Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors
Abstract
:1. Introduction
2. Immune Response against Fungi
3. Neonatal Gut Mycobiome
3.1. Factors Associated with Neonatal Gut Mycobiome
3.2. Gestational and Postmenstrual Age and Gut Mycobiome
3.3. Neonatal Gut Mycobiome and Short- and Long-Term Outcome
4. Maternal Role and Other Factors Influencing the Neonatal Gut Mycobiome
4.1. Maternal Health Status
4.2. Maternal Diet and Medication
4.3. Climate Change and Geographic Location
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Round, J.L.; Mazmanian, S.K. The gut microbiome shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Chin, V.K.; Yong, V.C.; Chong, P.P.; Amin Nordin, S.; Basir, R.; Abdullah, M. Mycobiome in the Gut: A Multiperspective Review. Mediat. Inflamm. 2020, 2020, 9560684. Available online: https://pubmed.ncbi.nlm.nih.gov/32322167/ (accessed on 15 February 2024). [CrossRef] [PubMed]
- Rosendo-Silva, D.; Viana, S.; Carvalho, E.; Reis, F.; Matafome, P. Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Intern. Emerg. Med. 2023, 18, 1287–1302. Available online: https://pubmed.ncbi.nlm.nih.gov/37014495/ (accessed on 13 September 2023). [CrossRef]
- Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci. 2017, 74, 2959–2977. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.A.; Gu, W.; Lee, I.A.; Joh, E.H.; Kim, D.H. High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway. PLoS ONE 2012, 7, e47713. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.; Barbaro, M.R.; Fuschi, D.; Palombo, M.; Falangone, F.; Cremon, C.; Marasco, G.; Stanghellini, V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front. Nutr. 2021, 8, 718356. Available online: https://pubmed.ncbi.nlm.nih.gov/34589512/ (accessed on 16 February 2024). [CrossRef] [PubMed]
- Yao, Y.; Cai, X.; Ye, Y.; Wang, F.; Chen, F.; Zheng, C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol. 2021, 12, 708472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McDade, T.W.; Georgiev, A.V.; Kuzawa, C.W. Trade-Offs between Acquired and Innate Immune Defenses in Humans; Oxford University Press: Oxford, UK, 2016; Volume 2016, pp. 1–16. Available online: https://pubmed.ncbi.nlm.nih.gov/26739325// (accessed on 12 September 2023).
- Zuo, T.; Zhang, F.; Aschenbrenner, D.; Youn Yoo, J. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe 2022, 3, e969–e983. Available online: https://www.thelancet.com/microbeVol (accessed on 11 July 2024).
- Scheffold, A.; Bacher, P.; LeibundGut-Landmann, S. T cell immunity to commensal fungi. Curr. Opin. Microbiol. 2020, 58, 116–123. [Google Scholar] [CrossRef]
- Leonardi, I.; Li, X.; Semon, A.; Li, D.; Doron, I.; Putzel, G.; Bar, A.; Prieto, D.; Rescigno, M.; McGovern, D.P.B.; et al. CX3CR1+, mononuclear phagocytes control immunity to intestinal fungi. Science 2018, 359, 232–236. [Google Scholar] [CrossRef]
- Bacher, P.; Hohnstein, T.; Beerbaum, E.; Röcker, M.; Blango, M.G.; Kaufmann, S.; Röhmel, J.; Eschenhagen, P.; Grehn, C.; Seidel, K.; et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019, 176, 1340–1355.e15. [Google Scholar] [CrossRef] [PubMed]
- Schönherr, F.A.; Sparber, F.; Kirchner, F.R.; Guiducci, E.; Trautwein-Weidner, K.; Gladiator, A.; Sertour, N.; Hetzel, U.; Le, G.T.T.; Pavelka, N.; et al. The intraspecies diversity of C. albicans triggers qualitatively and temporally distinct host responses that determine the balance between commensalism and pathogenicity. Mucosal Immunol. 2017, 10, 1335–1350. [Google Scholar] [CrossRef] [PubMed]
- Li, X.V.; Leonardi, I.; Iliev, I.D. Gut mycobiota in immunity and inflammatory disease. Immunity 2019, 50, 1365. [Google Scholar] [CrossRef]
- Leonardi, I.; Gao, I.H.; Lin, W.Y.; Allen, M.; Li, X.V.; Fiers, W.D.; De Celie, M.B.; Putzel, G.G.; Yantiss, R.K.; Johncilla, M.; et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 2022, 185, 831–846.e14. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, I.D. The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans. Curr. Clin. Microbiol. Rep. 2023, 10, 55–65. Available online: https://pubmed.ncbi.nlm.nih.gov/37151578/ (accessed on 13 February 2024). [CrossRef]
- Lange, T.; Kasper, L.; Gresnigt, M.S.; Brunke, S.; Hube, B. “Under Pressure”—How fungi evade, exploit, and modulate cells of the innate immune system. Semin. Immunol. 2023, 66, 101738. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.A.; Gaffen, S.L.; Hise, A.G.; Brown, G.D. Innate Defense against Fungal Pathogens. Cold Spring Harb. Perspect. Med. 2015, 5, a019620. [Google Scholar] [CrossRef]
- Palmeira, P.; Costa-Carvalho, B.T.; Arslanian, C.; Pontes, G.N.; Nagao, A.T.; Carneiro-Sampaio, M.M.S. Transfer of antibodies across the placenta and in breast milk from mothers on intravenous immunoglobulin. Pediatr. Allergy Immunol. 2009, 20, 528–535. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1399-3038.2008.00828.x (accessed on 14 February 2024). [CrossRef]
- Kinder, J.; Stelzer, I.; Arck, P.; Wang, S.S. Immunological implications of pregnancy-induced microchimerism. Nat. Rev. Immunol. 2017, 17, 483–494. Available online: https://www.nature.com/articles/nri.2017.38 (accessed on 14 February 2024). [CrossRef]
- Sereme, Y.; Toumi, E.; Saifi, E.; Faury, H.; Skurnik, D. Maternal immune factors involved in the prevention or facilitation of neonatal bacterial infections. Cell. Immunol. 2024, 395–396, 104796. Available online: https://pubmed.ncbi.nlm.nih.gov/38104514/ (accessed on 14 February 2024). [CrossRef]
- Forcada-Guex, M.; Borghini, A.; Pierrehumbert, B.; Ansermet, F.; Muller-Nix, C. Prematurity, maternal posttraumatic stress and consequences on the mother-infant relationship. Early Hum. Dev. 2011, 87, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Maltezou, H.C.; Magaziotou, I.; Dedoukou, X.; Eleftheriou, E.; Raftopoulos, V.; Michos, A.; Lourida, A.; Panopoulou, M.; Stamoulis, K.; Papaevangelou, V.; et al. Children and Adolescents with SARS-CoV-2 Infection: Epidemiology, Clinical Course and Viral Loads. Pediatr. Infect. Dis. J. 2020, 39, E388–E392. [Google Scholar] [CrossRef] [PubMed]
- Nagao, A.T.; Friedlander-Del Nero, D.; Arslanian, C.; Carneiro-Sampaio, M.M.S. Elevated levels and different repertoire profile of colostral anti-LPS antibodies may have a significant role in compensating newborn immunity. Scand. J. Immunol. 2001, 53, 602–609. [Google Scholar] [CrossRef]
- Kobayashi, R.; Mii, S.; Nakano, T.; Harada, H.; Eto, H. Neonatal lupus erythematosus in Japan: A review of the literature. Autoimmun. Rev. 2009, 8, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Bayhan, T.; Tavil, B.; Korkmaz, A.; Ünal, Ş.; Hanaliog¢lu, D.; Yiʇit, Ş.; Gümrük, F.; Çetin, M.; Yurdakök, M. Neonates born to mothers with immune thrombocytopenic purpura: A single-center experience of 20 years. Blood Coagul. Fibrinolysis 2016, 27, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Carbonare, C.B.; Carbonare, S.B.; Carneiro-Sampaio, M.M.S. Secretory immunoglobulin A obtained from pooled human colostrum and milk for oral passive immunization. Pediatr. Allergy Immunol. 2005, 16, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Basha, S.; Surendran, N.; Pichichero, M. Immune Responses in Neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.R.; Naidu, P.; Appios, A.; McGovern, N. The Ontogeny and Function of Placental Macrophages. Front. Immunol. 2021, 12, 771054. Available online: https://pubmed.ncbi.nlm.nih.gov/34745147/ (accessed on 14 February 2024).
- Arvola, M.; Gustafsson, E.; Svensson, L.; Jansson, L.; Holmdahl, R.; Heyman, B.; Okabe, M.; Mattsson, R. Immunoglobulin-secreting cells of maternal origin can be detected in B cell-deficient mice. Biol. Reprod. 2000, 63, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Fanaro, S.; Chierici, R.; Guerrini, P.; Vigi, V. Intestinal microflora in early infancy: Composition and development. Acta Pædiatr. 2003, 92, 48–55. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1651-2227.2003.tb00646.x (accessed on 14 February 2024). [CrossRef]
- Gur, T.L.; Shay, L.; Palkar, A.V.; Fisher, S.; Varaljay, V.A.; Dowd, S.; Bailey, M.T. Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain Behav. Immun. 2017, 64, 50–58. [Google Scholar] [CrossRef]
- Terasaki, L.S.; Schwarz, J.M. Effects of Moderate Prenatal Alcohol Exposure during Early Gestation in Rats on Inflammation across the Maternal-Fetal-Immune Interface and Later-Life Immune Function in the Offspring. J. Neuroimmune Pharmacol. 2016, 11, 680–692. Available online: https://pubmed.ncbi.nlm.nih.gov/27318824/ (accessed on 14 February 2024). [CrossRef] [PubMed]
- Bailey, M.T.; Dowd, S.E.; Galley, J.D.; Hufnagle, A.R.; Allen, R.G.; Lyte, M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011, 25, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Yeramilli, V.; Cheddadi, R.; Benjamin, H.; Martin, C. The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis. Microorganisms 2023, 11, 2206. Available online: https://pubmed.ncbi.nlm.nih.gov/37764050/ (accessed on 1 December 2023). [CrossRef] [PubMed]
- Xie, J.; Tang, C.; Hong, S.; Xin, Y.; Zhang, J.; Lin, Y.; Mao, L.; Xiao, Y.; Wu, Q.; Zhang, X.; et al. Maternal vaginal fluids play a major role in the colonization of the neonatal intestinal microbiota. Front. Cell. Infect. Microbiol. 2023, 13, 1065884. Available online: https://pubmed.ncbi.nlm.nih.gov/37009505/ (accessed on 14 February 2024). [CrossRef]
- Rutayisire, E.; Huang, K.; Liu, Y.; Tao, F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterol. 2016, 16, 86. Available online: https://pubmed.ncbi.nlm.nih.gov/27475754/ (accessed on 12 February 2024). [CrossRef] [PubMed]
- Robertson, R.C.; Manges, A.R.; Finlay, B.B.; Prendergast, A.J. The Human Microbiome and Child Growth—First 1000 Days and Beyond. Trends Microbiol. 2019, 27, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Golubkova, A.; Hunter, C.J. Development of the Neonatal Intestinal Barrier, Microbiome, and Susceptibility to NEC. Microorganisms 2023, 11, 1247. Available online: https://pubmed.ncbi.nlm.nih.gov/37317221/ (accessed on 29 October 2023). [CrossRef] [PubMed]
- Stappenbeck, T.S.; Hooper, L.V.; Gordon, J.I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 2002, 99, 15451–15455. [Google Scholar] [CrossRef]
- Shao, T.Y.; Ang, W.X.G.; Jiang, T.T.; Huang, F.S.; Andersen, H.; Kinder, J.M.; Pham, G.; Burg, A.R.; Ruff, B.; Gonzalez, T.; et al. Commensal Candida albicans Positively Calibrates Systemic Th17 Immunological Responses. Cell Host Microbe 2019, 25, 404–417.e6. Available online: https://pubmed.ncbi.nlm.nih.gov/30870622/ (accessed on 10 February 2024). [CrossRef]
- Nucci, M.; Anaissie, E. Revisiting the source of candidemia: Skin or gut? Clin. Infect. Dis. 2001, 33, 1959–1967. Available online: https://pubmed.ncbi.nlm.nih.gov/11702290/ (accessed on 10 February 2024). [CrossRef]
- Huang, H.; Jiang, J.; Wang, X.; Jiang, K.; Cao, H. Exposure to prescribed medication in early life and impacts on gut microbiota and disease development. EClinicalMedicine 2024, 68, 102428. Available online: https://pubmed.ncbi.nlm.nih.gov/38312240/ (accessed on 10 February 2024). [CrossRef]
- Wirkner, A.; Vogelgesang, A.; Hegge, I.; Lange, A.; Olbertz, D.M.; Gerber, B.; Heckmann, M.; Ruhnau, J. Preterm ETs Are Significantly Reduced Compared with Adults and Partially Reduced Compared with Term Infants. Children 2022, 9, 1522. Available online: https://pubmed.ncbi.nlm.nih.gov/36291458/ (accessed on 16 February 2024). [CrossRef]
- Maheshwari, A.; Kelly, D.R.; Nicola, T.; Ambalavanan, N.; Jain, S.K.; Murphyullrich, J.; Athar, M.; Shimamura, M.; Bhandari, V.; Aprahamian, C.; et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. Gastroenterology 2011, 140, 242–253. Available online: https://pubmed.ncbi.nlm.nih.gov/20875417/ (accessed on 16 February 2024). [CrossRef]
- Granger, C.L.; Lamb, C.A.; Embleton, N.D.; Beck, L.C.; Masi, A.C.; Palmer, J.M.; Stewart, C.J.; Berrington, J.E. Secretory immunoglobulin A in preterm infants: Determination of normal values in breast milk and stool. Pediatr. Res. 2022, 92, 979–986. Available online: https://pubmed.ncbi.nlm.nih.gov/34952939/ (accessed on 16 February 2024). [CrossRef] [PubMed]
- D’Enfert, C.; Kaune, A.K.; Alaban, L.R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Fróis-Martins, R.; Morelli, M.; et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEMS Microbiol. Rev. 2021, 45, 1–55. [Google Scholar]
- Wilson, A.; Bogie, B.; Chaaban, H.; Burge, K. The Nonbacterial Microbiome: Fungal and Viral Contributions to the Preterm Infant Gut in Health and Disease. Microorganisms 2023, 11, 909. Available online: https://pubmed.ncbi.nlm.nih.gov/37110332/ (accessed on 16 February 2024). [CrossRef]
- Strati, F.; Di Paola, M.; Stefanini, I.; Albanese, D.; Rizzetto, L.; Lionetti, P.; Calabrò, A.; Jousson, O.; Donati, C.; Cavalieri, D.; et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front. Microbiol. 2016, 7, 1227. [Google Scholar] [CrossRef] [PubMed]
- Gewolb, I.H.; Schwalbe, R.S.; Taciak, V.L.; Harrison, T.S.; Panigrahi, P. Stool microflora in extremely low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed. 1999, 80, F167–F173. Available online: https://pubmed.ncbi.nlm.nih.gov/10212075/ (accessed on 15 February 2024). [CrossRef]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010, 6, e1000713. Available online: https://pubmed.ncbi.nlm.nih.gov/20072605/ (accessed on 9 February 2024). [CrossRef]
- Boix-Amorós, A.; Puente-Sánchez, F.; du Toit, E.; Linderborg, K.M.; Zhang, Y.; Yang, B.; Salminen, S.; Isolauri, E.; Tamames, J.; Mira, A.; et al. Mycobiome Profiles in Breast Milk from Healthy Women Depend on Mode of Delivery, Geographic Location, and Interaction with Bacteria. Appl. Environ. Microbiol. 2019, 85, e02994-18. Available online: https://pubmed.ncbi.nlm.nih.gov/30824446/ (accessed on 1 December 2023). [CrossRef]
- Kowalewska, B.; Zorena, K.; Szmigiero-Kawko, M.; Wąż, P.; Myśliwiec, M. Higher diversity in fungal species discriminates children with type 1 diabetes mellitus from healthy control. Patient Prefer. Adherence 2016, 10, 591–599. Available online: https://pubmed.ncbi.nlm.nih.gov/27143864/ (accessed on 15 February 2024). [PubMed]
- Bradford, L.L.; Ravel, J. The vaginal mycobiome: A contemporary perspective on fungi in women’s health and diseases. Virulence 2017, 8, 342–351. Available online: https://pubmed.ncbi.nlm.nih.gov/27657355/ (accessed on 9 February 2024). [CrossRef]
- Bizzarro, M.J. Avoiding Unnecessary Antibiotic Exposure in Premature Infants: Understanding When (Not) to Start and When to Stop. JAMA Netw. Open 2018, 1, e180165. Available online: https://pubmed.ncbi.nlm.nih.gov/30646051/ (accessed on 16 February 2024). [CrossRef]
- James, S.A.; Phillips, S.; Telatin, A.; Baker, D.; Ansorge, R.; Clarke, P.; Hall, L.J.; Carding, S.R. Preterm Infants Harbour a Rapidly Changing Mycobiota That Includes Candida Pathobionts. J. Fungi 2020, 6, 273. Available online: https://www.mdpi.com/2309-608X/6/4/273 (accessed on 1 December 2023). [CrossRef]
- Mueller, N.T.; Bakacs, E.; Combellick, J.; Grigoryan, Z.; Dominguez-Bello, M.G. The infant microbiome development: Mom matters. Trends Mol. Med. 2015, 21, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Biagioli, V.; Volpedo, G.; Riva, A.; Mainardi, P.; Striano, P. From Birth to Weaning: A Window of Opportunity for Microbiota. Nutrients 2024, 16, 272. [Google Scholar] [CrossRef] [PubMed]
- Heisel, T.; Nyaribo, L.; Sadowsky, M.J.; Gale, C.A. Breastmilk and NICU surfaces are potential sources of fungi for infant mycobiomes. Fungal Genet. Biol. 2019, 128, 29–35. Available online: https://pubmed.ncbi.nlm.nih.gov/30905830/ (accessed on 1 December 2023). [CrossRef]
- Wojciechowska, D.; Salamon, S.; Wróblewska-Seniuk, K. It’s time to shed some light on the importance of fungi in neonatal intensive care units: What do we know about the neonatal mycobiome? Front. Microbiol. 2024, 15, 1355418. [Google Scholar] [CrossRef]
- Turunen, J.; Paalanne, N.; Reunanen, J.; Tapiainen, T.; Tejesvi, M.V. Development of gut mycobiome in infants and young children: A prospective cohort study. Pediatr. Res. 2023, 94, 486–494. Available online: https://www.nature.com/articles/s41390-023-02471-y (accessed on 15 February 2024). [CrossRef]
- Spatz, M.; Richard, M.L. Overview of the Potential Role of Malassezia in Gut Health and Disease. Front. Cell. Infect. Microbiol. 2020, 10, 201. [Google Scholar] [CrossRef]
- Schei, K.; Avershina, E.; Øien, T.; Rudi, K.; Follestad, T.; Salamati, S.; Ødegård, R.A. Early gut mycobiota and mother-offspring transfer. Microbiome 2017, 5, 107. [Google Scholar] [CrossRef] [PubMed]
- Markle, J.G.M.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoyM, K.D.; Macpherson, A.J.; Danska, J.S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 2013, 339, 1084–1088. Available online: https://pubmed.ncbi.nlm.nih.gov/23328391/ (accessed on 13 February 2024). [CrossRef]
- Bolnick, D.I.; Snowberg, L.K.; Hirsch, P.E.; Lauber, C.L.; Org, E.; Parks, B.; Lusis, A.J.; Knight, R.; Caporaso, J.G.; Svanbäck, R. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 2014, 5, 4500. Available online: https://pubmed.ncbi.nlm.nih.gov/25072318/ (accessed on 13 February 2024). [CrossRef]
- Gutierrez, M.W.; Mercer, E.M.; Moossavi, S.; Laforest-Lapointe, I.; Reyna, M.E.; Becker, A.B.; Simons, E.; Mandhane, P.J.; Turvey, S.E.; Moraes, T.J.; et al. Maturational patterns of the infant gut mycobiome are associated with early-life body mass index. Cell Rep. Med. 2023, 4, 100928. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.T.; Idrees, M.; Abdullah, I.; Ying, W.; Zaki, A.H.; Bao, H. Antidiabetic Properties of the Red Belt Conk Medicinal Mushroom Fomitopsis pinicola (Agaricomycetes) Extracts on Streptozotocin-Induced Diabetic Rats. Int. J. Med. Mushrooms 2020, 22, 731–741. Available online: https://www.dl.begellhouse.com/journals/708ae68d64b17c52,246230ea323dbb2b,0f5578ad76dfd1ee.html (accessed on 11 February 2024). [CrossRef]
- Hoskin-Parr, L.; Teyhan, A.; Blocker, A.; Henderson, A.J.W. Antibiotic exposure in the first two years of life and development of asthma and other allergic diseases by 7.5 yr: A dose-dependent relationship. Pediatr. Allergy Immunol. 2013, 24, 762–771. Available online: https://pubmed.ncbi.nlm.nih.gov/24299467/ (accessed on 10 February 2024). [CrossRef]
- Kronman, M.P.; Zaoutis, T.E.; Haynes, K.; Feng, R.; Coffin, S.E. Antibiotic exposure and IBD development among children: A population-based cohort study. Pediatrics 2012, 130, e794–e803. Available online: https://pubmed.ncbi.nlm.nih.gov/23008454/ (accessed on 10 February 2024). [CrossRef]
- Arrieta, M.C.; Arévalo, A.; Stiemsma, L.; Dimitriu, P.; Chico, M.E.; Loor, S.; Vaca, M.; Boutin, R.C.T.; Morien, E.; Jin, M.; et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J. Allergy Clin. Immunol. 2018, 142, 424. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.S.; Benjamin, D.K.; Smith, P.B. The epidemiology and diagnosis of invasive candidiasis among premature infants. Clin. Perinatol. 2015, 42, 105–117. Available online: https://pubmed.ncbi.nlm.nih.gov/25677999/ (accessed on 16 February 2024). [CrossRef]
- Wheeler, M.L.; Limon, J.J.; Bar, A.S.; Leal, C.A.; Gargus, M.; Tang, J.; Brown, J.; Funari, V.A.; Wang, H.L.; Crother, T.R.; et al. Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host Microbe 2016, 19, 865–873. Available online: https://pubmed.ncbi.nlm.nih.gov/27237365/ (accessed on 8 February 2024). [CrossRef]
- Gibson, M.K.; Crofts, T.S.; Dantas, G. Antibiotics and the developing infant gut microbiota and resistome. Curr. Opin. Microbiol. 2015, 27, 51–56. Available online: https://pubmed.ncbi.nlm.nih.gov/26241507/ (accessed on 1 December 2023). [CrossRef] [PubMed]
- Esaiassen, E.; Fjalstad, J.W.; Juvet, L.K.; van den Anker, J.N.; Klingenberg, C. Antibiotic exposure in neonates and early adverse outcomes: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 1858–1870. Available online: https://pubmed.ncbi.nlm.nih.gov/28369594/ (accessed on 16 February 2024). [CrossRef] [PubMed]
- Ward, T.L.; Dominguez-Bello, M.G.; Heisel, T.; Al-Ghalith, G.; Knights, D.; Gale, C.A. Development of the Human Mycobiome over the First Month of Life and across Body Sites. mSystems 2018, 3, e00140-17. Available online: https://pubmed.ncbi.nlm.nih.gov/29546248/ (accessed on 8 February 2024). [CrossRef] [PubMed]
- Nash, A.K.; Auchtung, T.A.; Wong, M.C.; Smith, D.P.; Gesell, J.R.; Ross, M.C.; Stewart, C.J.; Metcalf, G.A.; Muzny, D.M.; Gibbs, R.A.; et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 2017, 5, 153. Available online: https://pubmed.ncbi.nlm.nih.gov/29178920/ (accessed on 1 December 2023). [CrossRef] [PubMed]
- Boix-Amorós, A.; Martinez-Costa, C.; Querol, A.; Collado, M.C.; Mira, A. Multiple Approaches Detect the Presence of Fungi in Human Breastmilk Samples from Healthy Mothers. Sci. Rep. 2017, 7, 16829. Available online: https://pubmed.ncbi.nlm.nih.gov/29026146/ (accessed on 8 February 2024). [CrossRef] [PubMed]
- Schei, K.; Simpson, M.R.; Avershina, E.; Rudi, K.; Øien, T.; Júlíusson, P.B.; Underhill, D.; Salamati, S.; Ødegård, R.A. Early Gut Fungal and Bacterial Microbiota and Childhood Growth. Front. Pediatr. 2020, 8, 572538. [Google Scholar] [CrossRef] [PubMed]
- Auchtung, T.A.; Stewart, C.J.; Smith, D.P.; Triplett, E.W.; Agardh, D.; Hagopian, W.A.; Ziegler, A.G.; Rewers, M.J.; She, J.X.; Toppari, J.; et al. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: The TEDDY study. Nat. Commun. 2022, 13, 3151. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.E.; Sitarik, A.R.; Havstad, S.; Lin, D.L.; Levan, S.; Fadrosh, D.; Panzer, A.R.; LaMere, B.; Rackaityte, E.; Lukacs, N.W.; et al. Neonatal Gut Microbiota Associates with Childhood Multisensitized Atopy and T Cell Differentiation; Nature Publishing Group: Berlin, Germany, 2016; Volume 22, pp. 1187–1191. Available online: https://www.nature.com/articles/nm.4176 (accessed on 8 February 2024).
- Boutin, R.C.T.; Sbihi, H.; McLaughlin, R.J.; Hahn, A.S.; Konwar, K.M.; Loo, R.S.; Dai, D.; Petersen, C.; Brinkman, F.S.L.; Winsor, G.L.; et al. Composition and Associations of the Infant Gut Fungal Microbiota with Environmental Factors and Childhood Allergic Outcomes. mBio 2021, 12, e0339620. Available online: https://pubmed.ncbi.nlm.nih.gov/34060330/ (accessed on 2 December 2023). [CrossRef]
- Wampach, L.; Heintz-Buschart, A.; Hogan, A.; Muller, E.E.L.; Narayanasamy, S.; Laczny, C.C.; Hugerth, L.W.; Bindl, L.; Bottu, J.; Andersson, A.F.; et al. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life. Front. Microbiol. 2017, 8, 738. Available online: https://pubmed.ncbi.nlm.nih.gov/28512451/ (accessed on 12 February 2024). [CrossRef]
- Amenyogbe, N.; Adu-Gyasi, D.; Enuameh, Y.; Asante, K.P.; Konadu, D.G.; Kaali, S.; Dosoo, D.; Panigrahi, P.; Kollmann, T.R.; Mohn, W.W.; et al. Bacterial and Fungal Gut Community Dynamics Over the First 5 Years of Life in Predominantly Rural Communities in Ghana. Front. Microbiol. 2021, 12, 664407. [Google Scholar] [CrossRef]
- Szóstak, N.; Handschuh, L.; Samelak-Czajka, A.; Tomela, K.; Schmidt, M.; Pruss, Ł.; Milanowska-Zabel, K.; Kozlowski, P.; Philips, A. Host Factors Associated with Gut Mycobiome Structure. mSystems 2023, 8, e0098622. [Google Scholar] [CrossRef] [PubMed]
- Erb-Downward, J.R.; Noverr, M.C. Characterization of prostaglandin E2 production by Candida albicans. Infect. Immun. 2007, 75, 3498–3505. Available online: https://pubmed.ncbi.nlm.nih.gov/17470538/ (accessed on 8 February 2024). [CrossRef]
- Kim, Y.G.; Udayanga, K.G.S.; Totsuka, N.; Weinberg, J.B.; Núñez, G.; Shibuya, A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe 2014, 15, 95–102. Available online: https://pubmed.ncbi.nlm.nih.gov/24439901/ (accessed on 8 February 2024). [CrossRef]
- Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Fungal microbiota dysbiosis in IBD. Gut 2017, 66, 1039–1048. Available online: https://pubmed.ncbi.nlm.nih.gov/26843508/ (accessed on 12 February 2024). [CrossRef] [PubMed]
- Li, Q.; Wang, C.; Tang, C.; He, Q.; Li, N.; Li, J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J. Clin. Gastroenterol. 2014, 48, 513–523. Available online: https://pubmed.ncbi.nlm.nih.gov/24275714/ (accessed on 11 February 2024). [CrossRef]
- Gosiewski, T.; Salamon, D.; Szopa, M.; Sroka, A.; Malecki, M.T.; Bulanda, M. Quantitative evaluation of fungi of the genus Candida in the feces of adult patients with type 1 and 2 diabetes—A pilot study. Gut. Pathog. 2014, 6, 43. Available online: https://pubmed.ncbi.nlm.nih.gov/25328543/ (accessed on 11 February 2024). [CrossRef]
- Luan, C.; Xie, L.; Yang, X.; Miao, H.; Lv, N.; Zhang, R.; Xiao, X.; Hu, Y.; Liu, Y.; Wu, N.; et al. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci. Rep. 2015, 5, 7980. Available online: https://pubmed.ncbi.nlm.nih.gov/25613490/ (accessed on 12 February 2024). [CrossRef] [PubMed]
- Mar Rodríguez, M.; Pérez, D.; Javier Chaves, F.; Esteve, E.; Marin-Garcia, P.; Xifra, G.; Vendrell, J.; Jové, M.; Pamplona, R.; Ricart, W.; et al. Obesity changes the human gut mycobiome. Sci. Rep. 2015, 5, 14600. [Google Scholar] [CrossRef]
- Sun, S.; Sun, L.; Wang, K.; Qiao, S.; Zhao, X.; Hu, X.; Chen, W.; Zhang, S.; Li, H.; Dai, H.; et al. The Gut Commensal Fungus, Candida Parapsilosis, Promotes High Fat-Diet Induced Obesity in Mice; Nature Publishing Group: London, UK, 2021; Volume 4. [Google Scholar]
- Kalbermatter, C.; Fernandez Trigo, N.; Christensen, S.; Ganal-Vonarburg, S.C. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front. Immunol. 2021, 12, 683022. Available online: https://pubmed.ncbi.nlm.nih.gov/34054875/ (accessed on 12 February 2024). [CrossRef]
- Chen, T.; Qin, Y.; Chen, M.; Zhang, Y.; Wang, X.; Dong, T.; Chen, G.; Sun, X.; Lu, T.; White, R.A.; et al. Gestational diabetes mellitus is associated with the neonatal gut microbiota and metabolome. BMC Med. 2021, 19, 120. Available online: https://pubmed.ncbi.nlm.nih.gov/34039350/ (accessed on 12 February 2024). [CrossRef]
- Hoffmann, C.; Dollive, S.; Grunberg, S.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS ONE 2013, 8, e66019. Available online: https://pubmed.ncbi.nlm.nih.gov/23799070/ (accessed on 15 February 2024). [CrossRef] [PubMed]
- Gouba, N.; Raoult, D.; Drancourt, M. Gut microeukaryotes during anorexia nervosa: A case report. BMC Res. Notes 2014, 7, 33. Available online: https://pubmed.ncbi.nlm.nih.gov/24418238/ (accessed on 15 February 2024). [CrossRef] [PubMed]
- Froń, A.; Orczyk-Pawiłowicz, M. Understanding the Immunological Quality of Breast Milk in Maternal Overweight and Obesity. Nutrients 2023, 15, 5016. [Google Scholar] [CrossRef]
- Plaza-Díaz, J.; Fontana, L.; Gil, A. Human Milk Oligosaccharides and Immune System Development. Nutrients 2018, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Pang, H.; Shao, K.; Yang, Z.; Li, S.; He, N. The function of human milk oligosaccharides and their substitute oligosaccharides as probiotics in gut inflammation. Food Funct. 2023, 14, 7780–7798. Available online: https://pubmed.ncbi.nlm.nih.gov/37575049/ (accessed on 12 February 2024). [CrossRef] [PubMed]
- Bode, L.; McGuire, M.M.K.; Rodriguez, J.M.; Geddes, D.T.; Hassiotou, F.; Hartmann, P.E.; McGuire, M.K. It’s alive: Microbes and cells in human milk and their potential benefits to mother and infant. Adv. Nutr. 2014, 5, 571–573. Available online: https://pubmed.ncbi.nlm.nih.gov/25469400/ (accessed on 12 February 2024). [CrossRef] [PubMed]
- Moossavi, S.; Sepehri, S.; Robertson, B.; Bode, L.; Goruk, S.; Field, C.J.; Lix, L.M.; de Souza, R.J.; Becker, A.B.; Mandhane, P.J.; et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe 2019, 25, 324–335.e4. Available online: http://www.cell.com/article/S1931312819300496/fulltext (accessed on 12 February 2024). [CrossRef]
- Cernadas, J.M.C. Colostrum and breast milk in the neonatal period: The benefits keep adding up. Arch. Argent. Pediatr. 2018, 116, 234–235. Available online: https://pubmed.ncbi.nlm.nih.gov/30016015/ (accessed on 12 February 2024).
- Lapidaire, W.; Lucas, A.; Clayden, J.D.; Clark, C.; Fewtrell, M.S. Human milk feeding and cognitive outcome in preterm infants: The role of infection and NEC reduction. Pediatr. Res. 2022, 91, 1207–1214. Available online: https://pubmed.ncbi.nlm.nih.gov/34168271/ (accessed on 12 February 2024). [CrossRef]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-eclampsia: Pathogenesis, novel diagnostics and therapies. Nat. Rev. Nephrol. 2019, 15, 275–289. Available online: https://pubmed.ncbi.nlm.nih.gov/30792480/ (accessed on 10 February 2024). [CrossRef]
- Ahmadian, E.; Rahbar Saadat, Y.; Hosseiniyan Khatibi, S.M.; Nariman-Saleh-Fam, Z.; Bastami, M.; Zununi Vahed, F.; Ardalan, M.; Zununi Vahed, S. Pre-Eclampsia: Microbiota possibly playing a role. Pharmacol. Res. 2020, 155, 104692. Available online: https://pubmed.ncbi.nlm.nih.gov/32070720/ (accessed on 10 February 2024). [CrossRef] [PubMed]
- Chen, X.; Li, P.; Liu, M.; Zheng, H.; He, Y.; Chen, M.X.; Tang, W.; Yue, X.; Huang, Y.; Zhuang, L.; et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut 2020, 69, 513–522. Available online: https://pubmed.ncbi.nlm.nih.gov/31900289/ (accessed on 10 February 2024). [CrossRef] [PubMed]
- Paterson, M.J.; Oh, S.; Underhill, D.M. Host-microbe Interactions: Commensal Fungi in the Gut. Curr. Opin. Microbiol. 2017, 40, 131. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Dai, Y.; Lei, Y.; Wang, Z.; Liu, D.; Li, R.; Shen, L.; Gu, N.; Zheng, M.; Zhu, X.; et al. Upregulation of CD81 in trophoblasts induces an imbalance of Treg/Th17 cells by promoting IL-6 expression in preeclampsia. Cell. Mol. Immunol. 2019, 16, 40–50. Available online: https://pubmed.ncbi.nlm.nih.gov/30487550/ (accessed on 10 February 2024). [CrossRef] [PubMed]
- Zou, H.; Zou, W.; Li, Q.; Chen, Z.; Shi, Y.; Li, C. Changes of gut mycobiota in the third trimester of pregnant women with preeclampsia. J. Matern Fetal Neonatal Med. 2023, 36, 2228964. Available online: https://pubmed.ncbi.nlm.nih.gov/37408107/ (accessed on 1 December 2023). [CrossRef] [PubMed]
- Galley, J.D.; Mashburn-Warren, L.; Blalock, L.C.; Lauber, C.L.; Carroll, J.E.; Ross, K.M.; Hobel, C.; Coussons-Read, M.; Dunkel Schetter, C.; Gur, T.L. Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances. Brain Behav. Immun. 2023, 107, 253–264. Available online: https://pubmed.ncbi.nlm.nih.gov/36240906/ (accessed on 12 February 2024). [CrossRef] [PubMed]
- Agrawal, M.; Poulsen, G.; Colombel, J.F.; Allin, K.H.; Jess, T. Maternal antibiotic exposure during pregnancy and risk of IBD in offspring: A population-based cohort study. Gut 2023, 72, 804–805. Available online: https://pubmed.ncbi.nlm.nih.gov/35676084/ (accessed on 12 February 2024). [CrossRef] [PubMed]
- Fu, Y.; Gou, W.; Wu, P.; Lai, Y.; Liang, X.; Zhang, K.; Shuai, M.; Tang, J.; Miao, Z.; Chen, J.; et al. Landscape of the gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health. Gut 2024, 73, 1302–1312. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, L.; Deng, T.K.; Chiu, W.H.; Ming, W.; Xu, C.; Xiao, X. Microbiota of pregnancy, placenta and newborns in the third trimester: A randomized controlled study. Heliyon 2024, 10, e24698. [Google Scholar] [CrossRef]
- Panzer, J.J.; Romero, R.; Greenberg, J.M.; Winters, A.D.; Galaz, J.; Gomez-Lopez, N.; Theis, K.R. Is there a placental microbiota? A critical review and re-analysis of published placental microbiota datasets. BMC Microbiol. 2023, 23, 76. Available online: https://pubmed.ncbi.nlm.nih.gov/36934229/ (accessed on 12 February 2024). [CrossRef]
- Li, Y.; Toothaker, J.M.; Ben-Simon, S.; Ozeri, L.; Schweitzer, R.; McCourt, B.T.; McCourt, C.C.; Werner, L.; Snapper, S.B.; Shouval, D.S.; et al. In utero human intestine harbors unique metabolome, including bacterial metabolites. JCI Insight 2020, 5, e138751. Available online: https://pubmed.ncbi.nlm.nih.gov/33001863/ (accessed on 12 February 2024). [CrossRef] [PubMed]
- Dinleyici, M.; Pérez-Brocal, V.; Arslanoglu, S.; Aydemir, O.; Ozumut, S.S.; Tekin, N.; Vandenplas, Y.; Moya, A.; Dinleyici, E.C. Human milk mycobiota composition: Relationship with gestational age, delivery mode, and birth weight. Benef. Microbes 2020, 11, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, R.; Mallikarjuna, S. Soil microbiome influences human health in the context of climate change. Future Microbiol. 2023, 18, 845–859. Available online: https://pubmed.ncbi.nlm.nih.gov/37668469/ (accessed on 21 October 2023). [CrossRef] [PubMed]
- Nurkolis, F.; Mayulu, N.; Yasmine, N.; Puspaningtyas, D.S.; Taslim, N.A. Human activities and changes in the gut microbiome: A perspective. Hum. Nutr. Metab. 2022, 30, 200165. [Google Scholar] [CrossRef]
- Donnelly, M.C.; Talley, N.J. Effects of climate change on digestive health and preventative measures. Gut 2023, 72, 2199–2201. Available online: https://gut.bmj.com/content/72/12/2199 (accessed on 14 February 2024). [CrossRef]
- Zhang, A.; de Ángel Solá, D.; Acevedo Flores, M.; Cao, L.; Wang, L.; Kim, J.G.; Tarr, P.I.; Warner, B.B.; Rosario Matos, N.; Wang, L. Infants exposed in utero to Hurricane Maria have gut microbiomes with reduced diversity and altered metabolic capacity. mSphere 2023, 8, e0013423. Available online: https://pubmed.ncbi.nlm.nih.gov/37754563/ (accessed on 14 February 2024). [CrossRef]
- Wang, D.; Rui, Y.; Ding, K.; Cui, X.; Hao, Y.; Tang, L.; Pang, Z.; Zhang, B.; Zhou, S.; Wang, K. Precipitation drives the biogeographic distribution of soil fungal community in Inner Mongolian temperate grasslands. J. Soils Sediments 2018, 18, 222–228. [Google Scholar] [CrossRef]
- Omary, M.B.; Leddin, D.; Metz, G.; Veitch, A.M.; El-Omar, E.M.; Macedo, G.; Perman, M.L. World Gastroenterology Organisation—Gut commentary series on digestive health and climate change. Gut 2023, 72, 2193–2196. Available online: https://gut.bmj.com/content/72/12/2193 (accessed on 14 February 2024). [CrossRef]
- Tropini, C. How the Physical Environment Shapes the Microbiota. mSystems 2021, 6, e0067521. Available online: https://pubmed.ncbi.nlm.nih.gov/34427510/ (accessed on 21 October 2023). [CrossRef]
- G-Santoyo, I.; Ramírez-Carrillo, E.; Sanchez, J.D.; López-Corona, O. Potential long consequences from internal and external ecology: Loss of gut microbiota antifragility in children from an industrialized population compared with an indigenous rural lifestyle. J. Dev. Orig. Health Dis. 2023, 14, 469–480. Available online: https://pubmed.ncbi.nlm.nih.gov/37222148/ (accessed on 14 February 2024). [CrossRef]
- Nakayama, J.; Watanabe, K.; Jiang, J.; Matsuda, K.; Chao, S.H.; Haryono, P.; La-Ongkham, O.; Sarwoko, M.A.; Sujaya, I.N.; Zhao, L.; et al. Diversity in gut bacterial community of school-age children in Asia. Sci. Rep. 2015, 5, 6530. Available online: https://pubmed.ncbi.nlm.nih.gov/25703686/ (accessed on 15 February 2024). [CrossRef] [PubMed]
- Zhao, G.; Xie, L.; Wu, Y.; Wang, B.; Teng, W.; Sun, Z.; Kao, Q.; Liu, W.; Pi, X.; Ma, H. Effects of urbanization and lifestyle habits on the intestinal microbiota of adolescents in eastern China. Front. Microbiol. 2023, 14, 989303. Available online: https://pubmed.ncbi.nlm.nih.gov/37378282/ (accessed on 14 February 2024). [CrossRef] [PubMed]
- Kabwe, M.H.; Vikram, S.; Mulaudzi, K.; Jansson, J.K.; Makhalanyane, T.P. The gut mycobiota of rural and urban individuals is shaped by geography. BMC Microbiol. 2020, 20, 257. Available online: https://pubmed.ncbi.nlm.nih.gov/32807105/ (accessed on 15 February 2024). [CrossRef] [PubMed]
- Morandini, F.; Perez, K.; Brot, L.; Seck, S.M.; Tibère, L.; Grill, J.P.; Macia, E.; Seksik, P. Urbanization associates with restricted gut microbiome diversity and delayed maturation in infants. iScience 2023, 26, 108136. Available online: https://pubmed.ncbi.nlm.nih.gov/37876823/ (accessed on 14 February 2024). [CrossRef] [PubMed]
- Kortman, G.A.M.; Timmerman, H.M.; Schaafsma, A.; Stoutjesdijk, E.; Muskiet, F.A.J.; Nhien, N.V.; van Hoffen, E.; Boekhorst, J.; Nauta, A. Mothers’ Breast Milk Composition and Their Respective Infant’s Gut Microbiota Differ between Five Distinct Rural and Urban Regions in Vietnam. Nutrients 2023, 15, 4802. Available online: https://pubmed.ncbi.nlm.nih.gov/38004196/ (accessed on 14 February 2024). [CrossRef] [PubMed]
- Capurso, G.; Lahner, E. The interaction between smoking, alcohol and the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 579–588. Available online: https://pubmed.ncbi.nlm.nih.gov/29195678/ (accessed on 15 February 2024). [CrossRef]
- Nam, Y.; Do Chang, H.W.; Kim, K.H.; Roh, S.W.; Kim, M.S.; Jung, M.J.; Lee, S.W.; Kim, J.Y.; Yoon, J.H.; Bae, J.W. Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people. J. Microbiol. 2008, 46, 491–501. Available online: https://pubmed.ncbi.nlm.nih.gov/18974948/ (accessed on 15 February 2024). [CrossRef] [PubMed]
- Hamad, I.; Sokhna, C.; Raoult, D.; Bittar, F. Molecular detection of eukaryotes in a single human stool sample from Senegal. PLoS ONE 2012, 7, e40888. Available online: https://pubmed.ncbi.nlm.nih.gov/22808282/ (accessed on 15 February 2024). [CrossRef]
- Rodriguez, K.A.; Gurung, M.; Talatala, R.; Rearick, J.R.; Ruebel, M.L.; Stephens, K.E.; Yeruva, L. The Role of Early Life Gut Mycobiome on Child Health. Adv. Nutr. 2024, 15, 100185. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpakosi, A.; Sokou, R.; Theodoraki, M.; Kaliouli-Antonopoulou, C. Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors. Life 2024, 14, 902. https://doi.org/10.3390/life14070902
Mpakosi A, Sokou R, Theodoraki M, Kaliouli-Antonopoulou C. Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors. Life. 2024; 14(7):902. https://doi.org/10.3390/life14070902
Chicago/Turabian StyleMpakosi, Alexandra, Rozeta Sokou, Martha Theodoraki, and Christiana Kaliouli-Antonopoulou. 2024. "Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors" Life 14, no. 7: 902. https://doi.org/10.3390/life14070902
APA StyleMpakosi, A., Sokou, R., Theodoraki, M., & Kaliouli-Antonopoulou, C. (2024). Neonatal Gut Mycobiome: Immunity, Diversity of Fungal Strains, and Individual and Non-Individual Factors. Life, 14(7), 902. https://doi.org/10.3390/life14070902