 µg/mL | Human hepatocellular carcinoma | HepG2 | ROS production↓ Bcl-2, MMP, NFκB ↑ cytochrome c, Bax, and cleaved caspase −3, −8, −9 | [95] |
Albizia adianthifolia aqueous leaf extract | 43 μg/mL | Human lung cancer | A549 | Induction of apoptosis and necrosis, DNA fragmentation, lipid peroxidation, and mitochondrial membrane damage ↓ ATP, GSH, ↑ p53, Bax, PARP-1, smac/DIABLO, and caspase −3/7, −8, −9 | [94] | |
Rhynchosia suaveolens aqueous leaf extract | 10–30 nm | 4.2 μg/mL | Human ovariancarcinoma | SKOV3 | ROS production, lipid peroxidation, inhibition of migration, and DNA fragmentation ↓ GSH ↑ p53, Bax, and caspase −3/7, −8, −9, | [96] |
Polyvinylpyrrolidone | 25 nm | 37.5 µg/mL | Human breast cancer | MDA-MB-231 | Induction of apoptosis, S phase cell cycle arrest, and DNA damage ↓ NADPH/NADP+, GSH/GSSG ↑ GRP78, PERK, phospho-eIF2α/total eIF2α, CHOP, and γH2AX | [110] |
Ag-TF@PDOXtheranostic nanocomposite | 185.9 nm | 50 μg/mL (DOX) | Human breast cancer | MCF-7/ADR | Induction of endoplasmic reticulum stress ↓ P-gp ↑ cytoplasmic Ca2+ level, GRP78, PERK, CHOP, ATF4, and caspase −12 | [109] |
0.2–125 µg/mL | Human colorectal carcinoma | HCT116 | ROS generation, induction of mitochondrial dysfunction, ER stress, and apoptosis ↓ Mcl-1 ↑ phospho-ASK1, phospho-JNK1, Bim, Bad, and cleaved PARP, | [153] | ||
β-cyclodextrin | 9 nm | 25 µM | Human breast cancer | MCF-7 | Induction of mitochondrial fragmentation, mitochondrial ROS production, and apoptosis ↓ MMP ↑ phospho-DRP1, TOM 20, Bip, IRE-1α, and calnexin | [111] |
Polyvinylpyrrolidone | 30 nm | 12.5 μg/mL | Human neuroblastoma | SH-SY5Y | Induction of apoptosis, mitochondrial dysfunction ↓ ATP, phospho-IP3R ↑ GRP78, phospho-PERK, phospho-eIF2α, ATF4, phospho-IRE-1, spliced XBP1, CHOP, calpain, caspase −12, PTEN, Bax, cytochrome c, and caspase −3, −9 | [21] |
Polyvinylpyrrolidone | 67–78 nm | 2–6 μg/mL | Human prostate cancer | PC-3 | Induction of lysosomal injury, activation of protective autophagy ↓ATP, phospho-mTOR, mTOR, LAMP1, cathepsin D, phospho-PS6K, PS6K, LC3-I ↑ ATG3, ATG5, ATG7, ATG12, Beclin-1, phospho-AMPK, phospho-ACC1, ACC1, and LC3-II | [119] |
Klebsiella oxytoca under aerobic conditions | 11 ± 5 nm | 1.25–10 μg/mL | Human breast adenocarcinoma | SKBR3 | ROS generation, inhibition of colony formation, autophagolysosomes formation, and induction of apoptosis and autophagy ↓ Akt, phospho-Akt, HSP90, p62, MMP-2, MMP -9 ↑ ATG5, ATG7, Beclin-1, and LC3-I/II | [120] |
Gallic acid | 86.6, 38.13, and 59 nm | 33.45 μg/mL | Human colorectal adenocarcinoma | HT-29 | Induction of mitochondria-dependent apoptosis and late noncanonical autophagy ↓ ATG3, ATG12 ↑ cytochrome c, p53, Bax, caspase −3, −8, −9, −12, XBP1, CHOP, Beclin-1, and LC3-II | [123] |
Polydopamine (PDA)-coated Au–AgNPs | 96.7 ± 6.1 nm | 20–80 μg/mL | Human papillary thyroid cancer | TPC-1 | S phase cell cycle arrest and autophagosomes and autolysosomes formation ↓ DHODH ↑ p53, LC3-A/B | [154] |
Annona muricata Extract | 6–31 nm | 17.34 µM | Human acute monocytic leukemia, human breast cancer | THP-1, AMJ-13 | Induction of apoptosis and inhibition of colony formation ↓ MMP ↑ p53, LC3-I/II | [155] |
Brassica rapa var. japonica leaf extract | 15–30 nm | 1–10 μg/mL | Human colorectal adenocarcinoma | Caco-2 | Induction of apoptosis and necrosis, ROS generation, and DNA fragmentation ↓ GSH, NF-κB, Akt, mTOR↑ IκB α, p53, LC3-II, and caspase −3 | [124] |
2.6/18 nm | 0.5–2.5/10–50 μg/mL | Human pancreas ductal adenocarcinoma | PANC-1 | Induction of apoptosis, autophagy, necroptosis, and mitotic catastrophe ↓ Bcl-2 ↑ Bax, MLKL, p53, RIP-1, RIP-3, and LC3-II | [125] | |
7.9 nm | 10 ppm | Pancreatic ductal adenocarcinoma | BxPc-3, AsPC-1 | ROS generation, inhibition of colony and spheroid formation and migration, induction of paraptosis-like cell death, and induction of MAPK signaling ↓ RAD51 ↑ p62, LC3-I/II, caspase −3, TRAIL, phospho-MLKL, p42/44 (Erk1/2), GADD45, and phospho-MBP | [127] | |
Sinigrin | 20 nm | 1 μM | Human cervical cancer | HeLa | ROS generation and induction of apoptosis ↓ GSH, SOD, CAT, GPx, MMP, Bcl-2, Bcl-xL, Akt, Raf, MEK, Erk1/2, cyclin D↑ MDA, caspases −3, −6, −9, p21, p53, cytochrome c, Bid, Bax, Bak, JNK, p38, and NFκB | [23] |
RGD peptide-conjugated Ag@Se@RGD NPs | 72 nm | 20 μg/mL | Human glioma | U251 | ROS generation and induction of apoptosis ↑ phospho-JNK, phospho-p38, and phospho-Erk1/2 | [133] |
Polydopamine-coated Au–Ag NPs | 200 nm | 20–40 µg/mL | Human bladder cancer | T24 | Induction of apoptosis and autophagy, S phase cell cycle arrest, ROS generation ↓ cyclin A, Bcl-2, Bcl-xL, procaspase −3, MMP, phospho-Erk1/2, phospho-Akt ↑ p21, caspase −3, −8, Bax, cytochrome c, and LC3-II, | [135] |
β-sitosterol | 5–55 nm | 7/14 ng | Human hepatocellular carcinoma | HepG2 | ROS generation, induction of apoptosis, ↓ mitochondrial cytochrome c, Bcl-2, ↑ Nfr2, cytoplasmic cytochrome c, Bax, caspase −3, −9, Apaf1, and p53 | [156] |
2.2.4. AgNPs as ROS Inducers
2.2.5. AgNPs and MDR (Multidrug Resistance) Induced by Drug Efflux
2.2.6. AgNPs and Energy Metabolism
2.2.7. Tumor Invasiveness and Metastasis as a Target for AgNPs
2.2.8. AgNPs and Epigenetics
2.2.9. Epithelial–Mesenchymal Transition Inhibition by AgNPs
2.3. AgNPs and Angiogenesis
2.3.1. In Vitro Mechanism
2.3.2. In Vivo Mechanism
2.3.3. Proangiogenic Effects
2.4. Anticancer Effects of AgNPs Detected In Vivo
3. Significant Challenges in the Clinical Application of AgNPs
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2015. CA Cancer J. Clin 2015, 65, 5–29. [Google Scholar] [CrossRef]
- Anu Mary Ealia, S.; Saravanakumar, M.P. A Review on the Classification, Characterisation, Synthesis of Nanoparticles and Their Application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019. [Google Scholar] [CrossRef]
- Nanoparticle Drug Delivery Systems for Cancer Treatment, 1st ed.; Gali-Muhtasib, H.; Chouaib, R. (Eds.) Jenny Stanford Publishing: Singapore, 2020; ISBN 978-0-42934-125-0. [Google Scholar]
- Bhatia, S. Natural Polymer Drug Delivery Systems; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-31941-128-6. [Google Scholar]
- Ji, S.; Liu, C.; Zhang, B.; Yang, F.; Xu, J.; Long, J.; Jin, C.; Fu, D.; Ni, Q.; Yu, X. Carbon Nanotubes in Cancer Diagnosis and Therapy. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2010, 1806, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic Nanoparticles in Cancer Theranostics. Theranostics 2015, 5, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current Trends in the Use of Liposomes for Tumor Targeting. Nanomedicine 2013, 8, 1509–1528. [Google Scholar] [CrossRef]
- Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, B. Gold Nanoparticles in Cancer Treatment. Mol. Pharm. 2019, 16, 1–23. [Google Scholar] [CrossRef]
- Grodzinski, P.; Silver, M.; Molnar, L.K. Nanotechnology for Cancer Diagnostics: Promises and Challenges. Expert Rev. Mol. Diagn. 2006, 6, 307–318. [Google Scholar] [CrossRef]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in Cancer Therapy: Challenges, Opportunities, and Clinical Applications. J. Control. Release 2015, 200, 138–157. [Google Scholar] [CrossRef]
- Blanco, E.; Hsiao, A.; Mann, A.P.; Landry, M.G.; Meric-Bernstam, F.; Ferrari, M. Nanomedicine in Cancer Therapy: Innovative Trends and Prospects. Cancer Sci. 2011, 102, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.B.; Machado, R.T.A.; Pironi, A.M.; Alves, R.C.; de Araújo, P.R.; Dragalzew, A.C.; Dalberto, I.; Chorilli, M. Recent Advances in the Use of Metallic Nanoparticles with Antitumoral Action—Review. Curr. Med. Chem. 2019, 26, 2108–2146. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Murtaza, G.; Rashid, F.; Iqbal, J. Eco-Friendly Green Synthesis of Silver Nanoparticles and Their Potential Applications as Antioxidant and Anticancer Agents. Drug Dev. Ind. Pharm. 2019, 45, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Huy, T.Q.; Huyen, P.T.M.; Le, A.-T.; Tonezzer, M. Recent Advances of Silver Nanoparticles in Cancer Diagnosis and Treatment. Anti-Cancer Agents Med. Chem. 2020, 20, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver Coordination Compounds: A New Horizon in Medicine. Coord. Chem. Rev. 2016, 327–328, 349–359. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef]
- Loutfy, S.A.; Al-Ansary, N.A.; Abdel-Ghani, N.T.; Hamed, A.R.; Mohamed, M.B.; Craik, J.D.; Eldin, T.A.S.; Abdellah, A.M.; Hussein, Y.; Hasanin, M.; et al. Anti-Proliferative Activities of Metallic Nanoparticles in an in Vitro Breast Cancer Model. Asian Pac. J. Cancer Prev. 2015, 16, 6039–6046. [Google Scholar] [CrossRef] [PubMed]
- Raba, J.; Ortega, F.; Fernández Baldo, M.; Fernández, J.; Serrano, M.; Sanz, M.; Díaz-Mochón, J.; Lorente, J. Study of Antitumor Activity in Breast Cell Lines Using Silver Nanoparticles Produced by Yeast. Int. J. Nanomed. 2015, 10, 2021–2031. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, K.; Rather, H.A.; Rajagopal, K.; Shanthi, M.P.; Sheriff, K.; Illiyas, M.; Rather, R.A.; Manikandan, E.; Uvarajan, S.; Bhaskar, M.; et al. Synthesis of Silver Nanoparticles (Ag NPs) for Anticancer Activities (MCF 7 Breast and A549 Lung Cell Lines) of the Crude Extract of Syzygium Aromaticum. J. Photochem. Photobiol. B Biol. 2017, 167, 282–289. [Google Scholar] [CrossRef]
- Rohde, M.M.; Snyder, C.M.; Sloop, J.; Solst, S.R.; Donati, G.L.; Spitz, D.R.; Furdui, C.M.; Singh, R. The Mechanism of Cell Death Induced by Silver Nanoparticles Is Distinct from Silver Cations. Part. Fibre Toxicol. 2021, 18, 37. [Google Scholar] [CrossRef]
- Li, L.; Cui, J.; Liu, Z.; Zhou, X.; Li, Z.; Yu, Y.; Jia, Y.; Zuo, D.; Wu, Y. Silver Nanoparticles Induce SH-SY5Y Cell Apoptosis via Endoplasmic Reticulum- and Mitochondrial Pathways That Lengthen Endoplasmic Reticulum-Mitochondria Contact Sites and Alter Inositol-3-Phosphate Receptor Function. Toxicol. Lett. 2018, 285, 156–167. [Google Scholar] [CrossRef]
- Muhamad, M.; Ab Rahim, N.; Wan Omar, W.A.; Nik Mohamed Kamal, N.N.S. Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS-2B Cell Lines. Bioinorg. Chem. Appl. 2022, 2022, 8546079. [Google Scholar] [CrossRef]
- Yuan, Y.-G.; Zhang, S.; Hwang, J.-Y.; Kong, I.-K. Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells. Oxidative Med. Cell. Longev. 2018, 2018, 6121328. [Google Scholar] [CrossRef]
- Mohamed, A.F.; Nasr, M.; Amer, M.E.; Abuamara, T.M.M.; Abd-Elhay, W.M.; Kaabo, H.F.; Matar, E.E.R.; El Moselhy, L.E.; Gomah, T.A.; Deban, M.A.E.-F.; et al. Anticancer and Antibacterial Potentials Induced Post Short-Term Exposure to Electromagnetic Field and Silver Nanoparticles and Related Pathological and Genetic Alterations: In Vitro Study. Infect. Agents Cancer 2022, 17, 4. [Google Scholar] [CrossRef]
- Jeong, J.-K.; Gurunathan, S.; Kang, M.-H.; Han, J.W.; Das, J.; Choi, Y.-J.; Kwon, D.-N.; Cho, S.-G.; Park, C.; Seo, H.G.; et al. Hypoxia-Mediated Autophagic Flux Inhibits Silver Nanoparticle-Triggered Apoptosis in Human Lung Cancer Cells. Sci. Rep. 2016, 6, 21688. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Xu, X.; Han, H.; Dai, J.; Sun, R.; Yang, L.; Xie, J.; Wang, Y. Preparation of Triangular Silver Nanoparticles and Their Biological Effects in the Treatment of Ovarian Cancer. J. Ovarian Res. 2022, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K.; Pandey, D.K.; Yadav, R.R.; Singh, D. A Study of ZnO Nanoparticles and ZnO-EG Nanofluid. J. Exp. Nanosci. 2013, 8, 731–741. [Google Scholar] [CrossRef]
- Kitimu, S.R.; Kirira, P.; Abdille, A.A.; Sokei, J.; Ochwang’i, D.; Mwitari, P.; Makanya, A.; Maina, N. Anti-Angiogenic and Anti-Metastatic Effects of Biogenic Silver Nanoparticles Synthesized Using Azadirachta Indica. Adv. Biosci. Biotechnol. 2022, 13, 188–206. [Google Scholar] [CrossRef]
- Noorbazargan, H.; Amintehrani, S.; Dolatabadi, A.; Mashayekhi, A.; Khayam, N.; Moulavi, P.; Naghizadeh, M.; Mirzaie, A.; Mirzaei Rad, F.; Kavousi, M. Anti-Cancer & Anti-Metastasis Properties of Bioorganic-Capped Silver Nanoparticles Fabricated from Juniperus Chinensis Extract against Lung Cancer Cells. AMB Express 2021, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.-K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.-M.; Lee, K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem. Rev. 2015, 115, 327–394. [Google Scholar] [CrossRef]
- Ling, S.; Yang, X.; Li, C.; Zhang, Y.; Yang, H.; Chen, G.; Wang, Q. Tumor Microenvironment-Activated NIR-II Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angew. Chem. 2020, 132, 7286–7290. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, L.; Huang, J.; Zhang, C.; Pu, K. Activatable Molecular Agents for Cancer Theranostics. Chem. Sci. 2020, 11, 618–630. [Google Scholar] [CrossRef]
- Zhen, X.; Zhang, J.; Huang, J.; Xie, C.; Miao, Q.; Pu, K. Macrotheranostic Probe with Disease-Activated Near-Infrared Fluorescence, Photoacoustic, and Photothermal Signals for Imaging-Guided Therapy. Angew. Chem. Int. Ed. 2018, 57, 7804–7808. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Dong, C.; Ren, J. Highly Sensitive Homogenous Immunoassay of Cancer Biomarker Using Silver Nanoparticles Enhanced Fluorescence Correlation Spectroscopy. Talanta 2010, 81, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.-H.; Noh, M.S.; Kim, J.; Kim, G.; Kang, H.; Kim, M.-S.; Seo, Y.-T.; Baek, J.; Kim, J.-H.; Park, J.; et al. Multifunctional Silver-Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications. Small 2010, 6, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Del Pilar Chantada-Vázquez, M.; López, A.C.; Vence, M.G.; Vázquez-Estévez, S.; Acea-Nebril, B.; Calatayud, D.G.; Jardiel, T.; Bravo, S.B.; Núñez, C. Proteomic Investigation on Bio-Corona of Au, Ag and Fe Nanoparticles for the Discovery of Triple Negative Breast Cancer Serum Protein Biomarkers. J. Proteom. 2020, 212, 103581. [Google Scholar] [CrossRef] [PubMed]
- Núñez, C. Blood-Based Protein Biomarkers in Breast Cancer. Clin. Chim. Acta 2019, 490, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Roco, M.C.; Li, X.; Lin, Y. Trends in Nanotechnology Patents. Nat. Nanotechnol. 2008, 3, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Roco, M.C. Nanotechnology: Convergence with Modern Biology and Medicine. Curr. Opin. Biotechnol. 2003, 14, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Yao, J.; Wang, L.H.V. Photoacoustic Tomography: Principles and Advances (Invited Review). Prog. Electromagn. Res. 2014, 147, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Oraevsky, A.A.; Jacques, S.L.; Tittel, F.K. Determination of Tissue Optical Properties by Piezoelectric Detection of Laser-Induced Stress Waves. SPIE 1993, 1882, 86–101. [Google Scholar]
- Oraevsky, A.A.; Jacques, S.L.; Esenaliev, R.O.; Tittel, F.K. Time-Resolved Optoacoustic Imaging in Layered Biological Tissues; Optica Publishing Group: Washington, DC, USA, 1994. [Google Scholar]
- Cheng, W.; Sun, Y.; Zhao, G.; Khan, A.; Zhang, J.; Zhang, Z.; Yi, Y.; Kong, D.; Li, J. A Novel Peptide-Templated AgNPs Nanoprobe for Theranostics of Prostate Cancer. Biosens. Bioelectron. 2023, 223, 114978. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, H.; Chen, C.; Lv, X.; Zuo, E.; Han, S.; Li, Z.; Liu, P.; Li, H.; Chen, C. Application of Serum SERS Technology Based on Thermally Annealed Silver Nanoparticle Composite Substrate in Breast Cancer. Photodiagnosis Photodyn. 2023, 103284. [Google Scholar] [CrossRef] [PubMed]
- Basak, D.; Arrighi, S.; Darwiche, Y.; Deb, S. Comparison of Anticancer Drug Toxicities: Paradigm Shift in Adverse Effect Profile. Life 2021, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Tsai, C.-J.; Jang, H. Anticancer Drug Resistance: An Update and Perspective. Drug Resist. Updates 2021, 59, 100796. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.I.O.; Martins, C.S.M.; Prior, J.A.V. Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomaterials 2021, 11, 964. [Google Scholar] [CrossRef] [PubMed]
- Abass Sofi, M.; Sunitha, S.; Ashaq Sofi, M.; Khadheer Pasha, S.K.; Choi, D. An Overview of Antimicrobial and Anticancer Potential of Silver Nanoparticles. J. King Saud Univ.-Sci. 2022, 34, 101791. [Google Scholar] [CrossRef]
- Farah, M.A.; Ali, M.A.; Chen, S.-M.; Li, Y.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Lee, J. Silver Nanoparticles Synthesized from Adenium Obesum Leaf Extract Induced DNA Damage, Apoptosis and Autophagy via Generation of Reactive Oxygen Species. Colloids Surf. B Biointerfaces 2016, 141, 158–169. [Google Scholar] [CrossRef]
- Alkan, H.; Ciğerci, İ.H.; Ali, M.M.; Hazman, O.; Liman, R.; Colă, F.; Bonciu, E. Cytotoxic and Genotoxic Evaluation of Biosynthesized Silver Nanoparticles Using Moringa Oleifera on MCF-7 and HUVEC Cell Lines. Plants 2022, 11, 1293. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell Cycle Control in Cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Ma, X.; Hu, H. The Influence of Cell Cycle Regulation on Chemotherapy. Int. J. Mol. Sci. 2021, 22, 6923. [Google Scholar] [CrossRef]
- Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The Cell Cycle: A Review of Regulation, Deregulation and Therapeutic Targets in Cancer. Cell Prolif. 2003, 36, 131–149. [Google Scholar] [CrossRef]
- Oladipo, A.O.; Unuofin, J.O.; Lebelo, S.L.; Msagati, T.A.M. Phytochemical-Stabilized Platinum-Decorated Silver Nanocubes INHIBIT Adenocarcinoma Cells and Enhance Antioxidant Effects by Promoting Apoptosis via Cell Cycle Arrest. Pharmaceutics 2022, 14, 2541. [Google Scholar] [CrossRef]
- Mokhtar, F.A.; Selim, N.M.; Elhawary, S.S.; Abd El Hadi, S.R.; Hetta, M.H.; Albalawi, M.A.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Fahmy, L.I.; et al. Green Biosynthesis of Silver Nanoparticles Using Annona Glabra and Annona Squamosa Extracts with Antimicrobial, Anticancer, Apoptosis Potentials, Assisted by In Silico Modeling, and Metabolic Profiling. Pharmaceuticals 2022, 15, 1354. [Google Scholar] [CrossRef] [PubMed]
- Austin, L.A.; Kang, B.; Yen, C.-W.; El-Sayed, M.A. Nuclear Targeted Silver Nanospheres Perturb the Cancer Cell Cycle Differently than Those of Nanogold. Bioconjugate Chem. 2011, 22, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Zilfou, J.T.; Lowe, S.W. Tumor Suppressive Functions of P53. Cold Spring Harb. Perspect. Biol. 2009, 1, a001883. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Fabián, S.; Arreola, R.; Becerril-Villanueva, E.; Torres-Romero, J.C.; Arana-Argáez, V.; Lara-Riegos, J.; Ramírez-Camacho, M.A.; Alvarez-Sánchez, M.E. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front. Oncol. 2019, 9, 1370. [Google Scholar] [CrossRef] [PubMed]
- Mohd Faheem, M.; Bhagat, M.; Sharma, P.; Anand, R. Induction of P53 Mediated Mitochondrial Apoptosis and Cell Cycle Arrest in Human Breast Cancer Cells by Plant Mediated Synthesis of Silver Nanoparticles from Bergenia ligulata (Whole Plant). Int. J. Pharm. 2022, 619, 121710. [Google Scholar] [CrossRef]
- Gandhi, A.D.; Miraclin, P.A.; Abilash, D.; Sathiyaraj, S.; Velmurugan, R.; Zhang, Y.; Soontarapa, K.; Sen, P.; Sridharan, T.B. Nanosilver Reinforced Parmelia Sulcata Extract Efficiently Induces Apoptosis and Inhibits Proliferative Signalling in MCF-7 Cells. Environ. Res. 2021, 199, 111375. [Google Scholar] [CrossRef]
- Meenakshisundaram, S.; Krishnamoorthy, V.; Jagadeesan, Y.; Vilwanathan, R.; Balaiah, A. Annona Muricata Assisted Biogenic Synthesis of Silver Nanoparticles Regulates Cell Cycle Arrest in NSCLC Cell Lines. Bioorg. Chem. 2020, 95, 103451. [Google Scholar] [CrossRef]
- Singh, S.P.; Mishra, A.; Shyanti, R.K.; Singh, R.P.; Acharya, A. Silver Nanoparticles Synthesized Using Carica Papaya Leaf Extract (AgNPs-PLE) Causes Cell Cycle Arrest and Apoptosis in Human Prostate (DU145) Cancer Cells. Biol. Trace Elem. Res. 2021, 199, 1316–1331. [Google Scholar] [CrossRef]
- Hembram, K.C.; Chatterjee, S.; Sethy, C.; Nayak, D.; Pradhan, R.; Molla, S.; Bindhani, B.K.; Kundu, C.N. Comparative and Mechanistic Study on the Anticancer Activity of Quinacrine-Based Silver and Gold Hybrid Nanoparticles in Head and Neck Cancer. Mol. Pharm. 2019, 16, 3011–3023. [Google Scholar] [CrossRef]
- Besson, A.; Dowdy, S.F.; Roberts, J.M. CDK Inhibitors: Cell Cycle Regulators and Beyond. Dev. Cell 2008, 14, 159–169. [Google Scholar] [CrossRef]
- Black, A.R.; Black, J.D. Protein Kinase C Signaling and Cell Cycle Regulation. Front. Immunol. 2013, 3, 423. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, D.W.; Lee, Y.H.; Oh, J.H.; Yoon, S.; Choi, M.S.; Lee, S.K.; Kim, J.W.; Lee, K.; Song, C.-W. Silver Nanoparticles Induce Apoptosis and G2/M Arrest via PKCζ-Dependent Signaling in A549 Lung Cells. Arch. Toxicol. 2011, 85, 1529–1540. [Google Scholar] [CrossRef]
- Tompkins, K.D.; Thorburn, A. Regulation of Apoptosis by Autophagy to Enhance Cancer Therapy. Yale J. Biol. Med. 2019, 92, 707–718. [Google Scholar] [PubMed]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as Anticancer Mechanism: Function and Dysfunction of Its Modulators and Targeted Therapeutic Strategies. Aging 2016, 8, 603–619. [Google Scholar] [CrossRef]
- Fischer, U.; Schulze-Osthoff, K. Apoptosis-Based Therapies and Drug Targets. Cell Death Differ. 2005, 12, 942–961. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, C.; Singh, A. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhamid, R.; Nazmy, M.; Fathy, M. Targeting Apoptosis as a Therapeutic Approach in Cancer. Minia J. Med. Res. 2020, 31, 321–334. [Google Scholar] [CrossRef]
- Carneiro, B.A.; El-Deiry, W.S. Targeting Apoptosis in Cancer Therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef]
- Zamai, L.; Ahmad, M.; Bennett, I.M.; Azzoni, L.; Alnemri, E.S.; Perussia, B. Natural Killer (NK) Cell–Mediated Cytotoxicity: Differential Use of TRAIL and Fas Ligand by Immature and Mature Primary Human NK Cells. J. Exp. Med. 1998, 188, 2375–2380. [Google Scholar] [CrossRef]
- Tourneur, L.; Buzyn, A.; Chiocchia, G. FADD Adaptor in Cancer. Med. Immunol. 2005, 4, 1. [Google Scholar] [CrossRef]
- Kabir, S.R.; Asaduzzaman, A.; Amin, R.; Haque, A.T.; Ghose, R.; Rahman, M.M.; Islam, J.; Amin, M.B.; Hasan, I.; Debnath, T.; et al. Zizyphus mauritiana Fruit Extract-Mediated Synthesized Silver/Silver Chloride Nanoparticles Retain Antimicrobial Activity and Induce Apoptosis in MCF-7 Cells through the Fas Pathway. ACS Omega 2020, 5, 20599–20608. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.M.; El-Deeb, N.M.; Metwaly, A.M.; El Fawal, G.F.; Radwan, M.M.; Hafez, E.E. Induction of Apoptosis in Human Cancer Cells Through Extrinsic and Intrinsic Pathways by Balanites aegyptiaca Furostanol Saponins and Saponin-Coated SilverNanoparticles. Appl. Biochem. Biotechnol. 2017, 182, 1675–1693. [Google Scholar] [CrossRef] [PubMed]
- Sur-Erdem, I.; Muslu, K.; Pınarbası, N.; Altunbek, M.; Seker-Polat, F.; Cingöz, A.; Aydın, S.O.; Kahraman, M.; Culha, M.; Solaroglu, I.; et al. TRAIL-Conjugated Silver Nanoparticles Sensitize Glioblastoma Cells to TRAIL by Regulating CHK1 in the DNA Repair Pathway. Neurol. Res. 2020, 42, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Suseela, V.; Nirmaladevi, R.; Pallikondaperumal, M.; Priya, R.S.; Shaik, M.R.; Shaik, A.H.; Khan, M.; Shaik, B. Eco-Friendly Preparation of Silver Nanoparticles and Their Antiproliferative and Apoptosis-Inducing Ability against Lung Cancer. Life 2022, 12, 2123. [Google Scholar] [CrossRef]
- Plackal Adimuriyil George, B.; Kumar, N.; Abrahamse, H.; Ray, S.S. Apoptotic Efficacy of Multifaceted Biosynthesized Silver Nanoparticles on Human Adenocarcinoma Cells. Sci. Rep. 2018, 8, 14368. [Google Scholar] [CrossRef]
- Bin-Jumah, M.; Al-Abdan, M.; Albasher, G.; Alarifi, S. Effects of Green Silver Nanoparticles on Apoptosis and Oxidative Stress in Normal and Cancerous Human Hepatic Cells in Vitro. Int. J. Nanomed. 2020, 15, 1537–1548. [Google Scholar] [CrossRef]
- Azhar, N.A.; Ghozali, S.Z.; Abu Bakar, S.A.; Lim, V.; Ahmad, N.H. Suppressing Growth, Migration, and Invasion of Human Hepatocellular Carcinoma HepG2 Cells by Catharanthus Roseus-silver Nanoparticles. Toxicol. In Vitro 2020, 67, 104910. [Google Scholar] [CrossRef]
- Maity, P.; Bepari, M.; Pradhan, A.; Baral, R.; Roy, S.; Maiti Choudhury, S. Synthesis and Characterization of Biogenic Metal Nanoparticles and Its Cytotoxicity and Anti-Neoplasticity through the Induction of Oxidative Stress, Mitochondrial Dysfunction and Apoptosis. Colloids Surf. B Biointerfaces 2018, 161, 111–120. [Google Scholar] [CrossRef]
- Papaliagkas, V.; Anogianaki, A.; Anogianakis, G.; Ilonidis, G. The Proteins and the Mechanisms of Apoptosis: A Mini-Review of the Fundamentals. Hippokratia 2007, 11, 108–113. [Google Scholar]
- Peña-Blanco, A.; García-Sáez, A.J. Bax, Bak and beyond—Mitochondrial Performance in Apoptosis. FEBS J. 2018, 285, 416–431. [Google Scholar] [CrossRef]
- Srinivasula, S.M.; Datta, P.; Fan, X.-J.; Fernandes-Alnemri, T.; Huang, Z.; Alnemri, E.S. Molecular Determinants of the Caspase-Promoting Activity of Smac/DIABLO and Its Role in the Death Receptor Pathway. J. Biol. Chem. 2000, 275, 36152–36157. [Google Scholar] [CrossRef]
- Shaniba, V.S.; Aziz, A.A.; Jayasree, P.R.; Kumar, P.R.M. Manilkara zapota (L.) P. Royen Leaf Extract Derived Silver Nanoparticles Induce Apoptosis in Human Colorectal Carcinoma Cells Without Affecting Human Lymphocytes or Erythrocytes. Biol. Trace Elem. Res. 2019, 192, 160–174. [Google Scholar] [CrossRef]
- Pei, J.; Fu, B.; Jiang, L.; Sun, T. Biosynthesis, Characterization, and Anticancer Effect of Plant-Mediated Silver Nanoparticles Using Coptis chinensis. Int. J. Nanomed. 2019, 14, 1969–1978. [Google Scholar] [CrossRef]
- Daei, S.; Ziamajidi, N.; Abbasalipourkabir, R.; Aminzadeh, Z.; Vahabirad, M. Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression. Chonnam Med. J. 2022, 58, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Kim, J.-H.; Hong, K. Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116. Int. J. Mol. Sci. 2018, 19, 2269. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, Z.; Wang, Y.; Ma, C.; Bi, L.; Song, M.; Jiang, G. Silver Nanoparticles Induce Apoptosis in HepG2 Cells through Particle-Specific Effects on Mitochondria. Environ. Sci. Technol. 2022, 56, 5706–5713. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-K.; Rao, S.-S.; Tan, Y.-J.; Yin, H.; Luo, M.-J.; Wang, Z.-X.; Zhou, J.-H.; Hong, C.-G.; Luo, Z.-W.; Du, W.; et al. Fructose-Coated Angstrom Silver Inhibits Osteosarcoma Growth and Metastasis via Promoting ROS-Dependent Apoptosis through the Alteration of Glucose Metabolism by Inhibiting PDK. Theranostics 2020, 10, 7710–7729. [Google Scholar] [CrossRef]
- Morais, M.; Machado, V.; Dias, F.; Figueiredo, P.; Palmeira, C.; Martins, G.; Fernandes, R.; Malheiro, A.R.; Mikkonen, K.S.; Teixeira, A.L.; et al. Glucose-Functionalized Silver Nanoparticles as a Potential New Therapy Agent Targeting Hormone-Resistant Prostate Cancer Cells. Int. J. Nanomed. 2022, 17, 4321–4337. [Google Scholar] [CrossRef]
- Xu, Z.; Feng, Q.; Wang, M.; Zhao, H.; Lin, Y.; Zhou, S. Green Biosynthesized Silver Nanoparticles with Aqueous Extracts of Ginkgo Biloba Induce Apoptosis via Mitochondrial Pathway in Cervical Cancer Cells. Front. Oncol. 2020, 10, 575415. [Google Scholar] [CrossRef]
- Govender, R.; Phulukdaree, A.; Gengan, R.M.; Anand, K.; Chuturgoon, A.A. Silver Nanoparticles of Albizia adianthifolia: The Induction of Apoptosis in Human Lung Carcinoma Cell Line. J. Nanobiotechnology 2013, 11, 5. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, J.; Huang, Y.; Gao, X.; Kong, L.; Zhang, T.; Tang, M. Comparative Cytotoxicity and Apoptotic Pathways Induced by Nanosilver in Human Liver HepG2 and L02 Cells. Hum. Exp. Toxicol. 2018, 37, 1293–1309. [Google Scholar] [CrossRef] [PubMed]
- Bethu, M.S.; Netala, V.R.; Domdi, L.; Tartte, V.; Janapala, V.R. Potential Anticancer Activity of Biogenic Silver Nanoparticles Using Leaf Extract of Rhynchosia suaveolens: An Insight into the Mechanism. Artif. Cells Nanomed. Biotechnol. 2018, 46, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, X.; Samuel Ravi, S.O.A.; Ramachandran, A.; Aziz Ibrahim, I.A.; Nassir, A.M.; Yao, J. Synthesis of Silver Nanoparticles (AgNPs) from Leaf Extract of Salvia miltiorrhiza and Its Anticancer Potential in Human Prostate Cancer LNCaP Cell Lines. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2846–2854. [Google Scholar] [CrossRef]
- Ahmadian, E.; Dizaj, S.M.; Rahimpour, E.; Hasanzadeh, A.; Eftekhari, A.; Hosain Zadegan, H.; Halajzadeh, J.; Ahmadian, H. Effect of Silver Nanoparticles in the Induction of Apoptosis on Human Hepatocellular Carcinoma (HepG2) Cell Line. Mater. Sci. Eng. C 2018, 93, 465–471. [Google Scholar] [CrossRef]
- Barbasz, A.; Czyżowska, A.; Piergies, N.; Oćwieja, M. Design Cytotoxicity: The Effect of Silver Nanoparticles Stabilized by Selected Antioxidants on Melanoma Cells. J. Appl. Toxicol. 2022, 42, 570–587. [Google Scholar] [CrossRef] [PubMed]
- Dutt, Y.; Pandey, R.P.; Dutt, M.; Gupta, A.; Vibhuti, A.; Raj, V.S.; Chang, C.-M.; Priyadarshini, A. Silver Nanoparticles Phytofabricated through Azadirachta Indica: Anticancer, Apoptotic, and Wound-Healing Properties. Antibiotics 2023, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Povea-Cabello, S.; Oropesa-Ávila, M.; de la Cruz-Ojeda, P.; Villanueva-Paz, M.; de la Mata, M.; Suárez-Rivero, J.; Álvarez-Córdoba, M.; Villalón-García, I.; Cotán, D.; Ybot-González, P.; et al. Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis. Int. J. Mol. Sci. 2017, 18, 2393. [Google Scholar] [CrossRef]
- Kovács, D.; Igaz, N.; Keskeny, C.; Bélteky, P.; Tóth, T.; Gáspár, R.; Madarász, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; et al. Silver Nanoparticles Defeat P53-Positive and P53-Negative Osteosarcoma Cells by Triggering Mitochondrial Stress and Apoptosis. Sci. Rep. 2016, 6, 27902. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, Y.; Alnaggar, M. Silver Nanoparticles Induce Cell Death of Colon Cancer Cells through Impairing Cytoskeleton and Membrane Nanostructure. Micron 2019, 126, 102750. [Google Scholar] [CrossRef]
- Soldani, C.; Scovassi, A.I. Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: An update. Apoptosis 2002, 7, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Fribley, A.; Zhang, K.; Kaufman, R.J. Regulation of Apoptosis by the Unfolded Protein Response. In Apoptosis; Erhardt, P., Toth, A., Eds.; Humana Press: Totowa, NJ, USA, 2009; Volume 559, pp. 191–204. ISBN 978-1-60327-016-8. [Google Scholar]
- Parmar, V.M.; Schröder, M. Sensing Endoplasmic Reticulum Stress. In Self and Nonself; López-Larrea, C., Ed.; Springer US: New York, NY, USA, 2012; Volume 738, pp. 153–168. ISBN 978-1-46141-679-1. [Google Scholar]
- Khan, A.A.; Allemailem, K.S.; Almatroudi, A.; Almatroodi, S.A.; Mahzari, A.; Alsahli, M.A.; Rahmani, A.H. Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules 2020, 25, 5336. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lv, Y.; Zhao, N.; Guan, G.; Wang, J. Protein Kinase R-like ER Kinase and Its Role in Endoplasmic Reticulum Stress-Decided Cell Fate. Cell Death Dis. 2015, 6, e1822. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, L.; Guo, X.; Cheng, C.; Luo, Y.; Wang, J.; Wang, J.; Liu, Y.; Cao, Y.; Li, P.; et al. Combating Multidrug Resistance and Metastasis of Breast Cancer by Endoplasmic Reticulum Stress and Cell-Nucleus Penetration Enhanced Immunochemotherapy. Theranostics 2022, 12, 2987–3006. [Google Scholar] [CrossRef] [PubMed]
- Swanner, J.; Fahrenholtz, C.D.; Tenvooren, I.; Bernish, B.W.; Sears, J.J.; Hooker, A.; Furdui, C.M.; Alli, E.; Li, W.; Donati, G.L.; et al. Silver Nanoparticles Selectively Treat Triple-negative Breast Cancer Cells without Affecting Non-malignant Breast Epithelial Cells in Vitro and in Vivo. FASEB BioAdvances 2019, 1, 639–660. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Fageria, L.; Sharma, A.; Mukherjee, S.; Pande, S.; Chowdhury, R.; Chowdhury, S. Silver Nanoparticle-Induced Alteration of Mitochondrial and ER Homeostasis Affects Human Breast Cancer Cell Fate. Toxicol. Rep. 2022, 9, 1977–1984. [Google Scholar] [CrossRef]
- Gopisetty, M.K.; Kovács, D.; Igaz, N.; Rónavári, A.; Bélteky, P.; Rázga, Z.; Venglovecz, V.; Csoboz, B.; Boros, I.M.; Kónya, Z.; et al. Endoplasmic Reticulum Stress: Major Player in Size-Dependent Inhibition of P-Glycoprotein by Silver Nanoparticles in Multidrug-Resistant Breast Cancer Cells. J. Nanobiotechnol. 2019, 17, 9. [Google Scholar] [CrossRef]
- Mohammadinejad, R.; Moosavi, M.A.; Tavakol, S.; Vardar, D.Ö.; Hosseini, A.; Rahmati, M.; Dini, L.; Hussain, S.; Mandegary, A.; Klionsky, D.J. Necrotic, Apoptotic and Autophagic Cell Fates Triggered by Nanoparticles. Autophagy 2019, 15, 4–33. [Google Scholar] [CrossRef]
- He, C.; Klionsky, D.J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 2009, 43, 67–93. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Zhou, X.; Yu, Y.; Li, Z.; Zuo, D.; Wu, Y. Silver Nanoparticles Induce Protective Autophagy via Ca2+/CaMKKβ/AMPK/mTOR Pathway in SH-SY5Y Cells and Rat Brains. Nanotoxicology 2019, 13, 369–391. [Google Scholar] [CrossRef]
- Hailan, W.A.; Al-Anazi, K.M.; Farah, M.A.; Ali, M.A.; Al-Kawmani, A.A.; Abou-Tarboush, F.M. Reactive Oxygen Species-Mediated Cytotoxicity in Liver Carcinoma Cells Induced by Silver Nanoparticles Biosynthesized Using Schinus molle Extract. Nanomaterials 2022, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Mei, Y.; Sinha, S. Role of the Crosstalk between Autophagy and Apoptosis in Cancer. J. Oncol. 2013, 2013, 102735. [Google Scholar] [CrossRef]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, T.; Chen, S.; Qi, S.; Zhang, Z.; Xu, Y. Silver Nanoparticles Regulate Autophagy through Lysosome Injury and Cell Hypoxia in Prostate Cancer Cells. J. Biochem. Mol. Toxicol. 2020, 34, e22474. [Google Scholar] [CrossRef] [PubMed]
- Buttacavoli, M.; Albanese, N.N.; Di Cara, G.; Alduina, R.; Faleri, C.; Gallo, M.; Pizzolanti, G.; Gallo, G.; Feo, S.; Baldi, F.; et al. Anticancer Activity of Biogenerated Silver Nanoparticles: An Integrated Proteomic Investigation. Oncotarget 2018, 9, 9685–9705. [Google Scholar] [CrossRef]
- Menon, M.B.; Dhamija, S. Beclin 1 Phosphorylation—At the Center of Autophagy Regulation. Front. Cell Dev. Biol. 2018, 6, 137. [Google Scholar] [CrossRef]
- Hao, M.; Kong, C.; Jiang, C.; Hou, R.; Zhao, X.; Li, J.; Wang, Y.; Gao, Y.; Zhang, H.; Yang, B.; et al. Polydopamine-Coated Au-Ag Nanoparticle-Guided Photothermal Colorectal Cancer Therapy through Multiple Cell Death Pathways. Acta Biomater. 2019, 83, 414–424. [Google Scholar] [CrossRef]
- Bao, J.; Jiang, Z.; Ding, W.; Cao, Y.; Yang, L.; Liu, J. Silver Nanoparticles Induce Mitochondria-Dependent Apoptosis and Late Non-Canonical Autophagy in HT-29 Colon Cancer Cells. Nanotechnol. Rev. 2022, 11, 1911–1926. [Google Scholar] [CrossRef]
- Akter, M.; Atique Ullah, A.K.M.; Banik, S.; Sikder, M.T.; Hosokawa, T.; Saito, T.; Kurasaki, M. Green Synthesized Silver Nanoparticles-Mediated Cytotoxic Effect in Colorectal Cancer Cells: NF-ΚB Signal Induced Apoptosis Through Autophagy. Biol. Trace Elem. Res. 2021, 199, 3272–3286. [Google Scholar] [CrossRef]
- Zielinska, E.; Zauszkiewicz-Pawlak, A.; Wojcik, M.; Inkielewicz-Stepniak, I. Silver Nanoparticles of Different Sizes Induce a Mixed Type of Programmed Cell Death in Human Pancreatic Ductal Adenocarcinoma. Oncotarget 2018, 9, 4675–4697. [Google Scholar] [CrossRef]
- Wang, X.; Hua, P.; He, C.; Chen, M. Non-Apoptotic Cell Death-Based Cancer Therapy: Molecular Mechanism, Pharmacological Modulators, and Nanomedicine. Acta Pharm. Sin. B 2022, 12, 3567–3593. [Google Scholar] [CrossRef]
- Liu, L.; An, X.; Schaefer, M.; Yan, B.; de la Torre, C.; Hillmer, S.; Gladkich, J.; Herr, I. Nanosilver Inhibits the Progression of Pancreatic Cancer by Inducing a Paraptosis-like Mixed Type of Cell Death. Biomed. Pharmacother. 2022, 153, 113511. [Google Scholar] [CrossRef] [PubMed]
- Katifelis, H.; Nikou, M.-P.; Mukha, I.; Vityuk, N.; Lagopati, N.; Piperi, C.; Farooqi, A.A.; Pippa, N.; Efstathopoulos, E.P.; Gazouli, M. Ag/Au Bimetallic Nanoparticles Trigger Different Cell Death Pathways and Affect Damage Associated Molecular Pattern Release in Human Cell Lines. Cancers 2022, 14, 1546. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Pan, W.; Liu, S.; Shen, Z.; Xu, Y.; Hu, L. ERK/MAPK Signalling Pathway and Tumorigenesis (Review). Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Abdelgwad, M.; Sabry, D.; Mohamed Abdelgawad, L.; Mohamed Elroby Ali, D. In Vitro Differential Sensitivity of Head and Neck Squamous Cell Carcinoma to Cisplatin, Silver Nanoparticles, and Photodynamic Therapy. Rep. Biochem. Mol. Biol. 2022, 11, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.R.; Islam, F.; Asaduzzaman, A.K.M. Biogenic Silver/Silver Chloride Nanoparticles Inhibit Human Cancer Cells Proliferation in Vitro and Ehrlich Ascites Carcinoma Cells Growth in Vivo. Sci. Rep. 2022, 12, 8909. [Google Scholar] [CrossRef]
- Liu, W.; Su, J.; Shi, Q.; Wang, J.; Chen, X.; Zhang, S.; Li, M.; Cui, J.; Fan, C.; Sun, B.; et al. RGD Peptide-Conjugated Selenium Nanocomposite Inhibits Human Glioma Growth by Triggering Mitochondrial Dysfunction and ROS-Dependent MAPKs Activation. Front. Bioeng. Biotechnol. 2021, 9, 781608. [Google Scholar] [CrossRef]
- Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021, 10, 2509. [Google Scholar] [CrossRef]
- Zhao, X.; Qi, T.; Kong, C.; Hao, M.; Wang, Y.; Li, J.; Liu, B.; Gao, Y.; Jiang, J. Photothermal Exposure of Polydopamine-Coated Branched Au-Ag Nanoparticles Induces Cell Cycle Arrest, Apoptosis, and Autophagy in Human Bladder Cancer Cells. Int. J. Nanomed. 2018, 13, 6413–6428. [Google Scholar] [CrossRef]
- Kim, C.G.; Castro-Aceituno, V.; Abbai, R.; Lee, H.A.; Simu, S.Y.; Han, Y.; Hurh, J.; Kim, Y.-J.; Yang, D.C. Caspase-3/MAPK Pathways as Main Regulators of the Apoptotic Effect of the Phyto-Mediated Synthesized Silver Nanoparticle from Dried Stem of Eleutherococcus senticosus in Human Cancer Cells. Biomed. Pharmacother. 2018, 99, 128–133. [Google Scholar] [CrossRef] [PubMed]
- de Lange, T. Shelterin: The Protein Complex That Shapes and Safeguards Human Telomeres. Genes Dev. 2005, 19, 2100–2110. [Google Scholar] [CrossRef] [PubMed]
- Fritz, G.; Kaina, B. Late Activation of Stress Kinases (SAPK/JNK) by Genotoxins Requires the DNA Repair Proteins DNA-PKcs and CSB. Mol. Biol. Cell 2006, 17, 851–861. [Google Scholar] [CrossRef]
- Lim, H.K.; Gurung, R.L.; Hande, M.P. DNA-Dependent Protein Kinase Modulates the Anti-Cancer Properties of Silver Nanoparticles in Human Cancer Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2017, 824, 32–41. [Google Scholar] [CrossRef]
- Panzarini, E.; Mariano, S.; Vergallo, C.; Carata, E.; Fimia, G.M.; Mura, F.; Rossi, M.; Vergaro, V.; Ciccarella, G.; Corazzari, M.; et al. Glucose Capped Silver Nanoparticles Induce Cell Cycle Arrest in HeLa Cells. Toxicol. In Vitro 2017, 41, 64–74. [Google Scholar] [CrossRef]
- Holmila, R.J.; Vance, S.A.; King, S.B.; Tsang, A.W.; Singh, R.; Furdui, C.M. Silver Nanoparticles Induce Mitochondrial Protein Oxidation in Lung Cells Impacting Cell Cycle and Proliferation. Antioxidants 2019, 8, 552. [Google Scholar] [CrossRef]
- Tao, L.; Chen, X.; Sun, J.; Wu, C. Silver Nanoparticles Achieve Cytotoxicity against Breast Cancer by Regulating Long-Chain Noncoding RNA XLOC_006390-Mediated Pathway. Toxicol. Res. 2021, 10, 123–133. [Google Scholar] [CrossRef]
- Yesilot, S.; Bayram, D.; Özgöçmen, M.; Toğay, V.A. Apoptotic Effects of Phlomis Armeniaca Mediated Biosynthesized Silver Nanoparticles in Monolayer (2D) and Spheroid (3D) Cultures of Human Breast Cancer Cell Lines. 3 Biotech 2023, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Lavudi, K.; Harika, V.S.; Kokkanti, R.R.; Patchigolla, S.; Sinha, A.; Patnaik, S.; Penchalaneni, J. 2-Dimensional in Vitro Culture Assessment of Ovarian Cancer Cell Line Using Cost Effective Silver Nanoparticles from Macrotyloma Uniflorum Seed Extracts. Front. Bioeng. Biotechnol. 2022, 10, 978846. [Google Scholar] [CrossRef]
- Khor, K.Z.; Joseph, J.; Shamsuddin, F.; Lim, V.; Moses, E.J.; Abdul Samad, N. The Cytotoxic Effects of Moringa oleifera Leaf Extract and Silver Nanoparticles on Human Kasumi-1 Cells. Int. J. Nanomed. 2020, 15, 5661–5670. [Google Scholar] [CrossRef]
- Bordoni, V.; Sanna, L.; Lyu, W.; Avitabile, E.; Zoroddu, S.; Medici, S.; Kelvin, D.J.; Bagella, L. Silver Nanoparticles Derived by Artemisia Arborescens Reveal Anticancer and Apoptosis-Inducing Effects. Int. J. Mol. Sci. 2021, 22, 8621. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.P.; Bandyopadhyay, A.; Harsha, S.N.; Policegoudra, R.S.; Bhattacharya, S.; Karak, N.; Chattopadhyay, A. Mentha arvensis (Linn.)-Mediated Green Silver Nanoparticles Trigger Caspase 9-Dependent Cell Death in MCF7 and MDA-MB-231 Cells. Breast Cancer Targets Ther. 2017, 9, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Dadashpour, M.; Firouzi-Amandi, A.; Pourhassan-Moghaddam, M.; Maleki, M.J.; Soozangar, N.; Jeddi, F.; Nouri, M.; Zarghami, N.; Pilehvar-Soltanahmadi, Y. Biomimetic Synthesis of Silver Nanoparticles Using Matricaria chamomilla Extract and Their Potential Anticancer Activity against Human Lung Cancer Cells. Mater. Sci. Eng. C 2018, 92, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Barcińska, E.; Wierzbicka, J.; Zauszkiewicz-Pawlak, A.; Jacewicz, D.; Dabrowska, A.; Inkielewicz-Stepniak, I. Role of Oxidative and Nitro-Oxidative Damage in Silver Nanoparticles Cytotoxic Effect against Human Pancreatic Ductal Adenocarcinoma Cells. Oxidative Med. Cell. Longev. 2018, 2018, 8251961. [Google Scholar] [CrossRef] [PubMed]
- Fard, N.N.; Noorbazargan, H.; Mirzaie, A.; Hedayati Ch, M.; Moghimiyan, Z.; Rahimi, A. Biogenic Synthesis of AgNPs Using Artemisia Oliveriana Extract and Their Biological Activities for an Effective Treatment of Lung Cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1047–1058. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA). Bioinorg. Chem. Appl. 2018, 2018, 9390784. [Google Scholar] [CrossRef]
- Kanipandian, N.; Li, D.; Kannan, S. Induction of Intrinsic Apoptotic Signaling Pathway in A549 Lung Cancer Cells Using Silver Nanoparticles from Gossypium hirsutum and Evaluation of in Vivo Toxicity. Biotechnol. Rep. 2019, 23, e00339. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.-H.; Gao, F.F.; Chu, J.-Q.; Cha, G.-H.; Yuk, J.-M.; Wu, W.; Lee, Y.-H. Silver Nanoparticles Induce Apoptosis via NOX4-Derived Mitochondrial Reactive Oxygen Species and Endoplasmic Reticulum Stress in Colorectal Cancer Cells. Nanomedicine 2021, 16, 1357–1375. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Feng, W.; Du, S.; Ge, R.; Li, J.; Liu, Y.; Sun, H.; Zhang, D.; Zhang, H.; et al. Targeting Mitochondria with Au–Ag@Polydopamine Nanoparticles for Papillary Thyroid Cancer Therapy. Biomater. Sci. 2019, 7, 1052–1063. [Google Scholar] [CrossRef]
- Jabir, M.S.; Saleh, Y.M.; Sulaiman, G.M.; Yaseen, N.Y.; Sahib, U.I.; Dewir, Y.H.; Alwahibi, M.S.; Soliman, D.A. Green Synthesis of Silver Nanoparticles Using Annona muricata Extract as an Inducer of Apoptosis in Cancer Cells and Inhibitor for NLRP3 Inflammasome via Enhanced Autophagy. Nanomaterials 2021, 11, 384. [Google Scholar] [CrossRef]
- Raj, R.K. B-Sitosterol-assisted Silver Nanoparticles Activates Nrf2 and Triggers Mitochondrial Apoptosis via Oxidative Stress in Human Hepatocellular Cancer Cell Line. J. Biomed. Mater. Res. Part A 2020, 108, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Miethling-Graff, R.; Rumpker, R.; Richter, M.; Verano-Braga, T.; Kjeldsen, F.; Brewer, J.; Hoyland, J.; Rubahn, H.-G.; Erdmann, H. Exposure to Silver Nanoparticles Induces Size- and Dose-Dependent Oxidative Stress and Cytotoxicity in Human Colon Carcinoma Cells. Toxicol. In Vitro 2014, 28, 1280–1289. [Google Scholar] [CrossRef]
- Guo, D.; Zhu, L.; Huang, Z.; Zhou, H.; Ge, Y.; Ma, W.; Wu, J.; Zhang, X.; Zhou, X.; Zhang, Y.; et al. Anti-Leukemia Activity of PVP-Coated Silver Nanoparticles via Generation of Reactive Oxygen Species and Release of Silver Ions. Biomaterials 2013, 34, 7884–7894. [Google Scholar] [CrossRef]
- Raja, G.; Jang, Y.-K.; Suh, J.-S.; Kim, H.-S.; Ahn, S.H.; Kim, T.-J. Microcellular Environmental Regulation of Silver Nanoparticles in Cancer Therapy: A Critical Review. Cancers 2020, 12, 664. [Google Scholar] [CrossRef] [PubMed]
- Chairuangkitti, P.; Lawanprasert, S.; Roytrakul, S.; Aueviriyavit, S.; Phummiratch, D.; Kulthong, K.; Chanvorachote, P.; Maniratanachote, R. Silver Nanoparticles Induce Toxicity in A549 Cells via ROS-Dependent and ROS-Independent Pathways. Toxicol. In Vitro 2013, 27, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Flores-López, L.Z.; Espinoza-Gómez, H.; Somanathan, R. Silver Nanoparticles: Electron Transfer, Reactive Oxygen Species, Oxidative Stress, Beneficial and Toxicological Effects. Mini Review: AGNP Beneficial and Toxicological Effects. J. Appl. Toxicol. 2019, 39, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Xu, M.; Wang, X.; Liu, R.; Liu, Q.; Zhang, Z.; Xia, T.; Zhao, J.; Jiang, G.; et al. Nanosilver Incurs an Adaptive Shunt of Energy Metabolism Mode to Glycolysis in Tumor and Nontumor Cells. ACS Nano 2014, 8, 5813–5825. [Google Scholar] [CrossRef]
- Piao, M.J.; Kang, K.A.; Lee, I.K.; Kim, H.S.; Kim, S.; Choi, J.Y.; Choi, J.; Hyun, J.W. Silver Nanoparticles Induce Oxidative Cell Damage in Human Liver Cells through Inhibition of Reduced Glutathione and Induction of Mitochondria-Involved Apoptosis. Toxicol. Lett. 2011, 201, 92–100. [Google Scholar] [CrossRef]
- Johnston, H.J.; Hutchison, G.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. A Review of the In Vivo and In Vitro Toxicity of Silver and Gold Particulates: Particle Attributes and Biological Mechanisms Responsible for the Observed Toxicity. Crit. Rev. Toxicol. 2010, 40, 328–346. [Google Scholar] [CrossRef]
- Fehaid, A.; Taniguchi, A. Size-Dependent Effect of Silver Nanoparticles on the Tumor Necrosis Factor α-Induced DNA Damage Response. Int. J. Mol. Sci. 2019, 20, 1038. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, H.; Lee, K.W.; Park, T.G. Optical Imaging of Intracellular Reactive Oxygen Species for the Assessment of the Cytotoxicity of Nanoparticles. Biomaterials 2011, 32, 2556–2565. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Wang, F.; Gao, Z.; Elhefny, M.A.; Habotta, O.A.; Abdel Moneim, A.E.; Kassab, R.B. Neuroprotective Effects of Protocatechuic Acid on Sodium Arsenate Induced Toxicity in Mice: Role of Oxidative Stress, Inflammation, and Apoptosis. Chem.-Biol. Interact. 2021, 337, 109392. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Zheng, Y.; Ma, L.; Tian, L.; Sun, Q. Clinically-Relevant ABC Transporter for Anti-Cancer Drug Resistance. Front. Pharmacol. 2021, 12, 648407. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Baig, G.A.; Alshawli, A.S.; Sait, K.H.W.; Hafeez, B.B.; Tripathi, M.K.; Alghamdi, B.S.; Mohammed Ali, H.S.H.; Rasool, M. Interaction Analysis of MRP1 with Anticancer Drugs Used in Ovarian Cancer: In Silico Approach. Life 2022, 12, 383. [Google Scholar] [CrossRef]
- Marzolini, C. Polymorphisms in Human MDR1 (P-Glycoprotein): Recent Advances and Clinical Relevance. Clin. Pharmacol. Ther. 2004, 75, 13–33. [Google Scholar] [CrossRef] [PubMed]
- El-Awady, R.; Saleh, E.; Hashim, A.; Soliman, N.; Dallah, A.; Elrasheed, A.; Elakraa, G. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front. Pharmacol. 2017, 7, 535. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.S.; Madigan, J.P.; Gillet, J.-P.; Kapoor, K.; Ambudkar, S.V.; Maia, R.C.; Gottesman, M.M.; Leung Fung, K. Expression of the Multidrug Transporter P-Glycoprotein Is Inversely Related to That of Apoptosis-Associated Endogenous TRAIL. Exp. Cell Res. 2015, 336, 318–328. [Google Scholar] [CrossRef]
- Ramesh, R.; Kozhaya, L.; McKevitt, K.; Djuretic, I.M.; Carlson, T.J.; Quintero, M.A.; McCauley, J.L.; Abreu, M.T.; Unutmaz, D.; Sundrud, M.S. Pro-Inflammatory Human Th17 Cells Selectively Express P-Glycoprotein and Are Refractory to Glucocorticoids. J. Exp. Med. 2014, 211, 89–104. [Google Scholar] [CrossRef]
- Robinson, K.; Tiriveedhi, V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front. Oncol. 2020, 10, 265. [Google Scholar] [CrossRef]
- Roninson, I.B.; Chin, J.E.; Choi, K.G.; Gros, P.; Housman, D.E.; Fojo, A.; Shen, D.W.; Gottesman, M.M.; Pastan, I. Isolation of Human Mdr DNA Sequences Amplified in Multidrug-Resistant KB Carcinoma Cells. Proc. Natl. Acad. Sci. USA 1986, 83, 4538–4542. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Arias, I.M. Intracellular Trafficking of P-Glycoprotein. Int. J. Biochem. Cell Biol. 2012, 44, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Engle, K.; Kumar, G. Cancer Multidrug-Resistance Reversal by ABCB1 Inhibition: A Recent Update. Eur. J. Med. Chem. 2022, 239, 114542. [Google Scholar] [CrossRef]
- Chaudhary, P.M.; Roninson, I.B. Induction of Multidrug Resistance in Human Cells by Transient Exposure to Different Chemotherapeutic Drugs. JNCI J. Natl. Cancer Inst. 1993, 85, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Palshof, J.A.; Cederbye, C.N.; Høgdall, E.V.S.; Poulsen, T.S.; Linnemann, D.; Nygaard, S.B.; Stenvang, J.; Christensen, I.J.; Jensen, B.V.; Pfeiffer, P.; et al. ABCG2 Protein Levels and Association to Response to First-Line Irinotecan-Based Therapy for Patients with Metastatic Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 5027. [Google Scholar] [CrossRef]
- Haber, M.; Smith, J.; Bordow, S.B.; Flemming, C.; Cohn, S.L.; London, W.B.; Marshall, G.M.; Norris, M.D. Association of High-Level MRP1 Expression with Poor Clinical Outcome in a Large Prospective Study of Primary Neuroblastoma. J. Clin. Oncol. 2006, 24, 1546–1553. [Google Scholar] [CrossRef]
- Krzyzanowski, D.; Kruszewski, M.; Grzelak, A. Differential Action of Silver Nanoparticles on ABCB1 (MDR1) and ABCC1 (MRP1) Activity in Mammalian Cell Lines. Materials 2021, 14, 3383. [Google Scholar] [CrossRef]
- Kovács, D.; Szőke, K.; Igaz, N.; Spengler, G.; Molnár, J.; Tóth, T.; Madarász, D.; Rázga, Z.; Kónya, Z.; Boros, I.M.; et al. Silver Nanoparticles Modulate ABC Transporter Activity and Enhance Chemotherapy in Multidrug Resistant Cancer. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 601–610. [Google Scholar] [CrossRef]
- Georgantzopoulou, A.; Cambier, S.; Serchi, T.; Kruszewski, M.; Balachandran, Y.L.; Grysan, P.; Audinot, J.-N.; Ziebel, J.; Guignard, C.; Gutleb, A.C.; et al. Inhibition of Multixenobiotic Resistance Transporters (MXR) by Silver Nanoparticles and Ions in Vitro and in Daphnia Magna. Sci. Total Environ. 2016, 569–570, 681–689. [Google Scholar] [CrossRef]
- Miranda, R.R.; Bezerra, A.G., Jr.; Oliveira Ribeiro, C.A.; Randi, M.A.F.; Voigt, C.L.; Skytte, L.; Rasmussen, K.L.; Kjeldsen, F.; Filipak Neto, F. Toxicological Interactions of Silver Nanoparticles and Non-Essential Metals in Human Hepatocarcinoma Cell Line. Toxicol. In Vitro 2017, 40, 134–143. [Google Scholar] [CrossRef]
- Zhan, H.; Zhou, X.; Cao, Y.; Jagtiani, T.; Chang, T.-L.; Liang, J.F. Anti-Cancer Activity of Camptothecin Nanocrystals Decorated by Silver Nanoparticles. J. Mater. Chem. B 2017, 5, 2692–2701. [Google Scholar] [CrossRef]
- Ruzycka-Ayoush, M.; Kowalik, P.; Kowalczyk, A.; Bujak, P.; Nowicka, A.M.; Wojewodzka, M.; Kruszewski, M.; Grudzinski, I.P. Quantum Dots as Targeted Doxorubicin Drug Delivery Nanosystems in Human Lung Cancer Cells. Cancer Nanotechnol. 2021, 12, 8. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Guo, Q.; Wang, Z.; Wang, H.; Yang, Y.; Huang, Y. TAT-Modified Nanosilver for Combating Multidrug-Resistant Cancer. Biomaterials 2012, 33, 6155–6161. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C.; Zhu, G.; You, M.; Han, D.; Jiang, J.; Yu, R.; et al. A Cell-Targeted, Size-Photocontrollable, Nuclear-Uptake Nanodrug Delivery System for Drug-Resistant Cancer Therapy. Nano Lett. 2015, 15, 457–463. [Google Scholar] [CrossRef]
- Muhammad, N.; Zhao, H.; Song, W.; Gu, M.; Li, Q.; Liu, Y.; Li, C.; Wang, J.; Zhan, H. Silver Nanoparticles Functionalized Paclitaxel Nanocrystals Enhance Overall Anti-Cancer Effect on Human Cancer Cells. Nanotechnology 2021, 32, 085105. [Google Scholar] [CrossRef] [PubMed]
- Dzwonek, M.; Załubiniak, D.; Piątek, P.; Cichowicz, G.; Męczynska-Wielgosz, S.; Stępkowski, T.; Kruszewski, M.; Więckowska, A.; Bilewicz, R. Towards Potent but Less Toxic Nanopharmaceuticals—Lipoic Acid Bioconjugates of Ultrasmall Gold Nanoparticles with an Anticancer Drug and Addressing Unit. RSC Adv. 2018, 8, 14947–14957. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Enríquez, S.; Juárez, O.; Rodríguez-Zavala, J.S.; Moreno-Sánchez, R. Multisite Control of the Crabtree Effect in Ascites Hepatoma Cells: Inhibition of Oxidative Phosphorylation by Glucose. Eur. J. Biochem. 2001, 268, 2512–2519. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Lee, S.J.; Yun, S.J.; Jang, J.-Y.; Kang, H.; Kim, K.; Choi, I.-H.; Park, S. Silver Nanoparticles Affect Glucose Metabolism in Hepatoma Cells through Production of Reactive Oxygen Species. Int. J. Nanomed. 2016, 11, 55–68. [Google Scholar] [CrossRef]
- Miranda, R.R.; Gorshkov, V.; Korzeniowska, B.; Kempf, S.J.; Neto, F.F.; Kjeldsen, F. Co-Exposure to Silver Nanoparticles and Cadmium Induce Metabolic Adaptation in HepG2 Cells. Nanotoxicology 2018, 12, 781–795. [Google Scholar] [CrossRef]
- Aueviriyavit, S.; Phummiratch, D.; Maniratanachote, R. Mechanistic Study on the Biological Effects of Silver and Gold Nanoparticles in Caco-2 Cells—Induction of the Nrf2/HO-1 Pathway by High Concentrations of Silver Nanoparticles. Toxicol. Lett. 2014, 224, 73–83. [Google Scholar] [CrossRef]
- Lu, W.; Kang, Y. Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev. Cell 2019, 49, 361–374. [Google Scholar] [CrossRef]
- Komai, K.; Niwa, Y.; Sasazawa, Y.; Simizu, S. Pirin Regulates Epithelial to Mesenchymal Transition Independently of Bcl3-Slug Signaling. FEBS Lett. 2015, 589, 738–743. [Google Scholar] [CrossRef]
- Fulbright, L.E.; Ellermann, M.; Arthur, J.C. The Microbiome and the Hallmarks of Cancer. PLOS Pathog. 2017, 13, e1006480. [Google Scholar] [CrossRef]
- Brzóska, K.; Wojewódzka, M.; Szczygiel, M.; Drzał, A.; Sniegocka, M.; Michalczyk-Wetula, D.; Biela, E.; Elas, M.; Kucińska, M.; Piotrowska-Kempisty, H.; et al. Silver Nanoparticles Inhibit Metastasis of 4T1 Tumor in Mice after Intragastric but Not Intravenous Administration. Materials 2022, 15, 3837. [Google Scholar] [CrossRef] [PubMed]
- Que, Y.M.; Fan, X.Q.; Lin, X.J.; Jiang, X.L.; Hu, P.P.; Tong, X.Y.; Tan, Q.Y. Size Dependent Anti-Invasiveness of Silver Nanoparticles in Lung Cancer Cells. RSC Adv. 2019, 9, 21134–21138. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Vennila, K.; Jayakumar, R.; Yusoff, A.R.M.; Hadibarata, T.; Palvannan, T. Phyto-Synthesis of Silver Nanoparticles Using Alternanthera tenella Leaf Extract: An Effective Inhibitor for the Migration of Human Breast Adenocarcinoma (MCF-7) Cells. Bioprocess Biosyst. Eng. 2016, 39, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Kavaz, D.; Umar, H.; Shehu, S. Synthesis, Characterization, Antimicrobial and Antimetastatic Activity of Silver Nanoparticles Synthesized from Ficus ingens Leaf. Artif. Cells Nanomed. Biotechnol. 2018, 46, S1193–S1203. [Google Scholar] [CrossRef] [PubMed]
- Mata, R.; Nakkala, J.R.; Sadras, S.R. Therapeutic Role of Biogenic Silver and Gold Nanoparticles against a DMH-Induced Colon Cancer Model. Biomater. Adv. 2023, 146, 213279. [Google Scholar] [CrossRef] [PubMed]
- Alinovi, R.; Goldoni, M.; Pinelli, S.; Ravanetti, F.; Galetti, M.; Pelosi, G.; De Palma, G.; Apostoli, P.; Cacchioli, A.; Mutti, A.; et al. Titanium Dioxide Aggregating Nanoparticles Induce Autophagy and Under-Expression of MicroRNA 21 and 30a in A549 Cell Line: A Comparative Study with Cobalt(II, III) Oxide Nanoparticles. Toxicol. In Vitro 2017, 42, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Eom, H.-J.; Chatterjee, N.; Lee, J.; Choi, J. Integrated MRNA and Micro RNA Profiling Reveals Epigenetic Mechanism of Differential Sensitivity of Jurkat T Cells to AgNPs and Ag Ions. Toxicol. Lett. 2014, 229, 311–318. [Google Scholar] [CrossRef]
- Oh, J.-H.; Son, M.-Y.; Choi, M.-S.; Kim, S.; Choi, A.; Lee, H.-A.; Kim, K.-S.; Kim, J.; Song, C.W.; Yoon, S. Integrative Analysis of Genes and MiRNA Alterations in Human Embryonic Stem Cells-Derived Neural Cells after Exposure to Silver Nanoparticles. Toxicol. Appl. Pharmacol. 2016, 299, 8–23. [Google Scholar] [CrossRef]
- Nagano, T.; Higashisaka, K.; Kunieda, A.; Iwahara, Y.; Tanaka, K.; Nagano, K.; Abe, Y.; Kamada, H.; Tsunoda, S.; Nabeshi, H.; et al. Liver-Specific MicroRNAs as Biomarkers of Nanomaterial-Induced Liver Damage. Nanotechnology 2013, 24, 405102. [Google Scholar] [CrossRef]
- Blanco, J.; Lafuente, D.; Gómez, M.; García, T.; Domingo, J.L.; Sánchez, D.J. Polyvinyl Pyrrolidone-Coated Silver Nanoparticles in a Human Lung Cancer Cells: Time- and Dose-Dependent Influence over P53 and Caspase-3 Protein Expression and Epigenetic Effects. Arch. Toxicol. 2017, 91, 651–666. [Google Scholar] [CrossRef]
- Choi, A.O.; Brown, S.E.; Szyf, M.; Maysinger, D. Quantum Dot-Induced Epigenetic and Genotoxic Changes in Human Breast Cancer Cells. J. Mol. Med. 2008, 86, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhang, J.; Hu, Q.; Xu, M.; Chen, Y.; Hu, G.; Zhao, M.; Liu, S. Silver Nanoparticle-Induced Hemoglobin Decrease Involves Alteration of Histone 3 Methylation Status. Biomaterials 2015, 70, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Surapaneni, S.K.; Bashir, S.; Tikoo, K. Gold Nanoparticles-Induced Cytotoxicity in Triple Negative Breast Cancer Involves Different Epigenetic Alterations Depending upon the Surface Charge. Sci. Rep. 2018, 8, 12295. [Google Scholar] [CrossRef]
- Zhao, X.; Toyooka, T.; Ibuki, Y. Silver Nanoparticle-Induced Phosphorylation of Histone H3 at Serine 10 Is Due to Dynamic Changes in Actin Filaments and the Activation of Aurora Kinases. Toxicol. Lett. 2017, 276, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lü, X.; Ma, J. Toxicity of Silver Nanoparticles to Human Dermal Fibroblasts on MicroRNA Level. J. Biomed. Nanotechnol. 2014, 10, 3304–3317. [Google Scholar] [CrossRef]
- Wong, B.S.E.; Hu, Q.; Baeg, G.H. Epigenetic Modulations in Nanoparticle-Mediated Toxicity. Food Chem. Toxicol. 2017, 109, 746–752. [Google Scholar] [CrossRef]
- Aftab, S.; Shah, A.; Nadhman, A.; Kurbanoglu, S.; Aysıl Ozkan, S.; Dionysiou, D.D.; Shukla, S.S.; Aminabhavi, T.M. Nanomedicine: An Effective Tool in Cancer Therapy. Int. J. Pharm. 2018, 540, 132–149. [Google Scholar] [CrossRef]
- Sunil Gowda, S.N.; Rajasowmiya, S.; Vadivel, V.; Banu Devi, S.; Celestin Jerald, A.; Marimuthu, S.; Devipriya, N. Gallic Acid-Coated Sliver Nanoparticle Alters the Expression of Radiation-Induced Epithelial-Mesenchymal Transition in Non-Small Lung Cancer Cells. Toxicol. In Vitro 2018, 52, 170–177. [Google Scholar] [CrossRef]
- Vila, L.; Marcos, R.; Hernández, A. Long-Term Effects of Silver Nanoparticles in Caco-2 Cells. Nanotoxicology 2017, 11, 771–780. [Google Scholar] [CrossRef]
- Nigam Joshi, P.; Agawane, S.; Athalye, M.C.; Jadhav, V.; Sarkar, D.; Prakash, R. Multifunctional Inulin Tethered Silver-Graphene Quantum Dots Nanotheranostic Module for Pancreatic Cancer Therapy. Mater. Sci. Eng. C 2017, 78, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Leite de Oliveira, R.; Hamm, A.; Mazzone, M. Growing Tumor Vessels: More than One Way to Skin a Cat—Implications for Angiogenesis Targeted Cancer Therapies. Mol. Asp. Med. 2011, 32, 71–87. [Google Scholar] [CrossRef]
- Sherwood, L.M.; Parris, E.E.; Folkman, J. Tumor Angiogenesis: Therapeutic Implications. N. Engl. J. Med. 1971, 285, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Folkman, J. Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis. Cell 1996, 86, 353–364. [Google Scholar] [CrossRef]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in Cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Alsaab, H.O.; Al-Hibs, A.S.; Alzhrani, R.; Alrabighi, K.K.; Alqathama, A.; Alwithenani, A.; Almalki, A.H.; Althobaiti, Y.S. Nanomaterials for Antiangiogenic Therapies for Cancer: A Promising Tool for Personalized Medicine. Int. J. Mol. Sci. 2021, 22, 1631. [Google Scholar] [CrossRef]
- Zhu, D.; Li, Y.; Zhang, Z.; Xue, Z.; Hua, Z.; Luo, X.; Zhao, T.; Lu, C.; Liu, Y. Recent Advances of Nanotechnology-Based Tumor Vessel-Targeting Strategies. J. Nanobiotechnol. 2021, 19, 435. [Google Scholar] [CrossRef]
- Banerjee, D.; Harfouche, R.; Sengupta, S. Nanotechnology-Mediated Targeting of Tumor Angiogenesis. Vasc. Cell 2011, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yao, Q.; Cao, F.; Liu, Q.; Liu, B.; Wang, X.-H. Silver Nanoparticles Inhibit the Function of Hypoxia-Inducible Factor-1 and Target Genes: Insight into the Cytotoxicity and Antiangiogenesis. Int. J. Nanomed. 2016, 11, 6679–6692. [Google Scholar] [CrossRef]
- Sheikpranbabu, S.; Kalishwaralal, K.; Venkataraman, D.; Eom, S.H.; Park, J.; Gurunathan, S. Silver Nanoparticles Inhibit VEGF-and IL-1β-Induced Vascular Permeability via Src Dependent Pathway in Porcine Retinal Endothelial Cells. J. Nanobiotechnol. 2009, 7, 8. [Google Scholar] [CrossRef]
- Gurunathan, S.; Lee, K.-J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic Properties of Silver Nanoparticles. Biomaterials 2009, 30, 6341–6350. [Google Scholar] [CrossRef] [PubMed]
- Kalishwaralal, K.; Banumathi, E.; Pandian, S.R.K.; Deepak, V.; Muniyandi, J.; Eom, S.H.; Gurunathan, S. Silver Nanoparticles Inhibit VEGF Induced Cell Proliferation and Migration in Bovine Retinal Endothelial Cells. Colloids Surf. B Biointerfaces 2009, 73, 51–57. [Google Scholar] [CrossRef]
- Kemp, M.M.; Kumar, A.; Mousa, S.; Dyskin, E.; Yalcin, M.; Ajayan, P.; Linhardt, R.J.; Mousa, S.A. Gold and Silver Nanoparticles Conjugated with Heparin Derivative Possess Anti-Angiogenesis Properties. Nanotechnology 2009, 20, 455104. [Google Scholar] [CrossRef]
- Baharara, J.; Namvar, F.; Mousavi, M.; Ramezani, T.; Mohamad, R. Anti-Angiogenesis Effect of Biogenic Silver Nanoparticles Synthesized Using Saliva officinalis on Chick Chorioalantoic Membrane (CAM). Molecules 2014, 19, 13498–13508. [Google Scholar] [CrossRef] [PubMed]
- Baharara, J.; Namvar, F.; Ramezani, T.; Hosseini, N.; Mohamad, R. Green Synthesis of Silver Nanoparticles Using Achillea biebersteinii Flower Extract and Its Anti-Angiogenic Properties in the Rat Aortic Ring Model. Molecules 2014, 19, 4624–4634. [Google Scholar] [CrossRef]
- Saeed, B.A.; Lim, V.; Yusof, N.A.; Khor, K.Z.; Rahman, H.S.; Abdul Samad, N. Antiangiogenic Properties of Nanoparticles: A Systematic Review. Int. J. Nanomed. 2019, 14, 5135–5146. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, Q.; Qin, L.; Cai, J.; Du, B. Gold Nanoparticles Inhibit VEGF165-Induced Migration and Tube Formation of Endothelial Cells via the Akt Pathway. BioMed Res. Int. 2014, 2014, 418624. [Google Scholar] [CrossRef]
- Jo, D.H.; Kim, J.H.; Lee, T.G.; Kim, J.H. Size, Surface Charge, and Shape Determine Therapeutic Effects of Nanoparticles on Brain and Retinal Diseases. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Kalimuthu, K.; Suresh Babu, R.; Venkataraman, D.; Bilal, M.; Gurunathan, S. Biosynthesis of Silver Nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 2008, 65, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Duraipandy, N.; Dharunya, G.; Lakra, R.; Korapatti, P.S.; Syamala Kiran, M. Fabrication of Plumbagin on Silver Nanoframework for Tunable Redox Modulation: Implications for Therapeutic Angiogenesis. J. Cell. Physiol. 2019, 234, 13110–13127. [Google Scholar] [CrossRef] [PubMed]
- Sakahashi, Y.; Higashisaka, K.; Isaka, R.; Izutani, R.; Seo, J.; Furuta, A.; Yamaki-Ushijima, A.; Tsujino, H.; Haga, Y.; Nakashima, A.; et al. Silver Nanoparticles Suppress Forskolin-Induced Syncytialization in BeWo Cells. Nanotoxicology 2023, 1–12. [Google Scholar] [CrossRef]
- Will, S.E.; Favaron, P.; Pavez, M.; Florentino, L.C.; Soares, D.; Oliveira, F.; Rici, R.E.G.; Miglino, M.; Alcântara, D. Bactericidal Silver Nanoparticles Present an Antiangiogenic Effect in the Chorioallantoic Membrane Model (CAM). In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex: Badajoz, Spain, 2012. [Google Scholar]
- Kumar, V.; Yadav, S.K. Plant-Mediated Synthesis of Silver and Gold Nanoparticles and Their Applications. J. Chem. Technol. Biotechnol. 2009, 84, 151–157. [Google Scholar] [CrossRef]
- Kang, K.; Lim, D.-H.; Choi, I.-H.; Kang, T.; Lee, K.; Moon, E.-Y.; Yang, Y.; Lee, M.-S.; Lim, J.-S. Vascular Tube Formation and Angiogenesis Induced by Polyvinylpyrrolidone-Coated Silver Nanoparticles. Toxicol. Lett. 2011, 205, 227–234. [Google Scholar] [CrossRef]
- Madhu, C.S.; Balaji, K.S.; Sharada, A.C.; Shankar, J. Anticancer Effect of Silver Nanoparticles (AgNP’s) from Decalepis hamiltonii: An in Vivo Approach. Mater. Today Proc. 2017, 4, 11947–11958. [Google Scholar] [CrossRef]
- Pavan, S.R.; Venkatesan, J.; Prabhu, A. Anticancer Activity of Silver Nanoparticles from the Aqueous Extract of Dictyota ciliolata on Non-Small Cell Lung Cancer Cells. J. Drug Deliv. Sci. Technol. 2022, 74, 103525. [Google Scholar] [CrossRef]
- Antony, J.J.; Sithika, M.A.A.; Joseph, T.A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. In Vivo Antitumor Activity of Biosynthesized Silver Nanoparticles Using Ficus Religiosa as a Nanofactory in DAL Induced Mice Model. Colloids Surf. B Biointerfaces 2013, 108, 185–190. [Google Scholar] [CrossRef]
- Pasha, A.; Kumbhakar, D.V.; Sana, S.S.; Ravinder, D.; Lakshmi, B.V.; Kalangi, S.K.; Pawar, S.C. Role of Biosynthesized Ag-NPs Using Aspergillus Niger (MK503444.1) in Antimicrobial, Anti-Cancer and Anti-Angiogenic Activities. Front. Pharmacol. 2022, 12, 812474. [Google Scholar] [CrossRef]
- Sangiliyandi, G. Antitumor Activity of Silver Nanoparticles in Dalton’s Lymphoma Ascites Tumor Model. Int. J. Nanomed. 2010, 2010, 753–762. [Google Scholar] [CrossRef]
- Manshian, B.B.; Jimenez, J.; Himmelreich, U.; Soenen, S.J. Presence of an Immune System Increases Anti-Tumor Effect of Ag Nanoparticle Treated Mice. Adv. Healthc. Mater. 2017, 6, 1601099. [Google Scholar] [CrossRef]
- He, Y.; Du, Z.; Ma, S.; Liu, Y.; Li, D.; Huang, H.; Jiang, S.; Cheng, S.; Wu, W.; Zhang, K.; et al. Effects of Green-Synthesized Silver Nanoparticles on Lung Cancer Cells in Vitro and Grown as Xenograft Tumors In Vivo. Int. J. Nanomed. 2016, 2016, 1879–1887. [Google Scholar] [CrossRef] [PubMed]
- Kovács, D.; Igaz, N.; Marton, A.; Rónavári, A.; Bélteky, P.; Bodai, L.; Spengler, G.; Tiszlavicz, L.; Rázga, Z.; Hegyi, P.; et al. Core–Shell Nanoparticles Suppress Metastasis and Modify the Tumour-Supportive Activity of Cancer-Associated Fibroblasts. J. Nanobiotechnol. 2020, 18, 18. [Google Scholar] [CrossRef]
- Chakraborty, B.; Pal, R.; Ali, M.; Singh, L.M.; Shahidur Rahman, D.; Kumar Ghosh, S.; Sengupta, M. Immunomodulatory Properties of Silver Nanoparticles Contribute to Anticancer Strategy for Murine Fibrosarcoma. Cell. Mol. Immunol. 2016, 13, 191–205. [Google Scholar] [CrossRef]
- Ferreira, L.A.B.; Garcia-Fossa, F.; Radaic, A.; Durán, N.; Fávaro, W.J.; de Jesus, M.B. Biogenic Silver Nanoparticles: In Vitro and in Vivo Antitumor Activity in Bladder Cancer. Eur. J. Pharm. Biopharm. 2020, 151, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Pucelik, B.; Sułek, A.; Borkowski, M.; Barzowska, A.; Kobielusz, M.; Dąbrowski, J.M. Synthesis and Characterization of Size- and Charge-Tunable Silver Nanoparticles for Selective Anticancer and Antibacterial Treatment. ACS Appl. Mater. Interfaces 2022, 14, 14981–14996. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, N.E.-A.; Hussein, M.H.; El-Sawah, A.A. Bio-Fabrication of Silver Nanoparticles by Phycocyanin, Characterization, in Vitro Anticancer Activity against Breast Cancer Cell Line and In Vivo Cytotxicity. Sci. Rep. 2017, 7, 10844. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhang, F.; Peng, Y.; Xie, T.; Wang, Y.; Lan, Y. Current Progress in Cancer Treatment Using Nanomaterials. Front. Oncol. 2022, 12, 930125. [Google Scholar] [CrossRef]
- Kovács, D.; Igaz, N.; Gopisetty, M.K.; Kiricsi, M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int. J. Mol. Sci. 2022, 23, 839. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, A.K.; Verma, N.; Kaushal, P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Front. Nanotechnol. 2022, 3, 801620. [Google Scholar] [CrossRef]
- Fageria, L.; Pareek, V.; Dilip, R.V.; Bhargava, A.; Pasha, S.S.; Laskar, I.R.; Saini, H.; Dash, S.; Chowdhury, R.; Panwar, J. Biosynthesized Protein-Capped Silver Nanoparticles Induce ROS-Dependent Proapoptotic Signals and Prosurvival Autophagy in Cancer Cells. ACS Omega 2017, 2, 1489–1504. [Google Scholar] [CrossRef] [PubMed]
- Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; Ain, N.U.; Ao, Q. Role of Capping Agents in the Application of Nanoparticles in Biomedicine and Environmental Remediation: Recent Trends and Future Prospects. J. Nanobiotechnol. 2020, 18, 172. [Google Scholar] [CrossRef] [PubMed]
Effects | Cell Line or Organism | Compound (Source, Particle Diameter) | Reference |
---|---|---|---|
Decreased mRNA expression of most ABC transporters (not ABCB1) | A549 | Bare AgNPs (C, 20 nm) | [182] |
HepG2 | Bare AgNPs (C, 20 nm) | [182] | |
Increased mRNA expression of most ABC transporters (not ABCB1) | SW620 | Bare AgNPs (C, 20 nm) | [182] |
Decreased ABCB1 mRNA expression | Colo 320 | Citrate-coated AgNPs (S, 28 nm) | [183] |
Decreased ABCB1 protein expression | Colo 320 | Citrate-coated AgNPs (S, 28 nm) | [183] |
A549 | Bare AgNPs (C, 20 nm) | [182] | |
SW620 | Bare AgNPs (C, 20 nm) | [182] | |
Decreased ABCB1 efflux activity | MDCKII–MDR1 | AgNPs (S, 23 nm) | [184] |
Colo 320 | Citrate-coated AgNPs (S, 28 nm) | [183] | |
HepG2 | AgNPs (S, 1–2 nm) | [185] | |
HepG2 | AgNPs (S, 1–2 nm) + Cd | [185] | |
HepG2 | AgNPs (S, 1–2 nm) + Hg | [185] | |
A549 | CPT-Ag NC (S, 300–900 nm) | [186] | |
Hela | CPT-Ag NC (S, 300–900 nm) | [186] | |
MCF7 | CPT-Ag NC (S, 300–900 nm) | [186] | |
MDAMB231 | CPT/Ag NC (S, 300–900 nm) | [186] | |
SKBR3 | CPT/Ag NC (S, 300–900 nm) | [186] | |
MCF-7/KCR | Citrate-coated AgNPs (S, 75 nm) | [112] | |
HepG2 | Bare AgNPs (C, 20 nm) | [182] | |
SW620 | Bare AgNPs (C, 20 nm) | [182] | |
Daphnia magna juveniles | AgNPs (S, 23 nm and 27 nm) | [184] | |
Chemosenzitizing effect | Colo 320 | Citrate-coated AgNPs (S, 28 nm) | [183] |
HepG2 | AgNPs (S, 1–2 nm) + Cd | [185] | |
HepG2 | AgNPs (S, 1–2 nm) + Hg | [185] | |
A549 | CPT-Ag NC (S, 300–900 nm) | [186] | |
Hela | CPT-Ag NC (S, 300–900 nm) | [186] | |
MCF7 | CPT-Ag NC (S, 300–900 nm) | [186] | |
SKBR3 | CPT-Ag NC (S, 300–900 nm) | [186] | |
MDAMB231 | CPT/Ag NC (S, 300–900 nm) | [186] | |
MCF-7/KCR | Citrate-coated AgNPs (S, 75 nm) | [112] | |
A549 | Ag/In/Zn/S QDs-FA-DOX (S, 15.1–22.5 nm) | [187] |
Type of Synthesis | Characterization of Nanoparticles | Angiogenesis | References | |||
---|---|---|---|---|---|---|
Size | Shape | |||||
Range | Average | Methodology | Effects | |||
Antiangiogenic Effects | ||||||
Green synthesis using Salvia officinalis | 1–40 nm | 16.5 ± 1.2 nm | spherical, pentagonal | in ovo CAM | AgNPs reduced amount of total hemoglobin, the number, and the lengths of the vessels. | [232] |
Green synthesis using Achillea biebersteinii | 5–35 nm | 12 ± 2 nm | hexagonal, pentagonal, and spherical | rat aortic ring model | AgNPs (200 μg/mL) reduce at 50% the length and number of vessel-like structures. | [233] |
Green synthesis using Decalepis hamiltonii | heterogeneous in size | heterogeneous | Erlich Ascites murine carcinoma model | Significant changes in the neovasculature were observed in the treated mice; it means that AgNPs have the antiangiogenic effect. | [243] | |
Green synthesis using Dictyota ciliolata | n. s. | 100 nm | spherical | in ovo CAM | AgNPs caused the inhibition of tertiary blood vessel formation in CAM assay. | [244] |
Green synthesis using Ficus religiosa | 5–35 nm | n. s. | spherical | Dalton’s ascites lymphoma mice model | Antiangiogenesis occurs afer AgNPs treatment of DAL tumor cells. Anti-angiogenic activity was confirmed by observing vessel development. | [245] |
Biosynthesis using Aspergillus niger SAP2211 | SEM 9.2–50 nm | SEM 13.53 ± 4.08 nm | SEM spherical, oval | in ovo CAM inoculated with HeLa cells | AgNPs reduced intercapillary network and inhibited the angiogenesis. No significant changes were observed in AgNPs-treated normal CAM, but the synthesized biogenic AgNPs showed a dose-dependent significant decrease in vascularization of CAM inoculated by HeLa cells. | [246] |
TEM 8–55 nm | TEM 30.31 ± 3.36 nm | TEM different morphologies | ||||
Biosynthesis using Bacillus licheniformis | 40–50 nm | 50 nm | spherical | porcine retinal endothelial cells | AgNPs show inhibitory effect on the vascular permeability induced by VEGF and IL-1β through inactivation of Src kinase pathway. AgNPs blocked the Src-phosphorylation at Y419. | [228] |
Biosynthesis using Bacillus licheniformis | 40–50 nm | 50 nm | spherical | bovine retinal endothelial cells | 500 nM of AgNPs inhibit VEGF and IL-1β-induced cell proliferation and migration. | [230] |
500 nM silver nanoparticles decreased viability to 50% of initial via PI3K/Akt-dependent pathway. Inactivation of Akt by silver nanoparticles is associated with caspase-3 activation and DNA fragmentation. It means that Ag NPs activated the process of apoptosis. | ||||||
Biosynthesis using Bacillus licheniformis | 40–50 nm | 50 nm | spherical | bovine retinal endothelial cells such as PEDF | AgNPs could inhibit VEGF, cell proliferation, migration, and capillary-like tube formation. | [229] |
C57BL/6 mouse Matrigel plug assay | AgNPs strongly inhibited the vessel number and the formation of new blood microvessels induced by VEGF. AgNPs could inhibit the activation of PI3K/Akt signaling pathways. | |||||
Plumbagin caged silver nanoparticles | n. s. | 150 nm | face-centered cubic crystalline nature | endothelial tube formation assay | AgNPs exhibited poor tube formation and absence of cell–cell contact under VEGF stimulated condition. | [238] |
CAM | AgNPs under VEGF-stimulated conditions reduced number of blood vessels and so inhibited angiogenesis. | |||||
chick aorting ring sprout formation assay | AgNPs reduced sprout formation. | |||||
endothelial cells | AgNPs modulated the VEGF activity by PAR modification which leads to inhibition of angiogenesis. | |||||
bovine retinal endothelial cells | AgNPs could inhibit the VEGF-induced migration, proliferation, and capillary-like tube formation | |||||
mouse Matrigel plug assay | AgNPs effectively inhibited the formation of new blood microvessels induced by VEGF | |||||
Reduction in AgNO3 with diaminopyridinyl-derivatized heparin polysaccharides (Ag DAPHP) | 10–30 nm | n. s. | polydisperse | CAM | AgNPs inhibited FGF-2-induced angiogenesis with an enhanced antiangiogenesis efficacy with the conjugation to Ag DAPHP as compared with glucose conjugation. AgNPs enhanced the antiangiogenic effects compared with DAPHP alone and glucose-reduced AgNPs. Free Ags are toxic, but glucose and HP impart biocompatibility to these particles. Conjugated Ag to HP or HA showed improved antiangiogenesis efficacy as compared with Ag–glucose. | [231] |
mouse matrigel model | AgNPs shown antiangiogenesis efficacy in the FGF-2 mouse Matrigel and CAM model. | |||||
Obtained from Nanjing XFNANO Materials Tech Co. Ltd. | 10 nm | n. s. | spherical | MCF7, HeLa, human primary chondrocytes, and the human lymphoma cell lines Raji and Daudi | AgNPs attenuate HIF-1α and HIF-2α accumulation and suppress the transcriptional activity of HIF, resulting in inhibition of the expression of downstream target genes VEGF-A and GLUT1. The consequence is also suppression of tube formation during angiogenesis. AgNPs also interfered with the accumulation of HIF-1α protein and the induction of the endogenous HIF target genes, VEGF-A and GLUT1. AgNPs disrupt HIF signaling pathway and downstream VEGF-A function. | [227] |
Matrigel | 400 µg/mL AgNP completely inhibited tube formation of HUVEC on Matrigel. AgNPs block in vitro angiogenesis by inhibiting tube formation. | |||||
Pro-angiogenic effect | ||||||
Polyvinylpyrrolidone (PVP)-coated AgNPs | n. s. | 2.3 nm | spherical | SVEC4-10 cells | AgNPs induced production of ROS, production of angiogenic factors (VEGF and nitric oxide, support the activation of Akt, FAK, p38, ERK1/2, and p38, connected with VEGF-receptor-mediated signaling pathway. | [242] |
B16F10 melanomas injected into C57BL/6 mice | AgNP caused, in a concentration-dependent manner, increasing angiogenesis around tumors and the content of hemoglobin. | |||||
C57BL/6 mouse Matrigel plug assay | AgNP-containing Matrigel stimulated angiogenesis and increased the infiltration of endothelial cells and hemoglobin content. |
AgNPs Features | Exposure Duration | Tumor Model | Antitumor Effects | Comments and References | |
---|---|---|---|---|---|
Size (nm) | Surface Coating | ||||
n.r. | Biogenic (F. oxysporum) | 3 weeks of I.Ve doses | Bladder cancer-induced mice | 0.05 mg/mL led to 57% tumor regression. | [252] |
74 | Citrate | I.P injection twice a week | CT26 tumor-induced in mouse models | 2 mg/kg twice a week (bw) led to a significant decrease in tumor growth kinetics compared with nontreated control animals. | Treatment with AgNPs resulted in temporary (>60 days) remission of CT26 tumors [253] |
9–25 | Biogenic (N. linckia pigment extract) | 10 days daily I.P injections | EAC tumor-induced mouse model | 5 mg/kg (bw) inhibited tumor development (volume, number of tumor cells, and weight). | No histopathological alterations in major organs (liver, spleen, and kidney) after treatment [254] |
50 | Biogenic (B. licheniformis) | 15 days I.P injection | DLA tumor–induced mouse model | 500 nM led to a reduction in DLA cell count. | Increase in survival time by 50% [247] |
25 | PVP | 10 weeks I.V injection 3 times/week | TNBC tumor-induced mice model | 6 mg/kg (bw) caused significant tumor development. | 100% survival rate in AgNP-treated mice and only 30% in control groups [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takáč, P.; Michalková, R.; Čižmáriková, M.; Bedlovičová, Z.; Balážová, Ľ.; Takáčová, G. The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life 2023, 13, 466. https://doi.org/10.3390/life13020466
Takáč P, Michalková R, Čižmáriková M, Bedlovičová Z, Balážová Ľ, Takáčová G. The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life. 2023; 13(2):466. https://doi.org/10.3390/life13020466
Chicago/Turabian StyleTakáč, Peter, Radka Michalková, Martina Čižmáriková, Zdenka Bedlovičová, Ľudmila Balážová, and Gabriela Takáčová. 2023. "The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future?" Life 13, no. 2: 466. https://doi.org/10.3390/life13020466
APA StyleTakáč, P., Michalková, R., Čižmáriková, M., Bedlovičová, Z., Balážová, Ľ., & Takáčová, G. (2023). The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life, 13(2), 466. https://doi.org/10.3390/life13020466