A New Postoperative Stability Score to Predict Loss of Reduction in Intertrochanteric Fractures in Elderly Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Data Collection and Assessments
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gullberg, B.; Johnell, O.; Kanis, J.A. World-wide projections for hip fracture. Osteoporos. Int. 1997, 7, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Campion, G.; Melton, L.J., 3rd. Hip fractures in the elderly: A world-wide projection. Osteoporos. Int. 1992, 2, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Burge, R.; Dawson-Hughes, B.; Solomon, D.H.; Wong, J.B.; King, A.; Tosteson, A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 2007, 22, 465–475. [Google Scholar] [CrossRef]
- Maffulli, N.; Aicale, R. Proximal Femoral Fractures in the Elderly: A Few Things to Know, and Some to Forget. Medicina 2022, 58, 1314. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Zhang, G.Y.; Liu, T.; Zhang, X.L. A meta-analysis of percutaneous compression plate versus sliding hip screw for the management of intertrochanteric fractures of the hip. J. Trauma Acute Care Surg. 2012, 72, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Jamal Sepah, Y.; Umer, M.; Khan, A.; Ullah Khan Niazi, A. Functional outcome, mortality and in-hospital complications of operative treatment in elderly patients with hip fractures in the developing world. Int. Orthop. 2010, 34, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Franzo, A.; Francescutti, C.; Simon, G. Risk factors correlated with post-operative mortality for hip fracture surgery in the elderly: A population-based approach. Eur. J. Epidemiol. 2005, 20, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Kuo, Y.J.; Hung, S.W.; Wen, T.W.; Chien, P.C.; Chiang, M.H.; Maffulli, N.; Lin, C.Y. Loss of skeletal muscle mass can be predicted by sarcopenia and reflects poor functional recovery at one year after surgery for geriatric hip fractures. Injury 2021, 52, 3446–3452. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, M.; Miranda, L.; Oliva, F.; Migliorini, F.; Pezzuti, G.; Maffulli, N. Haemoglobin and transfusions in elderly patients with hip fractures: The effect of a dedicated orthogeriatrician. J. Orthop. Surg. Res. 2021, 16, 387. [Google Scholar] [CrossRef]
- Adeyemi, A.; Delhougne, G. Incidence and Economic Burden of Intertrochanteric Fracture: A Medicare Claims Database Analysis. JB JS Open Access 2019, 4, e0045. [Google Scholar] [CrossRef]
- Handoll, H.H.; Parker, M.J. Conservative versus operative treatment for hip fractures in adults. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef] [PubMed]
- Dávid, A.; von der Heyde, D.; Pommer, A. Therapeutic possibilities in trochanteric fractures. Safe--fast--stable. Orthopade 2000, 29, 294–301. [Google Scholar] [PubMed]
- Mattisson, L.; Bojan, A.; Enocson, A. Epidemiology, treatment and mortality of trochanteric and subtrochanteric hip fractures: Data from the Swedish fracture register. BMC Musculoskelet. Disord. 2018, 19, 369. [Google Scholar] [CrossRef] [PubMed]
- Marsillo, E.; Pintore, A.; Asparago, G.; Oliva, F.; Maffulli, N. Cephalomedullary nailing for reverse oblique intertrochanteric fractures 31A3 (AO/OTA). Orthop. Rev. 2022, 14, 38560. [Google Scholar] [CrossRef]
- Gargano, G.; Poeta, N.; Oliva, F.; Migliorini, F.; Maffulli, N. Zimmer Natural Nail and ELOS nails in pertrochanteric fractures. J. Orthop. Surg. Res. 2021, 16, 509. [Google Scholar] [CrossRef] [PubMed]
- Schipper, I.B.; Marti, R.K.; van der Werken, C. Unstable trochanteric femoral fractures: Extramedullary or intramedullary fixation. Review of literature. Injury 2004, 35, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.J.; Handoll, H.H. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef]
- Tucker, A.; Donnelly, K.J.; Rowan, C.; McDonald, S.; Foster, A.P. Is the Best Plate a Nail? A Review of 3230 Unstable Intertrochanteric Fractures of the Proximal Femur. J. Orthop. Trauma 2018, 32, 53–60. [Google Scholar] [CrossRef]
- Ma, K.L.; Wang, X.; Luan, F.J.; Xu, H.T.; Fang, Y.; Min, J.; Luan, H.X.; Yang, F.; Zheng, H.; He, S.J. Proximal femoral nails antirotation, Gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur: A meta-analysis. Orthop. Traumatol. Surg. Res. 2014, 100, 859–866. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, Y.; Shen, Y.; Cui, Z. Antirotation proximal femoral nail versus dynamic hip screw for intertrochanteric fractures: A meta-analysis of randomized controlled studies. Orthop. Traumatol. Surg. Res. 2013, 99, 377–383. [Google Scholar] [CrossRef]
- Takigami, I.; Matsumoto, K.; Ohara, A.; Yamanaka, K.; Naganawa, T.; Ohashi, M.; Date, K.; Shmizu, K. Treatment of trochanteric fractures with the PFNA (proximal femoral nail antirotation) nail system-report of early results. Bull. NYU Hosp. Jt. Dis. 2008, 66, 276–279. [Google Scholar] [PubMed]
- Zhang, W.; Antony Xavier, R.P.; Decruz, J.; Chen, Y.D.; Park, D.H. Risk factors for mechanical failure of intertrochanteric fractures after fixation with proximal femoral nail antirotation (PFNA II): A study in a Southeast Asian population. Arch. Orthop. Trauma Surg. 2021, 141, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Avila, J.; Madden, K.; Simunovic, N.; Bhandari, M. Tip to apex distance in femoral intertrochanteric fractures: A systematic review. J. Orthop. Sci. 2013, 18, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Jiamton, C.; Boernert, K.; Babst, R.; Beeres, F.J.; Link, B.C. The nail-shaft-axis of the of proximal femoral nail antirotation (PFNA) is an important prognostic factor in the operative treatment of intertrochanteric fractures. Arch. Orthop. Trauma Surg. 2018, 138, 339–349. [Google Scholar] [CrossRef]
- Kuzyk, P.R.; Zdero, R.; Shah, S.; Olsen, M.; Waddell, J.P.; Schemitsch, E.H. Femoral head lag screw position for cephalomedullary nails: A biomechanical analysis. J. Orthop. Trauma 2012, 26, 414–421. [Google Scholar] [CrossRef]
- Chang, S.M.; Hou, Z.Y.; Hu, S.J.; Du, S.C. Intertrochanteric Femur Fracture Treatment in Asia: What We Know and What the World Can Learn. Orthop. Clin. N. Am. 2020, 51, 189–205. [Google Scholar] [CrossRef]
- Chang, S.M.; Zhang, Y.Q.; Ma, Z.; Li, Q.; Dargel, J.; Eysel, P. Fracture reduction with positive medial cortical support: A key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch. Orthop. Trauma Surg. 2015, 135, 811–818. [Google Scholar] [CrossRef]
- Baumgaertner, M.R.; Curtin, S.L.; Lindskog, D.M.; Keggi, J.M. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J. Bone Jt. Surg. Am. 1995, 77, 1058–1064. [Google Scholar] [CrossRef]
- Gotfried, Y. The Gotfried (Nonanatomic, Closed) Reduction of Unstable Subcapital Femoral Fractures. Tech. Orthop. 2012, 27, 259–261. [Google Scholar] [CrossRef]
- Gotfried, Y.; Kovalenko, S.; Fuchs, D. Nonanatomical reduction of displaced subcapital femoral fractures (Gotfried reduction). J. Orthop. Trauma 2013, 27, e254–e259. [Google Scholar] [CrossRef]
- Mao, W.; Ni, H.; Li, L.; He, Y.; Chen, X.; Tang, H.; Dong, Y. Comparison of Baumgaertner and Chang reduction quality criteria for the assessment of trochanteric fractures. Bone Jt. Res. 2019, 8, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Landau, Y.; Gutman, G.; Ougortsin, V.; Chechick, A.; Shazar, N. Radiological evaluation of intertrochanteric fracture fixation by the proximal femoral nail. Injury 2012, 43, 856–863. [Google Scholar] [CrossRef]
- Parker, M.J. Cutting-out of the dynamic hip screw related to its position. J. Bone Jt. Surg. Br. 1992, 74, 625. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.F.; Cabanela, M.E.; Russell, T.A.; Swiontkowski, M.F.; Winquist, R.A.; Zuckerman, J.D.; Schmidt, A.H.; Koval, K.J. Fractures of the proximal part of the femur. Instr. Course Lect. 1995, 44, 227–253. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, K.K.; Fang, C.K.; Chen, C.M.; Su, Y.P.; Wu, H.F.; Chiu, F.Y. Risk factors in cutout of sliding hip screw in intertrochanteric fractures: An evaluation of 937 patients. Int. Orthop. 2010, 34, 1273–1276. [Google Scholar] [CrossRef] [PubMed]
- Kashigar, A.; Vincent, A.; Gunton, M.J.; Backstein, D.; Safir, O.; Kuzyk, P.R. Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Bone Jt. J. 2014, 96, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Palm, H.; Jacobsen, S.; Sonne-Holm, S.; Gebuhr, P.; Hip Fracture Study Group. Integrity of the lateral femoral wall in intertrochanteric hip fractures: An important predictor of a reoperation. J. Bone Jt. Surg. Am. 2007, 89, 470–475. [Google Scholar]
- Hsu, C.E.; Shih, C.M.; Wang, C.C.; Huang, K.C. Lateral femoral wall thickness. A reliable predictor of post-operative lateral wall fracture in intertrochanteric fractures. Bone Jt. J. 2013, 95, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wong, D.W.C.; Chen, X.; Chen, Y.; Li, P. Risk of proximal femoral nail antirotation (PFNA) implant failure upon different lateral femoral wall thickness in intertrochanteric fracture: A finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 512–520. [Google Scholar] [CrossRef]
- Haidukewych, G.J. Intertrochanteric fractures: Ten tips to improve results. J. Bone Jt. Surg. Am. 2009, 91, 712–719. [Google Scholar]
- Jia, X.; Zhang, K.; Qiang, M.; Chen, Y. The accuracy of intra-operative fluoroscopy in evaluating the reduction quality of intertrochanteric hip fractures. Int. Orthop. 2020, 44, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
Variable | Patients |
---|---|
N | 108 |
Age (years), mean (SD) | 82.1 (7.64) |
Sex, n (%) Male Female | 32 (29.7) 76 (70.3) |
BMI, mean (SD) | 23 (4.3) |
ASA classification, n (%) I II III IV V VI | 1 (0.92) 43 (39.8) 60 (55.5) 4 (3.7) 0 (0) 0 (0) |
Fracture side, n (%) Right Left | 58 (53.7) 50 (46.2) |
AO/OTA classification, n (%) 31-A1 31-A2 31-A3 | 21 (19.4) 61 (56.4) 26 (24) |
Nail length, n (%) 170 200 240 300 320 340 350 360 380 | 1 (0.9) 4 (3.7) 57 (52.7) 2 (1.8) 10 (9.2) 22 (20.3) 1 (0.9) 2 (1.8) 9 (8.3) |
Blood transfusion, n (%) No Yes | 62 (57.4) 46 (42.5) |
Time of operation (minutes), mean (SD) | 156.5 (60.2) |
Hospital stay (days), mean (SD) | 7.5 (3.9) |
Time to mobilization (days), mean (SD) | 164.8 (174.3) |
Time to union (months), mean (SD) | 7.4 (12.1) |
Lateral wall fracture, n (%) No Yes | 71 (65.7) 37 (34.2) |
Fracture gap (mm), mean (SD) | 7.7 (3.5) |
Lateral wall fragment, n (%) No Yes | 88 (81.4) 20 (18.5) |
TAD (mm), median (SD) | 17.7 (5.4) |
TAD, n (%) <25 mm ≧25 mm | 96 (88.8) 12 (11.1) |
Parker’s ratio in AP%, mean (SD) | 38.2 (8.1) |
Parker’s ratio in lateral%, mean (SD) | 38.9 (8.2) |
Distance between posterior tip of blade to lateral cortex (mm), mean (SD) | 6.6 (4.2) |
The new postoperative stability score, mean (SD) | 6.5 (1.1) |
Variable | No Loss of Reduction Group (N = 85) | Loss of Reduction Group (N = 23) | p Value |
---|---|---|---|
Age years, mean (SD) | 81.7 | 83.7 | 0.838 |
Male gender (%) | 25 (29.4) | 7 (30.4) | 0.924 |
BMI | 22.8 | 24.3 | 0.278 |
ASA classification (%) | 0.780 | ||
I | 1 (1.1) | 0 (0) | |
II | 32 (37.6) | 11 (47.8) | |
III | 49 (57.6) | 11 (47.8) | |
IV | 3 (3.5) | 1 (4.3) | |
V | 0 (0) | 0 (0) | |
VI | 0 (0) | 0 (0) | |
AO/OTA classification (%) | 0.407 | ||
31-A1 | 14 (16.4) | 7 (30.4) | |
31-A2 | 51 (60) | 10 (43.4) | |
31-A3 | 20 (23.5) | 6 (26) | |
Fracture side (%) | 0.268 | ||
Right | 48 (56.4) | 10 (43.4) | |
Left | 37 (43.5) | 13 (56.5) | |
Nail length (%) | 0.461 | ||
170 | 1 | 0 | |
200 | 4 | 0 | |
240 | 47 | 10 | |
300 | 2 | 0 | |
320 | 6 | 4 | |
340 | 15 | 7 | |
350 | 1 | 0 | |
360 | 1 | 1 | |
380 | 8 | 1 | |
Blood transfusion (%) | 0.071 | ||
No | 45 (52.9) | 17 (73.9) | |
Yes | 40 (47) | 6 (26) | |
Time of operation minutes, mean (SD) | 155 | 162.2 | 0.442 |
Hospital stay days, mean (SD) | 7.6 | 7.2 | 0.122 |
Time to mobilization days, mean (SD) | 165 | 164.3 | 0.716 |
Time to union months, mean (SD) | 7.12 | 8.47 | 0.636 |
Lateral wall fracture (%) | 0.952 | ||
No | 56 (65.8) | 15 (65.2) | |
Yes | 29 (34.1) | 8 (34.7) | |
Fracture gap mm, mean (SD) | 7.62 | 8.27 | 0.125 |
Lateral wall fragment (%) | 0.875 | ||
No | 69 (81.1) | 19 (82.6) | |
Yes | 16 (18.8) | 4 (17.3) | |
TAD, median (SD) | 17.4 | 19 | 0.780 |
TAD (%) | 0.374 | ||
<25 mm | 76 (89.4) | 19 (82.6) | |
≧25 mm | 9 (10.5) | 4 (17.3) | |
Parker’s ratio in AP%, mean (SD) | 37.63 | 49.51 | 0.709 |
Parker’s ratio in lateral%, mean (SD) | 38.42 | 40.85 | 0.814 |
Distance between posterior tip of blade to lateral cortex mm, mean (SD) | 6.47 | 7.12 | 0.103 |
A new postoperative stability score, mean (SD) | 6.68 | 4.83 | 0.045 * |
Varible | Odds Ratio (95% Confidence Interval) | p Value |
---|---|---|
Parker’s ratio in AP% | 1.11 (0.996 to 1.243) | 0.058 |
Parker’s ratio in lateral% | 1.005 (0.929 to 1.087) | 0.903 |
Tip apex distance < 25 mm | 0.675 (0.080 to 5.677) | 0.717 |
The new postoperative stability score | 0.076 (0.022 to 0.263) | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.-H.; Chen, C.-Y.; Lin, K.-C. A New Postoperative Stability Score to Predict Loss of Reduction in Intertrochanteric Fractures in Elderly Patients. Life 2024, 14, 858. https://doi.org/10.3390/life14070858
Sun S-H, Chen C-Y, Lin K-C. A New Postoperative Stability Score to Predict Loss of Reduction in Intertrochanteric Fractures in Elderly Patients. Life. 2024; 14(7):858. https://doi.org/10.3390/life14070858
Chicago/Turabian StyleSun, Shih-Heng, Chun-Yu Chen, and Kai-Cheng Lin. 2024. "A New Postoperative Stability Score to Predict Loss of Reduction in Intertrochanteric Fractures in Elderly Patients" Life 14, no. 7: 858. https://doi.org/10.3390/life14070858
APA StyleSun, S. -H., Chen, C. -Y., & Lin, K. -C. (2024). A New Postoperative Stability Score to Predict Loss of Reduction in Intertrochanteric Fractures in Elderly Patients. Life, 14(7), 858. https://doi.org/10.3390/life14070858