Comparative Proteomic Analysis of Type 2 Diabetic versus Non-Diabetic Vitreous Fluids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Samples and Preparation for LC–MS
2.2. Protein Identification and Data Analysis
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Proteomic Profiling of Diabetic Vitreous Samples
3.3. A Comprehensive Gene Enrichment Analysis of the Differentially Expressed Proteins
3.4. Gene Ontology, Kinase Enrichment Analyses, and Protein–Protein Interactions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kropp, M.; Golubnitschaja, O.; Mazurakova, A.; Koklesova, L.; Sargheini, N.; Vo, T.K.S.; de Clerck, E.; Polivka, J., Jr.; Potuznik, P.; Polivka, J.; et al. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J. 2023, 14, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Singh, N.K. Inflammation and retinal degenerative diseases. Neural Regen. Res. 2023, 18, 513–518. [Google Scholar] [CrossRef]
- Gonzalez, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Liu, S.; Gao, M.; Wang, W.; Chen, K.; Huang, L.; Liu, Y. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies. Signal Transduct. Target. Ther. 2023, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.Z.; Rather, P.A.; Samarah, S.M.; Elhusseiny, A.M.; Sallam, A.B. Current and Novel Therapeutic Approaches for Treatment of Diabetic Macular Edema. Cells 2022, 11, 1950. [Google Scholar] [CrossRef]
- Santorsola, M.; Capuozzo, M.; Nasti, G.; Sabbatino, F.; Di Mauro, A.; Di Mauro, G.; Vanni, G.; Maiolino, P.; Correra, M.; Granata, V.; et al. Exploring the Spectrum of VEGF Inhibitors’ Toxicities from Systemic to Intra-Vitreal Usage in Medical Practice. Cancers 2024, 16, 350. [Google Scholar] [CrossRef]
- Wijesingha, N.; Tsai, W.S.; Keskin, A.M.; Holmes, C.; Kazantzis, D.; Chandak, S.; Kubravi, H.; Sivaprasad, S. Optical Coherence Tomography Angiography as a Diagnostic Tool for Diabetic Retinopathy. Diagnostics 2024, 14, 326. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Gao, Q.Y.; Hui, Y.N. Vitreous function and intervention of it with vitrectomy and other modalities. Int. J. Ophthalmol. 2022, 15, 857–867. [Google Scholar] [CrossRef]
- Monteiro, J.P.; Santos, F.M.; Rocha, A.S.; Castro-de-Sousa, J.P.; Queiroz, J.A.; Passarinha, L.A.; Tomaz, C.T. Vitreous humor in the pathologic scope: Insights from proteomic approaches. Proteom. Clin. Appl. 2015, 9, 187–202. [Google Scholar] [CrossRef]
- Bishop, P.N. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog. Retin. Eye Res. 2000, 19, 323–344. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.B.; Chen, X.; Timothy, N.; Aiello, L.P.; Feener, E.P. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J. Proteome Res. 2008, 7, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.T.; Gao, X.; Liang, A.R.; Zhao, B.W.; He, G.H.; Chen, S. Proteomic study of vitreous in proliferative diabetic retinopathy patients after treatment with aflibercept: A quantitative analysis based on 4D label-free technique. Int. J. Ophthalmol. 2024, 17, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Udaya, P.; Jeya Maheshwari, J.; Kohli, P.; Parida, H.; Kannan, N.B.; Ramasamy, K.; Dharmalingam, K. Comparative proteomics of proliferative diabetic retinopathy in people with Type 2 diabetes highlights the role of inflammation, visual transduction, and extracellular matrix pathways. Indian J. Ophthalmol. 2023, 71, 3069–3079. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, I.M.; Rezzola, S.; Cancarini, A.; Russo, A.; Costagliola, C.; Semeraro, F.; Presta, M. Human vitreous in proliferative diabetic retinopathy: Characterization and translational implications. Prog. Retin. Eye Res. 2019, 72, 100756. [Google Scholar] [CrossRef] [PubMed]
- Ankamah, E.; Sebag, J.; Ng, E.; Nolan, J.M. Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links. Antioxidants 2019, 9, 7. [Google Scholar] [CrossRef]
- Iyer, S.S.R.; Lagrew, M.K.; Tillit, S.M.; Roohipourmoallai, R.; Korntner, S. The Vitreous Ecosystem in Diabetic Retinopathy: Insight into the Patho-Mechanisms of Disease. Int. J. Mol. Sci. 2021, 22, 7142. [Google Scholar] [CrossRef]
- Hansen, M.S.; Rasmussen, M.; Grauslund, J.; Subhi, Y.; Cehofski, L.J. Proteomic analysis of vitreous humour of eyes with diabetic macular oedema: A systematic review. Acta Ophthalmol. 2022, 100, e1043–e1051. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.R.; Zhao, Y.; Gates, C.; Ma, J.; da Veiga Leprevost, F.; Basrur, V.; Nesvizhskii, A.I.; Gardner, T.W.; Sundstrom, J.M. Proteomic Analyses of Vitreous in Proliferative Diabetic Retinopathy: Prior Studies and Future Outlook. J. Clin. Med. 2021, 10, 2309. [Google Scholar] [CrossRef]
- Weber, S.; Carruthers, N.; Gates, C.; Zhao, Y.; Sundstrom, J. Mass Spectrometry-Based Vitreous Proteomics: Validated Methods and Analysis Pipeline. Methods Mol. Biol. 2023, 2678, 157–167. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.B.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021, 1, e90. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.M.; Ciordia, S.; Mesquita, J.; Cruz, C.; Sousa, J.; Passarinha, L.A.; Tomaz, C.T.; Paradela, A. Proteomics profiling of vitreous humor reveals complement and coagulation components, adhesion factors, and neurodegeneration markers as discriminatory biomarkers of vitreoretinal eye diseases. Front. Immunol. 2023, 14, 1107295. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Wang, N.; Wang, Z.; Yue, W.; Li, B.; Zeng, J.; Yoshida, S.; Yang, Y.; Zhou, Y. Integrated Analysis of Metabolomics and Lipidomics in Plasma of T2DM Patients with Diabetic Retinopathy. Pharmaceutics 2022, 14, 2751. [Google Scholar] [CrossRef]
- Angi, M.; Kalirai, H.; Coupland, S.E.; Damato, B.E.; Semeraro, F.; Romano, M.R. Proteomic analyses of the vitreous humour. Mediat. Inflamm. 2012, 2012, 148039. [Google Scholar] [CrossRef] [PubMed]
- Loukovaara, S.; Robciuc, A.; Holopainen, J.M.; Lehti, K.; Pessi, T.; Liinamaa, J.; Kukkonen, K.T.; Jauhiainen, M.; Koli, K.; Keski-Oja, J.; et al. Ang-2 upregulation correlates with increased levels of MMP-9, VEGF, EPO and TGFbeta1 in diabetic eyes undergoing vitrectomy. Acta Ophthalmol. 2013, 91, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Loukovaara, S.; Sahanne, S.; Jalkanen, S.; Yegutkin, G.G. Increased intravitreal adenosine 5’-triphosphate, adenosine 5’-diphosphate and adenosine 5’-monophosphate levels in patients with proliferative diabetic retinopathy. Acta Ophthalmol. 2015, 93, 67–73. [Google Scholar] [CrossRef]
- She, X.; Zou, C.; Zheng, Z. Differences in Vitreous Protein Profiles in Patients With Proliferative Diabetic Retinopathy Before and After Ranibizumab Treatment. Front. Med. 2022, 9, 776855. [Google Scholar] [CrossRef]
- Havla, J.; Kumpfel, T.; Schinner, R.; Spadaro, M.; Schuh, E.; Meinl, E.; Hohlfeld, R.; Outteryck, O. Myelin-oligodendrocyte-glycoprotein (MOG) autoantibodies as potential markers of severe optic neuritis and subclinical retinal axonal degeneration. J. Neurol. 2017, 264, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.V.; Vindrieux, D.; Goehrig, D.; Jaber, S.; Collin, G.; Griveau, A.; Wiel, C.; Bendridi, N.; Djebali, S.; Farfariello, V.; et al. Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat. Commun. 2021, 12, 720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Sanders, E.; Fliesler, S.J.; Wang, J.J. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp. Eye Res. 2014, 125, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Wang, J.J.; Starr, C.R.; Lee, E.J.; Park, K.S.; Zhylkibayev, A.; Medina, A.; Lin, J.H.; Gorbatyuk, M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog. Retin. Eye Res. 2024, 98, 101231. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, H.; Niu, T.; Shi, X.; Xing, X.; Qu, Y.; Liu, Y.; Liu, X.; Xiao, Y.; Dou, T.; et al. Integration of Vitreous Lipidomics and Metabolomics for Comprehensive Understanding of the Pathogenesis of Proliferative Diabetic Retinopathy. J. Proteome Res. 2023, 22, 2293–2306. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Trudeau, K.; Roy, S.; Tien, T.; Barrette, K.F. Mitochondrial dysfunction and endoplasmic reticulum stress in diabetic retinopathy: Mechanistic insights into high glucose-induced retinal cell death. Curr. Clin. Pharmacol. 2013, 8, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Mavlyutov, T.A.; Cai, Y.; Ferreira, P.A. Identification of RanBP2- and kinesin-mediated transport pathways with restricted neuronal and subcellular localization. Traffic 2002, 3, 630–640. [Google Scholar] [CrossRef] [PubMed]
- McGoldrick, P.; Robertson, J. Unraveling the impact of disrupted nucleocytoplasmic transport systems in C9orf72-associated ALS. Front. Cell Neurosci. 2023, 17, 1247297. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, P.A. Nucleocytoplasmic transport at the crossroads of proteostasis, neurodegeneration and neuroprotection. FEBS Lett. 2023, 597, 2567–2589. [Google Scholar] [CrossRef]
- Jimenez, C.; Portela, R.A.; Mellado, M.; Rodriguez-Frade, J.M.; Collard, J.; Serrano, A.; Martinez, A.C.; Avila, J.; Carrera, A.C. Role of the PI3K regulatory subunit in the control of actin organization and cell migration. J. Cell Biol. 2000, 151, 249–262. [Google Scholar] [CrossRef]
- Yumnamcha, T.; Guerra, M.; Singh, L.P.; Ibrahim, A.S. Metabolic Dysregulation and Neurovascular Dysfunction in Diabetic Retinopathy. Antioxidants 2020, 9, 1244. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Coorey, N.J.; Zhang, M.; Zeng, S.; Madigan, M.C.; Zhang, X.; Gillies, M.C.; Zhu, L.; Zhang, T. Metabolism Dysregulation in Retinal Diseases and Related Therapies. Antioxidants 2022, 11, 942. [Google Scholar] [CrossRef]
- Ureshino, R.P.; Erustes, A.G.; Bassani, T.B.; Wachilewski, P.; Guarache, G.C.; Nascimento, A.C.; Costa, A.J.; Smaili, S.S.; Pereira, G. The Interplay between Ca(2+) Signaling Pathways and Neurodegeneration. Int. J. Mol. Sci. 2019, 20, 6004. [Google Scholar] [CrossRef] [PubMed]
- Sargoy, A.; Sun, X.; Barnes, S.; Brecha, N.C. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons. PLoS ONE 2014, 9, e84507. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Maddox, J.W.; Lee, A. Calcium Channels in Retinal Function and Disease. Annu. Rev. Vis. Sci. 2022, 8, 53–77. [Google Scholar] [CrossRef]
- Curtis, T.M.; Scholfield, C.; McGeown, D.J. Calcium signaling in ocular arterioles. Crit. Rev. Eukaryot. Gene Expr. 2007, 17, 1–12. [Google Scholar] [CrossRef]
Diabetic | Non-Diabetic | p Value | |
---|---|---|---|
n | 6 | 6 | |
Age (years) | 72 ± 12.17 | 79.83 ± 11.34 | NS |
Race | |||
Caucasian | 5 (83.3) | 6 (100) | NS |
Black | 1 (16.7) | 0 (0) | NS |
Gender, n (%) | |||
Male | 3 (50) | 3 (50) | NS |
Female | 3 (50) | 3 (50) | NS |
BMI (kg/m2) | 33 ± 6.977 | 29.39 ± 5.214 | NS |
Weight (lbs) | 187.9 ± 55.4 | 180.1 ± 46.7 | NS |
Height (inches) | 66.55 ± 5.735 | 65.25 ± 4.26 | NS |
Tobacco use, n (%) | 4 (66.7) | 5 (83.3) | NS |
Alcohol use, n (%) | 3 (50) | 3 (50) | NS |
Duration of diabetes (years) | 14.33 ± 9.933 | 0 | <0.001 |
Complications, n (%) | |||
DR Status | Unknown | Unknown | NA |
Heart attack/failure | 5 (83.3) | 4 (66.7) | NS |
Medication, n (%) | |||
Hypoglycemic medications | 6 (100) | 0 (0) | <0.0001 |
Heart medications | 5 (83.3) | 5 (83.3) | NS |
# | Accession Number | Gene Symbol | Gene Name | Σ# PSMs | PSM Difference | Molecular Weight [kDa] | |
---|---|---|---|---|---|---|---|
Diabetic | Normal | ||||||
1 | P02768 | ALB | Albumin | 39,462 | 35,582 | 3880 | 69.3 |
2 | P01834 | IGKC | Immunoglobulin kappa constant | 1601 | 1723 | −122 | 11.8 |
3 | P02787 | TRFE | Serotransferrin | 7676 | 7902 | −226 | 77.0 |
4 | P01024 | C3 | Complement | 1869 | 1542 | 327 | 187.0 |
5 | P01009 | α1AT | Alpha-1-antitrypsin | 3039 | 2660 | 379 | 46.7 |
6 | P01859 | IGHG2 | Immunoglobulin heavy constant gamma 2 | 1558 | 1522 | 36 | 35.9 |
7 | P02790 | HPX | Hemopexin | 1440 | 1156 | 284 | 51.6 |
8 | P0DOX5 | IGHG1 | Immunoglobulin gamma-1 heavy chain | 2685 | 2343 | 342 | 49.3 |
9 | P02763 | α1AG1 | Alpha-1-acid glycoprotein | 1739 | 1504 | 235 | 23.5 |
10 | P01860 | IGHG3 | Immunoglobulin heavy constant gamma 3 | 1579 | 1604 | −25 | 41.3 |
# | Accession # | Protein | Symbol | p Value |
---|---|---|---|---|
1 | A6NFY4 | Nuclear envelope integral membrane protein 2 | NEMP2 | 0.031067 |
2 | B7Z6K7 | Zinc finger protein 814 | ZNF814 | 0.049418 |
3 | P23515 | Oligodendrocyte-myelin glycoprotein | OMG | 0.041425 |
4 | P31146 | Coronin-1A | CORO1A | 0.042233 |
5 | Q14571 | Inositol 1,4,5-trisphosphate receptor type 2 | ITPR2 | 0.018265 |
6 | Q6V1P9 | Protocadherin-23 | DCHS2 | 0.031779 |
7 | Q8IV33 | Uncharacterized protein KIAA0825 | KIAA0825 | 0.030202 |
8 | Q8IWX8 | Calcium homeostasis endoplasmic reticulum protein | CHERP | 0.019858 |
9 | Q9UKX2 | Myosin-2 | MYH2 | 0.048992 |
10 | Q9Y2H8 | Zinc finger protein 510 | ZNF510 | 0.036702 |
# | Accession # | Protein | Symbol | p Value |
---|---|---|---|---|
1 | A0A0J9YX35 | Immunoglobulin heavy variable 3-64D | IGHV3-64D | 0.043559 |
2 | O43148 | mRNA cap guanine-N7 methyltransferase | RNMT | 0.020019 |
3 | O60242 | Adhesion G protein-coupled receptor B3 | ADGRB3 | 0.015424 |
4 | O60333 | Kinesin-like protein KIF1B | KIF1B | 0.045349 |
5 | P05091 | Aldehyde dehydrogenase, mitochondrial | ALDH2 | 0.002538 |
6 | P27487 | Dipeptidyl peptidase 4 | DPP4 | 0.049516 |
7 | Q3LXA3 | Triokinase/FMN cyclase | TKFC | 0.034098 |
8 | Q86YR5 | G-protein-signaling modulator 1 | GPSM1 | 0.048014 |
9 | Q9UL18 | Protein argonaute-1 | AGO1 | 0.033237 |
10 | Q9ULL4 | Plexin-B3 | PLXNB3 | 0.041133 |
Index | Name | p Value |
---|---|---|
1 | Infectious disease | 0.000995 |
2 | Transcriptional regulation By MECP2 | 0.004668 |
3 | Ca2+ pathway | 0.004821 |
4 | Semaphorin interactions | 0.005294 |
5 | RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function | 0.005621 |
6 | Transcriptional regulation by small RNAs | 0.007389 |
7 | Processing of capped intron-containing pre-mRNA | 0.007940 |
8 | Fructose catabolism | 0.008472 |
9 | MET activates PTPN11 | 0.008472 |
10 | MET interacts with TNS proteins | 0.008472 |
Index | Name | p-Value |
---|---|---|
1 | Pheochromocytoma | 0.01352 |
2 | Neuroendocrine neoplasm | 0.01520 |
3 | Congenital sensorineural hearing impairment | 0.01687 |
4 | Muscle fiber inclusion bodies | 0.01855 |
5 | Cerebral hemorrhage | 0.02188 |
6 | Neoplasm of the peripheral nervous system | 0.02521 |
7 | Bony spicule pigmentary retinopathy | 0.03182 |
8 | Abnormality of dental color | 0.03347 |
9 | Attenuation of retinal blood vessels | 0.03512 |
10 | Steppage gait | 0.03840 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, A.H.; Shan, S.; Narayanan, S.P.; Somanath, P.R. Comparative Proteomic Analysis of Type 2 Diabetic versus Non-Diabetic Vitreous Fluids. Life 2024, 14, 883. https://doi.org/10.3390/life14070883
Alanazi AH, Shan S, Narayanan SP, Somanath PR. Comparative Proteomic Analysis of Type 2 Diabetic versus Non-Diabetic Vitreous Fluids. Life. 2024; 14(7):883. https://doi.org/10.3390/life14070883
Chicago/Turabian StyleAlanazi, Abdulaziz H., Shengshuai Shan, S. Priya Narayanan, and Payaningal R. Somanath. 2024. "Comparative Proteomic Analysis of Type 2 Diabetic versus Non-Diabetic Vitreous Fluids" Life 14, no. 7: 883. https://doi.org/10.3390/life14070883
APA StyleAlanazi, A. H., Shan, S., Narayanan, S. P., & Somanath, P. R. (2024). Comparative Proteomic Analysis of Type 2 Diabetic versus Non-Diabetic Vitreous Fluids. Life, 14(7), 883. https://doi.org/10.3390/life14070883