Analysis of a Chronic Lateral Ankle Instability Model in the Rat: Conclusions and Suggestions for Future Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgery
2.1.1. Preparation
2.1.2. Surgical Procedure
2.1.3. Postoperative Care
2.2. In-Vivo Micro CT
2.3. Clinical Observation
2.4. Ex-Vivo Micro CT
2.5. Macroscopic Analysis
2.6. Histological Analysis
2.7. Outcome Measures
2.8. Statistical Analysis
3. Results
3.1. In-Vivo Micro CT
3.2. Clinical Observation
3.3. Macroscopic Analysis
3.4. Ex-Vivo Micro CT
3.5. Histopathological Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drakos, M.; Hansen, O.; Kukadia, S. Ankle Instability. Foot Ankle Clin. 2022, 27, 371–384. [Google Scholar] [CrossRef]
- Chang, S.H.; Morris, B.L.; Saengsin, J.; Tourné, Y.; Guillo, S.; Guss, D.; Digiovanni, C.W. Diagnosis and Treatment of Chronic Lateral Ankle Instability: Review of Our Biomechanical Evidence. J. Am. Acad. Orthop. Surg. 2021, 29, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Hunt, K.J.; Fuld, R.S.; Sutphin, B.S.; Pereira, H.; D’Hooghe, P. Return to sport following lateral ankle ligament repair is under-reported: A systematic review. J. ISAKOS 2017, 2, 234–240. [Google Scholar] [CrossRef]
- Vopat, M.L.; Tarakemeh, A.; Morris, B.; Hassan, M.; Garvin, P.; Zackula, R.; Mullen, S.; Schroeppel, P.; Vopat, B.G. Early versus Delayed Mobilization Post-Operative Protocols for Primary Lateral Ankle Ligament Repair: A Systematic Review and Meta-analysis. Foot Ankle Orthop. 2019, 4, 2473011419S0007. [Google Scholar] [CrossRef]
- Machado, M.; Amado, P.; Babulal, J. Ankle instability—Review and new trends. J. Orthop. Trauma Rehabil. 2021, 28, 221049172110355. [Google Scholar] [CrossRef]
- Bestwick-Stevenson, T.; Wyatt, L.A.; Palmer, D.; Ching, A.; Kerslake, R.; Coffey, F.; Batt, M.E.; Scammell, B.E. Incidence and risk factors for poor ankle functional recovery, and the development and progression of posttraumatic ankle osteoarthritis after significant ankle ligament injury (SALI): The SALI cohort study protocol. BMC Musculoskelet. Disord. 2021, 22, 362. [Google Scholar] [CrossRef] [PubMed]
- Tourné, Y.; Besse, J.-L.; Mabit, C. Chronic ankle instability. Which tests to assess the lesions? Which therapeutic options? Orthop. Traumatol. Surg. Res. 2010, 96, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Dromzée, E.; Granger, B.; Rousseau, R.; Steltzlen, C.; Stolz, H.; Khiami, F. Long-Term Results for Treatment of Chronic Ankle Instability with Fibular Periosteum Ligamentoplasty and Extensor Retinaculum Flap. J. Foot Ankle Surg. 2019, 58, 674–678. [Google Scholar] [CrossRef]
- Cho, B.-K.; Kim, Y.-M.; Shon, H.-C.; Park, K.-J.; Cha, J.-K.; Ha, Y.-W. A Ligament Reattachment Technique for High-Demand Athletes with Chronic Ankle Instability. J. Foot Ankle Surg. 2015, 54, 7–12. [Google Scholar] [CrossRef]
- Porter, D.A.; Kamman, K.A. Chronic Lateral Ankle Instability. Foot Ankle Clin. 2018, 23, 539–554. [Google Scholar] [CrossRef]
- Song, Y.; Li, H.; Sun, C.; Zhang, J.; Gui, J.; Guo, Q.; Song, W.; Duan, X.; Wang, X.; Wang, X.; et al. Clinical Guidelines for the Surgical Management of Chronic Lateral Ankle Instability: A Consensus Reached by Systematic Review of the Available Data. Orthop. J. Sport. Med. 2019, 7, 232596711987385. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.C.; Calder, J. Ability to return to sports after early lateral ligament repair of the ankle in 147 elite athletes. Knee Surg. Sport Traumatol. Arthrosc. 2023, 31, 4519–4525. [Google Scholar] [CrossRef] [PubMed]
- DiGiovanni, B.F.; Partal, G.; Baumhauer, J.F. Acute ankle injury and chronic lateral instability in the athlete. Clin. Sports Med. 2004, 23, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Delahunt, E.; Bleakley, C.M.; Caulfield, B.; Docherty, C.L.; Fong, D.T.-P.; Fourchet, F.; Hertel, J.; Hiller, C.E.; Kaminski, T.W.; et al. Selection Criteria for Patients with Chronic Ankle Instability in Controlled Research: A Position Statement of the International Ankle Consortium. J. Athl. Train. 2014, 49, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Yasui, T.; Taketomi, S.; Matsumoto, T.; Kim-Kaneyama, J.R.; Omiya, T.; Hosaka, Y.; Inui, H.; Omata, Y.; Yamagami, R.; et al. Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability. Osteoarthr. Cartil. 2016, 24, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Wang, J.; Chung, K.; Chung, J.M. A surgical ankle sprain pain model in the rat: Effects of morphine and indomethacin. Neurosci. Lett. 2008, 442, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Huebner, J.L.; DeGroot, J.; Bendele, A. The OARSI histopathology initiative—Recommendations for histological assessments of osteoarthritis in the guinea pig. Osteoarthr. Cartil. 2010, 18, S35–S52. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.; Jacobsen, S.; Walters, M.; Lindegaard, C. A detailed macroscopic scoring system for experimental post-traumatic Osteoarthritis in the equine middle carpal joint. BMC Res. Notes 2022, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Pritzker, K.P.H.; Gay, S.; Jimenez, S.A.; Ostergaard, K.; Pelletier, J.-P.; Revell, P.A.; Salter, D.; Van Den Berg, W.B. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthr. Cartil. 2006, 14, 13–29. [Google Scholar] [CrossRef]
- Koo, S.T.; Lim, K.S.; Chung, K.; Ju, H.; Chung, J.M. Electroacupuncture-induced analgesia in a rat model of ankle sprain pain is mediated by spinal alpha-adrenoceptors. Pain 2008, 135, 11–19. [Google Scholar] [CrossRef]
- Koo, S.T.; Park, Y.I.; Lim, K.S.; Chung, K.; Chung, J.M. Acupuncture analgesia in a new rat model of ankle sprain pain. Pain 2002, 99, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.D.; Sommer, S.L.; Meyers, R.C.; Valdivia, J.; Nolan, M.W.; Lascelles, B.D.X. A novel device to measure static hindlimb weight-bearing forces in pronograde rodents. J. Neurosci. Methods 2019, 328, 108405. [Google Scholar] [CrossRef] [PubMed]
- Mogil, J.S.; Graham, A.C.; Ritchie, J.; Hughes, S.F.; Austin, J.-S.; Schorscher-Petcu, A.; Langford, D.J.; Bennett, G.J. Hypolocomotion, asymmetrically directed behaviors (licking, lifting, flinching, and shaking) and dynamic weight bearing (gait) changes are not measures of neuropathic pain in mice. Mol. Pain 2010, 6, 34. [Google Scholar] [CrossRef]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods Used to Evaluate Pain Behaviors in Rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Tappe-Theodor, A.; Kuner, R. Studying ongoing and spontaneous pain in rodents—Challenges and opportunities. Eur. J. Neurosci. 2014, 39, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, G.; Nagakura, Y.; Takeshita, N.; Shimizu, Y. Efficacy of drugs with different mechanisms of action in relieving spontaneous pain at rest and during movement in a rat model of osteoarthritis. Eur. J. Pharmacol. 2014, 738, 111–117. [Google Scholar] [CrossRef]
- Farah, Z.; Fan, H.; Liu, Z.; He, J.-Q. A concise review of common animal models for the study of limb regeneration. Organogenesis 2016, 12, 109–118. [Google Scholar] [CrossRef]
- Bouxsein, M.L.; Boyd, S.K.; Christiansen, B.A.; Guldberg, R.E.; Jepsen, K.J.; Müller, R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 2010, 25, 1468–1486. [Google Scholar] [CrossRef]
SG | Rat | Macroscopicscore (Medial Tibia) | Mean [Min–Max] |
---|---|---|---|
SG1 (Right side) | R1C1 | 3 | |
R2C1 | 0 | ||
R1C2 | 0 | ||
R2C2 | 2 | ||
R1C3 | 1 | ||
R2C3 | 0 | ||
R1C4 | 2 | ||
R2C4 | 2 | 1.3 [0–3] | |
SG2 (Left side) | R1C1 | 0 | |
R2C1 | 2 | ||
R1C2 | 0 | ||
R2C2 | 0 | ||
R1C3 | 0 | ||
R2C3 | 0 | ||
R1C4 | 0 | ||
R2C4 | 1 | 0.4 [0–2] | |
SG3 (Control group) | R3C1 | 1 | |
0 | |||
R3C2 | 0 | ||
0 | |||
R3C3 | 0 | ||
0 | |||
R3C4 | 0 | ||
0 | 0.1 [0, 1] |
SG | Rat | Macroscopic Score (Total Score) | Mean [Min–Max] |
---|---|---|---|
SG1 (Right side) | R1C1 | 6 | |
R2C1 | 2 | ||
R1C2 | 0 | ||
R2C2 | 4 | ||
R1C3 | 3 | ||
R2C3 | 2 | ||
R1C4 | 3 | ||
R2C4 | 3 | 2.9 [0–6] | |
SG2 (Left side) | R1C1 | 2 | |
R2C1 | 4 | ||
R1C2 | 1 | ||
R2C2 | 1 | ||
R1C3 | 1 | ||
R2C3 | 0 | ||
R1C4 | 0 | ||
R2C4 | 2 | 1.4 [0–4] | |
SG3 (Control rats) | R3C1 | 2 | |
1 | |||
R3C2 | 1 | ||
0 | |||
R3C3 | 2 | ||
1 | |||
R3C4 | 1 | ||
0 | 1 [0–2] |
SG | Rat | BV/TV | Mean [Min–Max] |
---|---|---|---|
SG1 (Right talus) | R1C1 | 11.3 | |
R2C1 | 10.3 | ||
R1C2 | 10.3 | ||
R2C2 | 11.0 | ||
R1C3 | 8.7 | ||
R2C3 | 10.1 | ||
R1C4 | 5.3 | ||
R2C4 | 7.2 | 9.3 [5.3–11.3] | |
SG2 (Left talus) | R1C1 | 11.5 | |
R2C1 | 9.4 | ||
R1C2 | 11.0 | ||
R2C2 | 9.2 | ||
R1C3 | 8.3 | ||
R2C3 | 9.9 | ||
R1C4 | 8.7 | ||
R2C4 | 10.4 | 9.8 [8.3–11.5] | |
SG3 (Talus on both sides) | R3C1 | 6.3 | |
9.7 | |||
R3C2 | 7.6 | ||
10.2 | |||
R3C3 | 10.7 | ||
8.5 | |||
R3C4 | 11.8 | ||
7.9 | 9 [6.3–11.8] |
SG | Rat | Microscopic Score | Mean [Min–Max] |
---|---|---|---|
SG1 (Right talus) | R1C1 | 5 | |
R2C1 | 0 | ||
R1C2 | 8 | ||
R2C2 | 3 | ||
R1C3 | 0 | ||
R2C3 | 0 | ||
R1C4 | 0 | ||
R2C4 | 8 | 3.0 [0–8] | |
SG2 (Left talus) | R1C1 | 0 | |
R2C1 | 0 | ||
R1C2 | 0 | ||
R2C2 | 0 | ||
R1C3 | 3 | ||
R2C3 | 0 | ||
R1C4 | 0 | ||
R2C4 | 0 | 0.4 [0–3] | |
SG3 (Talus on both sides) | R3C1 | 0 | |
0 | |||
R3C2 | 0 | ||
0 | |||
R3C3 | 0 | ||
0 | |||
R3C4 | 0 | ||
3 | 0.4 [0–3] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliba, I.; Bachy-Razzouk, M.; Bensidhoum, M.; Hoc, T.; Potier, E.; Vialle, R.; Hardy, A. Analysis of a Chronic Lateral Ankle Instability Model in the Rat: Conclusions and Suggestions for Future Research. Life 2024, 14, 829. https://doi.org/10.3390/life14070829
Saliba I, Bachy-Razzouk M, Bensidhoum M, Hoc T, Potier E, Vialle R, Hardy A. Analysis of a Chronic Lateral Ankle Instability Model in the Rat: Conclusions and Suggestions for Future Research. Life. 2024; 14(7):829. https://doi.org/10.3390/life14070829
Chicago/Turabian StyleSaliba, Ibrahim, Manon Bachy-Razzouk, Morad Bensidhoum, Thierry Hoc, Esther Potier, Raphaël Vialle, and Alexandre Hardy. 2024. "Analysis of a Chronic Lateral Ankle Instability Model in the Rat: Conclusions and Suggestions for Future Research" Life 14, no. 7: 829. https://doi.org/10.3390/life14070829
APA StyleSaliba, I., Bachy-Razzouk, M., Bensidhoum, M., Hoc, T., Potier, E., Vialle, R., & Hardy, A. (2024). Analysis of a Chronic Lateral Ankle Instability Model in the Rat: Conclusions and Suggestions for Future Research. Life, 14(7), 829. https://doi.org/10.3390/life14070829