Between-Session Reliability of Athletic Performance and Injury Mitigation Measures in Female Adolescent Athletes in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
- (a)
- Have 1–6 years of experience playing their sport competitively;
- (b)
- Injury free for the 6 months prior to the start date of the study;
- (c)
- Are 14–18 years of age;
- (d)
- Cisgender individuals born biologically female;
- (e)
- Understand written and spoken English.
2.3. Protocol and Procedures
2.3.1. Warm Up
Testing Procedure
2.3.2. Anthropometrics (Estimating Biological Age)
2.3.3. Neuromuscular Performance
Force Platform Testing Preface
Bilateral Isometric Mid-Thigh Pull (IMTP)
Vertical Countermovement Jump
2.3.4. Triple Hops for Distance
2.3.5. Hamstring/Knee Flexor Strength
2.3.6. 2D Analysis
Single Leg Squats (SLSs) and Tuck Jumps
2.3.7. Multidirectional Speed Profiling
Linear Speed
2.3.8. Change of Direction Speed
3. Statistical Analysis
4. Results
4.1. Between-Session Reliability
4.2. Within-Session Reliability
5. Discussion
5.1. IMTP and CMJ Reliability
5.2. Hamstring/Knee Flexor Strength and Triple Hop for Distance Reliability
5.3. 30 m Sprint and 505 COD Speed Reliability
5.4. 2D Analysis Reliability
5.5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, C.Y.; Casey, E.; Herman, D.C.; Katz, N.; Tenforde, A.S. Sex Differences in Common Sports Injuries. PM&R 2018, 10, 1073–1082. [Google Scholar]
- Kaestner, R.; Xu, X. Title IX, girls’ sports participation, and adult female physical activity and weight. Eval. Rev. 2010, 34, 52–78. [Google Scholar] [CrossRef] [PubMed]
- Lopiano, D.A. Modern history of women in sports: Twenty-five years of Title IX. Clin. Sports Med. 2000, 19, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, D.; Myer, G.D.; Micheli, L.J.; Hewett, T.E. ABCs of evidence-based anterior cruciate ligament injury prevention strategies in female athletes. Curr. Phys. Med. Rehabil. Rep. 2015, 3, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Noyes, F.R.; Barber-Westin, S. ACL Injuries in the Female Athlete: Causes, Impacts, and Conditioning Programs; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- N.C.S.A. College Recruiting. When Does the Recruiting Process Begin? Youtube. 2020. Available online: https://www.youtube.com/watch?v=sd9z5TcyO2o (accessed on 10 January 2023).
- Lin, J.; Paulson, L.; Romsa, B.; Walker, H.J.; Romsa, K. Analysis of factors influencing the college choice decisions of NCAA Division II elite track and field athletes. Int. J. Sports Phys. Educ. 2017, 3, 22. [Google Scholar]
- Sawczuk, T.; Jones, B.; Scantlebury, S.; Weakley, J.; Read, D.; Costello, N.; Darrall-Jones, J.D.; Stokes, K.; Till, K. Between-Day Reliability and Usefulness of a Fitness Testing Battery in Youth Sport Athletes: Reference Data for Practitioners. Meas. Phys. Educ. Exerc. Sci. 2018, 22, 11–18. [Google Scholar] [CrossRef]
- Thomas, C.; Dos’ Santos, T.; Comfort, P.; Jones, P.A. Between-session reliability of common strength-and power-related measures in adolescent athletes. Sports 2017, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- D’Isanto, T.; D’Elia, F.; Raiola, G.; Altavilla, G. Assessment of sport performance: Theoretical aspects and practical indications. Sport Mont 2019, 17, 79–82. [Google Scholar] [CrossRef]
- Dos’ Santos, T.; Stebbings, G.K.; Morse, C.; Shashidharan, M.; Daniels, K.A.; Sanderson, A. Effects of the menstrual cycle phase on anterior cruciate ligament neuromuscular and biomechanical injury risk surrogates in eumenorrheic and naturally menstruating women: A systematic review. PLoS ONE 2023, 18, e0280800. [Google Scholar]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.; Myer, G.D.; Lloyd, R.S. Landing kinematics in elite male youth soccer players of different chronologic ages and stages of maturation. J. Athl. Train. 2018, 53, 372–378. [Google Scholar] [CrossRef]
- Voskanian, N. ACL Injury prevention in female athletes: Review of the literature and practical considerations in implementing an ACL prevention program. Curr. Rev. Musculoskelet. Med. 2013, 6, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.A.; Marshall, S.W.; Boling, M.C.; Thigpen, C.A.; Garrett Jr, W.E.; Beutler, A.I. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The JUMP-ACL study. Am. J. Sports Med. 2009, 37, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Willson, J.D.; Davis, I.S. Utility of the Frontal Plane Projection Angle in Females With Patellofemoral Pain. J. Orthop. Sports Phys. Ther. 2008, 38, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Willson, J.D.; Ireland, M.L.; Davis, I. Core strength and lower extremity alignment during single leg squats. Med. Sci. Sports Exerc. 2006, 38, 945. [Google Scholar] [PubMed]
- Herrington, L.; Myer, G.D.; Munro, A. Intra and inter-tester reliability of the tuck jump assessment. Phys. Ther. Sport 2013, 14, 152–155. [Google Scholar] [CrossRef]
- Emmonds, S.; Heyward, O.; Jones, B. The Challenge of Applying and Undertaking Research in Female Sport. Sports Med.-Open 2019, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Salmela-Aro, K. Stages of adolescence. In Encyclopedia of Adolescence; Academic Press: Cambridge, MA, USA, 2011; pp. 360–368. [Google Scholar]
- Greenberg, E.T.; Barle, M.; Glassman, E.; Jacob, L.; Jaafar, H.; Johnson, A.; Layug, N.; Rollo, E.; Jung, M.-K. Reliability and stability of the Y Balance Test in healthy early adolescent female athletes. Orthop. J. Sports Med. 2019, 7 (Suppl. S3), 2325967119S00051. [Google Scholar] [CrossRef]
- DiCesare, C.A.; Montalvo, A.; Barber Foss, K.D.; Thomas, S.M.; Ford, K.R.; Hewett, T.E.; Jayanthi, N.A.; Stracciolini, A.; Bell, D.R.; Myer, G.D. Lower extremity biomechanics are altered across maturation in sport-specialized female adolescent athletes. Front. Pediatr. 2019, 7, 268. [Google Scholar] [CrossRef]
- Naughton, G.; Farpour-Lambert, N.J.; Carlson, J.; Bradney, M.; Van Praagh, E. Physiological issues surrounding the performance of adolescent athletes. Sports Med. 2000, 30, 309–325. [Google Scholar] [CrossRef]
- Moeskops, S.; Oliver, J.L.; Read, P.J.; Cronin, J.B.; Myer, G.D.; Haff, G.G.; Lloyd, R.S. Within-and between-session reliability of the isometric mid-thigh pull in young female athletes. J. Strength Cond. Res. 2018, 32, 1892. [Google Scholar] [CrossRef] [PubMed]
- McCubbine, J.; Turner, A.N.; Dos’ Santos, T.; Bishop, C. Reliability and measurement of inter-limb asymmetries in four unilateral jump tests in elite youth female soccer players. Prof. Strength Cond. 2018, 49, 7–12. [Google Scholar]
- Cuthbert, M.; Comfort, P.; Ripley, N.; McMahon, J.J.; Evans, M.; Bishop, C. Unilateral vs. bilateral hamstring strength assessments: Comparing reliability and inter-limb asymmetries in female soccer players. J. Sports Sci. 2021, 39, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; Lake, J.; Comfort, P.; Suchomel, T.J.; McMahon, J.J.; Jiménez-Ormeño, E.; Sainz de Baranda, P. No differences in weightlifting overhead pressing exercises kinetics. Sports Biomech. 2021; ahead of print. [Google Scholar] [CrossRef]
- Borg, D.N.; Bach, A.J.E.; O’Brien, J.L.; Sainani, K.L. Calculating sample size for reliability studies. PM&R 2022, 14, 1018–1025. [Google Scholar]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2021, 17, 317–331. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [PubMed]
- Haff, G.G.; Triplett, N.T. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Massard, T.; Fransen, J.; Duffield, R.; Wignell, T.; Lovell, R. Comparison of sitting height protocols used for the prediction of somatic maturation. SPSR 2019, 66, 1–4. [Google Scholar]
- Hill, M.; Scott, S.; McGee, D.; Cumming, S. Coaches’ Evaluations of Match Performance in Academy Soccer Players in Relation to the Adolescent Growth Spurt. J. Sci. Sport Exerc. 2020, 2, 359–366. [Google Scholar] [CrossRef]
- Towlson, C.; Salter, J.; Ade, J.D.; Enright, K.; Harper, L.D.; Page, R.M.; Malone, J.J. Maturity-associated considerations for training load, injury risk, and physical performance in youth soccer: One size does not fit all. J. Sport Health Sci. 2021, 10, 403–412. [Google Scholar] [CrossRef]
- Beckham, G.K.; Sato, K.; Santana, H.A.; Mizuguchi, S.; Haff, G.G.; Stone, M.H. Effect of body position on force production during the isometric midthigh pull. J. Strength Cond. Res. 2018, 32, 48–56. [Google Scholar] [CrossRef]
- Grgic, J.; Scapec, B.; Mikulic, P.; Pedisic, Z. Test-retest reliability of isometric mid-thigh pull maximum strength assessment: A systematic review. Biol. Sport 2022, 39, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Moeskops, S.; Oliver, J.L.; Read, P.J.; Cronin, J.B.; Myer, G.D.; Haff, G.G.; Lloyd, R.S. The influence of biological maturity and competitive level on isometric force-time curve variables and vaulting performance in young female gymnasts. J. Strength Cond. Res. 2020, 34, 2136. [Google Scholar] [CrossRef]
- Comfort, P.; Dos’ Santos, T.; Beckham, G.K.; Stone, M.H.; Guppy, S.N.; Haff, G.G. Standardization and methodological considerations for the isometric midthigh pull. Strength Cond. J. 2019, 41, 57–79. [Google Scholar] [CrossRef]
- Herrington, A. Countermovement Jump Height as an Indicator of Sprint Performance in Female Division 2 Track and Field Athletes. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2021, 235, 1–8. [Google Scholar] [CrossRef]
- Badby, A.J.; Mundy, P.D.; Comfort, P.; Lake, J.P.; McMahon, J.J. The validity of Hawkin Dynamics wireless dual force plates for measuring countermovement jump and drop jump variables. Sensors 2023, 23, 4820. [Google Scholar] [CrossRef] [PubMed]
- Trigsted, S.M.; Post, E.G.; Bell, D.R. Landing mechanics during single hop for distance in females following anterior cruciate ligament reconstruction compared to healthy controls. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; Thomas, C.; Jones, P.; Comfort, P. Asymmetries in single and triple hop are not detrimental to change of direction speed. J. Trainology 2017, 6, 35–41. [Google Scholar] [CrossRef]
- Lodge, C.; Tobin, D.; O’Rourke, B.; Thorborg, K. Reliability and validity of a new eccentric hamstring strength measurement device. Arch. Rehabil. Res. Clin. Transl. 2020, 2, 100034. [Google Scholar] [CrossRef]
- Herrington, L.; Alenezi, F.; Alzhrani, M.; Alrayani, H.; Jones, R. The reliability and criterion validity of 2D video assessment of single leg squat and hop landing. J. Electromyogr. Kinesiol. 2017, 34, 80–85. [Google Scholar] [CrossRef]
- Herrington, L.; Munro, A. A preliminary investigation to establish the criterion validity of a qualitative scoring system of limb alignment during single-leg squat and landing. J. Exerc. Sports Orthop. 2014, 1, 1–6. [Google Scholar]
- Myer, G.D.; Brent, J.L.; Ford, K.R.; Hewett, T.E. Real-time assessment and neuromuscular training feedback techniques to prevent ACL injury in female athletes. Strength Cond. J. 2011, 33, 21. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, H.; Negra, Y.; Moran, J.; Prieske, O.; Sammoud, S.; Ramirez-Campillo, R.; Granacher, U. Plyometric Training Improves Not Only Measures of Linear Speed, Power, and Change-of-Direction Speed But Also Repeated Sprint Ability in Young Female Handball Players. J. Strength Cond. Res. 2021, 35, 2230–2235. [Google Scholar] [CrossRef]
- Barber, O.R.; Thomas, C.; Jones, P.A.; McMahon, J.J.; Comfort, P. Reliability of the 505 change-of-direction test in netball players. Int. J. Sports Physiol. Perform. 2016, 11, 377–380. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Assessing Asymmetries in Change of Direction Speed Performance: Application of Change of Direction Deficit. J. Strength Cond. Res. 2019, 33, 2953–2961. [Google Scholar] [CrossRef]
- Dos’ Santos, T.; McBurnie, A.; Thomas, C.; Comfort, P.; Jones, P.A. Biomechanical determinants of the modified and traditional 505 change of direction speed test. J. Strength Cond. Res. 2020, 34, 1285–1296. [Google Scholar] [CrossRef]
- Bailey, C. Statistical Considerations When Measuring Absolute Reliability and Variability of Vector Data in Sport Performance. Int. J. Strength Cond. 2023, 3. [Google Scholar] [CrossRef]
- Nugent, F.J.; Comyns, T.M.; Ní Chéilleachair, N.J.; Warrington, G.D. Within-session and between-session reliability of the seven-stroke maximal effort test in national level senior rowers. J. Aust. Strength Cond. 2019, 27, 22–28. [Google Scholar]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. 2002. [cited 2023 09/15]. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 14 July 2024).
- Shechtman, O. The coefficient of variation as an index of measurement reliability. In Methods of Clinical Epidemiology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–49. [Google Scholar]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Assessing muscle-strength asymmetry via a unilateral-stance isometric midthigh pull. Int. J. Sports Physiol. Perform. 2017, 12, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Dos’ Santos, T.; Jones, P.A.; Comfort, P.; Thomas, C. Effect of different onset thresholds on isometric midthigh pull force-time variables. J. Strength Cond. Res. 2017, 31, 3463–3473. [Google Scholar] [CrossRef]
- Dugdale, J.H.; Arthur, C.A.; Sanders, D.; Hunter, A.M. Reliability and validity of field-based fitness tests in youth soccer players. Eur. J. Sport Sci. 2019, 19, 745–756. [Google Scholar] [CrossRef]
- Badby, A.; Comfort, P.; Mundy, P.; Cuthbert, M.; McMahon, J. Between-Session Reliability of the Countermovement Jump and Countermovement Rebound Jump Tests in Youth Soccer Players. In Proceedings of the NSCA National Conference 2022, New Orleans, LA, USA, Virtual, 6–9 July 2022. [Google Scholar]
- Opar, D.A.; Piatkowski, T.; Williams, M.D.; Shield, A.J. A Novel Device Using the Nordic Hamstring Exercise to Assess Eccentric Knee Flexor Strength: A Reliability and Retrospective Injury Study. J. Orthop. Sports Phys. Ther. 2013, 43, 636–640. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Manuel, J.; Drury, B.; Beato, M.; Turner, A. Assessing Eccentric Hamstring Strength Using the NordBord: Between-Session Reliability and Interlimb Asymmetries in Professional Soccer Players. J. Strength Cond. Res. 2022, 36, 2552–2557. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.; Gibson, N.V.; Weston, M.; McCunn, R. Reliability of Measures of Lower-Body Strength and Speed in Academy Male Adolescent Soccer Players. J. Strength Cond. Res. 2023, 38, e96–e103. [Google Scholar] [CrossRef] [PubMed]
- Booher, L.D.; Hench, K.M.; Worrell, T.W.; Stikeleather, J. Reliability of Three Single-Leg Hop Tests. J. Sport Rehabil. 1993, 2, 165–170. [Google Scholar] [CrossRef]
- Munro, A.G.; Herrington, L.C. Between-session reliability of four hop tests and the agility T-test. J. Strength Cond. Res. 2011, 25, 1470–1477. [Google Scholar]
- Kingston, B.; Murray, A.; Norte, G.E.; Glaviano, N.R. Validity and reliability of 2-dimensional trunk, hip, and knee frontal plane kinematics during single-leg squat, drop jump, and single-leg hop in females with patellofemoral pain. Phys. Ther. Sport 2020, 45, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Reis, V.P.; Abad, C.C.C.; Freitas, T.T.; Azevedo, P.H.S.M.; Nimphius, S. Change of Direction Performance in Elite Players From Different Team Sports. J. Strength Cond. Res. 2022, 36, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Davó, J.L.; Loturco, I.; Pereira, L.A.; Cesari, R.; Pratdesaba, J.; Madruga-Parera, M.; Sanz-Rivas, D.; Fernández-Fernández, J. Relationship between Sprint, Change of Direction, Jump, and Hexagon Test Performance in Young Tennis Players. J. Sports Sci. Med. 2021, 20, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, L.; Kilty, J. Relationship of the Stretch-Shortening Cycle to Sprint Performance in Trained Female Athletes. J. Strength Cond. Res. 2001, 15, 326–331. [Google Scholar]
- Edwards, T.; Banyard, H.G.; Piggott, B.; Haff, G.G.; Joyce, C. Reliability and minimal detectable change of sprint times and force-velocity-power characteristics. J. Strength Cond. Res. 2022, 36, 268–272. [Google Scholar] [CrossRef]
- Taylor, J.M.; Cunningham, L.; Hood, P.; Thorne, B.; Irvin, G.; Weston, M. The reliability of a modified 505 test and change-of-direction deficit time in elite youth football players. Sci. Med. Footb. 2019, 3, 157–162. [Google Scholar] [CrossRef]
- Paz, G.A.; de Freitas Maia, M.; Santana, H.G.; Miranda, H.; Lima, V.; Willson, J.D. Knee frontal plane projection angle: A comparison study between drop vertical jump and step-down tests with young volleyball athletes. J. Sport Rehabil. 2019, 28, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Griffin, L.Y.; Agel, J.; Albohm, M.J.; Arendt, E.A.; Dick, R.W.; Garrett, W.E.; Garrick, J.G.; Hewett, T.E.; Huston, L.; Ireland, M.L.; et al. Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies. JAAOS-J. Am. Acad. Orthop. Surg. 2000, 8, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Gwynne, C.R.; Curran, S.A. Quantifying frontal plane knee motion during single limb squats: Reliability and validity of 2-dimensional measures. Int. J. Sports Phys. Ther. 2014, 9, 898. [Google Scholar] [PubMed]
- Simon, M.; Parizek, C.; Earl-Boehm, J.E.; Bazett-Jones, D.M. Quantitative and qualitative assessment of frontal plane knee motion in males and females: A reliability and validity study. Knee 2018, 25, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Robles-Palazón, F.J.; Ayala, F.; McMahon, J.J.; Jones, P.A.; Comfort, P. Is frontal plane projection angle related to stiff landing patterns? An analysis of drop jump and tuck jump tasks. ISBS Proc. Arch. 2022, 40, 599. [Google Scholar]
- Neal, B.S.; Lack, S.D.; Barton, C.J.; Birn-Jeffery, A.; Miller, S.; Morrissey, D. Is markerless, smart phone recorded two-dimensional video a clinically useful measure of relevant lower limb kinematics in runners with patellofemoral pain? A validity and reliability study. Phys. Ther. Sport 2020, 43, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Read, P.J.; De Ste Croix, M.B.; Hughes, J.D. Phases of the traditional 505 test: Between session and direction reliability. Mov. Sport Sci. 2020, 4, 21–27. [Google Scholar] [CrossRef]
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1813–1827. [Google Scholar] [CrossRef]
- D’Souza, A.C.; Wageh, M.; Williams, J.S.; Colenso-Semple, L.M.; McCarthy, D.G.; Mckay, A.K.; Elliott-Sale, K.J.; Burke, L.M.; Parise, G.; MacDonald, M.J. Menstrual cycle hormones and oral contraceptives: A multimethod systems physiology-based review of their impact on key aspects of female physiology. J. Appl. Physiol. 2023, 135, 1284–1299. [Google Scholar] [CrossRef]
- Harper, D.J.; McBurnie, A.J.; Santos, T.D.; Eriksrud, O.; Evans, M.; Cohen, D.D.; Rhodes, D.; Carling, C.; Kiely, J. Biomechanical and neuromuscular performance requirements of horizontal deceleration: A review with implications for random intermittent multi-directional sports. Sports Med. 2022, 52, 2321–2354. [Google Scholar] [CrossRef] [PubMed]
Movement | Sets | Duration/Repetition | Intensity |
---|---|---|---|
Hamstring scoops | 1 | 10 ES | |
Quad Pulls | 1 | 10 ES | |
Hip gates | 1 | 5 ES each direction | |
T-lunge | 1 | 5 ES | |
Arm circles | 1 | 10 each direction | |
Jog | 2 | 15 m | 30% (set 1) and 50% (set 2) of maximum perceived effort |
Skip | 2 | 15 m | |
Side shuffle | 2 | 10 m | |
Pogos | 1 | 5 m |
Vertical Countermovement Jump Assessment Measures | ||
---|---|---|
Jump height | Metres (m) | The vertical height achieved by the centre of mass after take off. Calculated from take-off velocity (take-off velocity 2 ÷ 2 g). |
Countermovement displacement | Metres (m) | The peak negative vertical displacement of the system centre of mass. |
System weight | Newtons (N) | The lowest 1 s average of the vertical ground reaction force applied to the system’s centre of mass during the weighing phase, identified by an optimisation loop. |
Jump momentum | Kg × m/s | The vertical momentum of the system centre of mass at the instant of take off. |
Peak force | Newtons (N) | Maximum vertical ground reaction force generated during dynamic task from force/time curve. |
Time to take off | Seconds (s) | The time it takes for an object or body to leave the ground or surface. |
Reactive strength index modified (RSImod) | Arbitrary unit | Performance outcome relative to time in tasks with an identifiable ground contact time. The quotient of dividing jump height by the ground contact time. |
Net propulsive Impulse | Newtons per second (Ns) | An amount of force applied for given period of time to cause change in momentum. |
Landing stiffness | Newtons (N/m) | The vertical ground reaction force applied to the system’s centre of mass at the instant of peak negative vertical displacement of the system centre of mass divided by the peak negative displacement of the system centre of mass during the landing phase |
Time to stabilisation | Milliseconds (ms) | The time taken for the vertical ground reaction forces to the system’s centre of mass to remain within 5% of the weighing system for 1 s. |
Average landing force | Newtons (N) | The average vertical ground reaction force applied to the system’s centre of mass during the landing phase |
Peak landing force | Newtons (N) | The peak instantaneous vertical ground reaction force applied during the landing phase |
Isometric mid-thigh pull assessment measures | ||
Peak force | Newtons (N) | Maximum vertical ground reaction force generated during isometric task from force/time curve—inclusive of body weight. |
Force at specific time (50, 100, 150, 200, and 250 ms) | Newtons (N) | Force at a specific time point from the onset of the contraction (i.e., 0 ms)—inclusive of body weight. |
Session 1 | Session 2 | Between-Session Reliability Statistics | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metric | Mean | SD | Mean | SD | ICC | CV% | SEM | SDD | SDD% | p | ES | Mean Change | SD | |
IMTP | Peak force (N) | 944.37 | 208.66 | 970.58 | 241.20 | 0.909 | 7.40 | 68.03 | 188.57 | 19.69 | 0.270 | 0.12 | 26.22 | 129.96 |
Force at 50 (N) | 511.47 | 100.59 | 525.75 | 126.91 | 0.841 | 9.88 | 45.66 | 126.56 | 24.40 | 0.356 | 0.12 | 14.28 | 84.89 | |
Force at 100 (N) | 571.21 | 109.56 | 608.94 | 152.64 | 0.783 | 10.49 | 61.89 | 171.55 | 29.07 | 0.064 | 0.28 | 37.73 | 109.15 | |
Force at 150 (N) | 622.04 | 111.11 | 687.77 | 175.16 | 0.681 | 12.40 | 82.84 | 229.63 | 35.06 | 0.012 | 0.45 | 65.74 | 137.41 | |
Force at 200 (N) | 688.13 | 121.23 | 766.66 | 203.82 | 0.546 | 14.70 | 112.99 | 313.19 | 43.06 | 0.023 | 0.47 | 78.52 | 182.31 | |
Force at 250 (N) | 751.93 | 137.62 | 830.27 | 195.34 | 0.689 | 12.25 | 94.23 | 261.18 | 33.02 | 0.009 | 0.46 | 78.34 | 155.77 | |
CMJ | JH (m) | 0.24 | 0.06 | 0.24 | 0.06 | 0.959 | 4.76 | 0.01 | 0.03 | 13.40 | 0.419 | 0.06 | 0.00 | 0.02 |
Countermovement displacement (m) | −0.23 | 0.07 | −0.22 | 0.07 | 0.801 | −13.46 | 0.03 | 0.09 | −39.39 | 0.148 | 0.21 | 0.02 | 0.06 | |
System weight (N) | 646.47 | 99.62 | 640.01 | 105.01 | 0.979 | 1.29 | 14.83 | 41.11 | 6.39 | 0.230 | 0.06 | −6.46 | 29.36 | |
Time to take off (s) | 0.73 | 0.15 | 0.70 | 0.14 | 0.839 | 7.78 | 0.06 | 0.16 | 22.28 | 0.120 | 0.21 | −0.03 | 0.11 | |
Jump momentum (kg × m/s) | 141.91 | 25.53 | 145.82 | 37.54 | 0.730 | 4.24 | 16.68 | 46.24 | 32.14 | 0.471 | 0.12 | 3.90 | 29.74 | |
Propulsive impulse (Ns) | 306.29 | 73.48 | 295.19 | 65.66 | 0.784 | 9.95 | 32.38 | 89.76 | 29.85 | 0.301 | 0.16 | −11.10 | 58.69 | |
RSImod | 0.34 | 0.09 | 0.35 | 0.09 | 0.897 | 7.84 | 0.03 | 0.08 | 23.92 | 0.373 | 0.10 | 0.01 | 0.06 | |
Landing stiffness (N) | −8690.86 | 4668.80 | −8827.53 | 5510.32 | 0.816 | −22.65 | 2190.63 | 6072.11 | −69.32 | 0.853 | 0.03 | −136.67 | 4074.43 | |
Time to stabilise (ms) | 878.28 | 293.65 | 993.01 | 410.42 | 0.476 | 21.67 | 258.31 | 716.00 | 76.52 | 0.135 | 0.32 | 114.73 | 415.77 | |
Avg landing force (N) | 815.24 | 135.51 | 805.06 | 125.23 | 0.966 | 3.34 | 24.06 | 66.68 | 8.23 | 0.239 | 0.08 | −10.17 | 47.10 | |
Peak landing force (N) | 2396.48 | 738.94 | 2203.77 | 557.04 | 0.842 | 10.39 | 260.10 | 720.95 | 31.34 | 0.027 | 0.29 | −192.72 | 460.72 |
Session 1 | Session 2 | Between-Session Reliability Statistics | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metric | Mean | SD | Mean | SD | ICC | CV% | SEM | SDD | SDD% | p | ES | Mean Change | SD | |
Hamstring/knee flexor strength | Left force (N) | 216.36 | 54.22 | 224.62 | 52.44 | 0.881 | 8.28 | 18.40 | 51.00 | 23.13 | 0.192 | 0.15 | 8.25 | 34.44 |
Right force (N) | 214.27 | 52.95 | 218.05 | 48.63 | 0.927 | 6.30 | 13.74 | 38.08 | 17.61 | 0.437 | 0.07 | 3.78 | 26.72 | |
Total force (N) | 430.63 | 105.40 | 442.66 | 99.32 | 0.913 | 6.91 | 30.21 | 83.73 | 19.18 | 0.254 | 0.12 | 12.04 | 57.64 | |
Triple hops for distance | Right distance (m) | 3.74 | 0.75 | 3.84 | 0.71 | 0.954 | 4.08 | 0.16 | 0.44 | 11.50 | 0.070 | 0.14 | 0.10 | 0.30 |
Left distance (m) | 3.77 | 0.72 | 3.89 | 0.67 | 0.945 | 4.61 | 0.16 | 0.45 | 11.83 | 0.303 | 0.18 | 0.12 | 0.30 |
Session 1 | Session 2 | Between-Session Reliability Statistics | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metric | Mean | SD | Mean | SD | ICC | CV% | SEM | SDD | SDD% | p | ES | Mean Change | SD | |
30 m sprint | Time at 10 m (s) | 2.16 | 0.14 | 2.16 | 0.14 | 0.887 | 2.14 | 0.05 | 0.13 | 6.16 | 0.852 | 0.02 | 0.00 | 0.09 |
Time at 20 m (s) | 3.78 | 0.30 | 3.76 | 0.27 | 0.809 | 2.55 | 0.13 | 0.35 | 9.32 | 0.696 | 0.06 | −0.02 | 0.23 | |
Time at 30 m (s) | 5.31 | 0.42 | 5.36 | 0.45 | 0.926 | 2.07 | 0.12 | 0.33 | 6.15 | 0.223 | 0.12 | 0.05 | 0.23 | |
Left foot 505 | 10 m approach (s) | 2.21 | 0.15 | 2.20 | 0.16 | 0.946 | 1.80 | 0.04 | 0.10 | 4.51 | 0.738 | 0.03 | 0.00 | 0.07 |
505 time (s) | 2.80 | 0.17 | 2.75 | 0.18 | 0.852 | 2.37 | 0.07 | 0.19 | 6.83 | 0.023 | 0.29 | −0.05 | 0.12 | |
Right foot 505 | 10 m approach (s) | 2.21 | 0.17 | 2.22 | 0.17 | 0.911 | 2.23 | 0.05 | 0.14 | 6.24 | 0.941 | 0.01 | 0.00 | 0.10 |
505 time (s) | 2.79 | 0.17 | 2.74 | 0.17 | 0.782 | 2.96 | 0.08 | 0.22 | 7.79 | 0.077 | 0.27 | −0.05 | 0.14 |
Session 1 | Session 2 | Between-Session Reliability Statistics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metric | Mean | SD | Mean | SD | ICC | SEM | SDD | SDD% | p | ES | Mean Change | SD | |
Tuck Jump FPPA (deg.) | R. leg FPPA | −10.39 | 7.62 | −12.06 | 9.35 | 0.822 | 3.60 | 9.97 | −88.84 | 0.165 | 0.20 | −1.67 | 6.55 |
L. leg FPPA | −16.83 | 10.90 | −16.10 | 11.38 | 0.874 | 3.96 | 10.97 | −66.62 | 0.596 | 0.07 | 0.72 | 7.53 | |
Single Leg Squat FPPA (deg.) | R. leg FPPA | −17.71 | 10.19 | −17.43 | 9.45 | 0.465 | 7.19 | 19.92 | −113.40 | 0.895 | 0.03 | 0.28 | 11.66 |
L. leg FPPA | −17.39 | 10.68 | −17.40 | 9.94 | 0.508 | 7.24 | 20.06 | −115.33 | 0.996 | 0.00 | −0.01 | 11.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franklin, E.; Stebbings, G.K.; Morse, C.I.; Runacres, A.; Dos’Santos, T. Between-Session Reliability of Athletic Performance and Injury Mitigation Measures in Female Adolescent Athletes in the United States. Life 2024, 14, 892. https://doi.org/10.3390/life14070892
Franklin E, Stebbings GK, Morse CI, Runacres A, Dos’Santos T. Between-Session Reliability of Athletic Performance and Injury Mitigation Measures in Female Adolescent Athletes in the United States. Life. 2024; 14(7):892. https://doi.org/10.3390/life14070892
Chicago/Turabian StyleFranklin, Emily, Georgina K. Stebbings, Christopher I. Morse, Adam Runacres, and Thomas Dos’Santos. 2024. "Between-Session Reliability of Athletic Performance and Injury Mitigation Measures in Female Adolescent Athletes in the United States" Life 14, no. 7: 892. https://doi.org/10.3390/life14070892
APA StyleFranklin, E., Stebbings, G. K., Morse, C. I., Runacres, A., & Dos’Santos, T. (2024). Between-Session Reliability of Athletic Performance and Injury Mitigation Measures in Female Adolescent Athletes in the United States. Life, 14(7), 892. https://doi.org/10.3390/life14070892