Evaluation of Antimicrobial Resistance Patterns of Pseudomonas aeruginosa Strains Isolated among COVID-19 Patients in Brazil Typed by Fourier-Transform Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Identification by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Proteomic Characterization
2.3. 16S rRNA Gene Sequencing Analysis
2.4. Typing by FTIR Spectroscopy Analysis
2.5. Antimicrobial Susceptibility Profile
2.6. Biofilm Formation and Its Tolerance to Disinfectants
3. Results
3.1. Identification and Typing
3.2. Evaluation of Antimicrobial Susceptibility Profile
3.3. Evaluation of Biofilm Formation and Its Tolerance to Disinfectants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulusu, C.P.; Manivannan, B.; Raman, S.S.; Singh, S.; Khamari, B.; Lama, M.; Peketi, A.S.K.; Datta, C.; Prasad, K.N.; Nagaraja, V.; et al. Localized outbreaks of Pseudomonas aeruginosa belonging to international high-risk clones in a south Indian hospital. J. Med. Microbiol. 2022, 71, 29–40. [Google Scholar]
- Albin, O.R.; Kaye, K.S.; McCreary, E.K.; Pogue, J.M. Less Is More? Antibiotic Treatment Duration in Pseudomonas aeruginosa Ventilator-Associated Pneumonia. Clin. Infect. Dis. 2023, 76, 745–749. [Google Scholar]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Expected Resistant and Susceptible Phenotypes; EUCAST: Copenhagen, Denmark, 2021. [Google Scholar]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [PubMed]
- Martak, D.; Valot, B.; Sauget, M.; Cholley, P.; Thouverez, M.; Bertrand, X.; Hocquet, D. Fourier-Transform InfraRed Spectroscopy can quickly type Gram-negative bacilli responsible for hospital outbreaks. Front. Microbiol. 2019, 10, 1440. [Google Scholar]
- Guerrero-Lozano, I.; Galán-Sánchez, F.; Rodríguez-Iglesias, M. Fourier transform infrared spectroscopy as a new tool for surveillance in local stewardship antimicrobial program: A retrospective study in a nosocomial Acinetobacter baumannii outbreak. Braz. J. Microbiol. 2022, 53, 1349–1353. [Google Scholar]
- Muchaamba, F.; Stephan, F. A Comprehensive Methodology for Microbial Strain Typing Using Fourier-Transform Infrared Spectroscopy. Methods Protoc. 2024, 7, 48. [Google Scholar] [CrossRef]
- Oho, M.; Nagasawa, Z.; Funashima, Y.; Ueda, O.; Watamabe, S.; Cui, L.; Miyamoto, H.; Sueoka, E. Correlation of Strain Classification with IR Biotyper and Molecular Epidemiological Method of Pseudomonas aeruginosa. J. Assoc. Rapid Method Autom. Microbiol. 2021, 31, 29–40. [Google Scholar]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [PubMed]
- Zhu, X.J.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Coinfection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar]
- Pericolini, E.; Colombari, B.; Ferretti, G.; Iseppi, R.; Ardizzoni, A.; Girardis, M.; Sala, A.; Peppoloni, S.; Blasi, E. Real-time monitoring of Pseudomonas aeruginosa biofilm formation on endotracheal tubes in vitro. BMC Microbiol. 2018, 18, 84. [Google Scholar]
- Gaspari, R.; Spinazzola, G.; Teofili, L.; Avolio, A.W.; Fiori, B.; Maresca, G.M.; Spanu, T.; Nicolotti, N.; De Pascale, G.; Antonelli, M. Protective effect of SARS-CoV-2 preventive measures against ESKAPE and Escherichia coli infections. Eur. J. Clin. Investig. 2021, 51, e13687-94. [Google Scholar]
- Qu, J.; Cai, Z.; Liu, Y.; Duan, X.; Han, S.; Liu, J.; Zhu, Y.; Jiang, Z.; Zhang, Y.; Zhuo, C.; et al. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer. Front. Cell. Infect. Microbiol. 2021, 11, 641920. [Google Scholar]
- Yoon, S.H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar]
- Tamura, K. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar]
- Vasconcellos, L.; Silva, S.V.; da Costa, L.V.; da Silva Lage de Miranda, R.V.; Reis, C.M.F.D.; da Silva Braga, L.M.P.; Silva, C.; Conceição, G.; Mattoso, J.; Silva, I.B.; et al. Phenotypical and molecular characterization of Acinetobacter spp. isolated from a pharmaceutical facility. Lett. Appl. Microbiol. 2023, 76, 101. [Google Scholar]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci,” APMIS: Acta pathologica, microbiologica, et immunologica Scandinavica. APMIS 2007, 115, 891–899. [Google Scholar] [PubMed]
- Chuang, Y.C.; Sheng, W.H.; Li, S.Y.; Lin, Y.C.; Wang, J.T.; Chen, Y.C.; Chang, S.C. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with Acinetobacter bacteremia. Clin. Infect. Dis. 2011, 52, 352–360. [Google Scholar]
- Rudra, B.; Duncan, L.; Shah, A.J.; Shah, H.N.; Gupta, R.S. Phylogenomic and comparative genomic studies robustly demarcate two distinct clades of Pseudomonas aeruginosa strains: Proposal to transfer the strains from an outlier clade to a novel species Pseudomonas paraeruginosa sp. nov. Int. J. Syst. Evol. Microbiol. 2022, 72, 11–24. [Google Scholar]
- Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25, 4775. [Google Scholar] [CrossRef]
- Mulet, X.; Fernández-Esgueva, M.; Norte, C.; Zamorano, L.; del Barrio-Tofiño, E.; Oliver, A.; GEMARA-SEIMC-REIPI Pseudomonas study group. Validation of MALDI-TOF for the early detection of the ST175 high-risk clone of Pseudomonas aeruginosa in clinical isolates belonging to a Spanish nationwide multicenter study. Enferm. Infecc. Microbiol. Clin. 2021, 39, 279–282. [Google Scholar]
- Wamer, C.N.; Morse, C.N.; Gadient, J.N.; Dodson, T.A.; Carlson, E.A.; Prestwich, E.G. Comparison of Small Biomolecule Ionization and Fragmentation in Pseudomonas aeruginosa Using Common MALDI Matrices. J. Am. Soc. Mass. Spectrom. 2023, 34, 355–365. [Google Scholar]
- Souza, P.A.; Miranda, R.V.S.L.; Santos, M.C.S.; Costa, L.V.; Silva, R.P.P.S.; Miranda, C.A.C.; Bôas, M.H.S.; Brandão, M.L.L. Evaluation of Fourier-Transform Infrared Spectroscopy as a rapid method to type Stenotrophomonas maltophilia strains isolated from pharmaceutical industry. In Proceedings of the 8th International Symposium on Immunobiologicals, Rio de Janeiro, Brazil, 8–10 May 2024; Available online: https://www.arca.fiocruz.br/handle/icict/63778 (accessed on 15 August 2024).
- Ng, Q.X.; Ong, N.Y.; Lee DY, X.; Yau, C.E.; Lim, Y.L.; Kwa AL, H.; Tan, B.H. Trends in Pseudomonas aeruginosa (P. aeruginosa) bacteremia during the COVID-19 pandemic: A systematic review. Antibiotics 2023, 12, 409. [Google Scholar] [CrossRef]
- Idowu, T.; Ammeter, D.; Brizuela, M.; Jackson, G.; Alam, S.; Schweizer, F. Overcoming β-Lactam resistance in Pseudomonas aeruginosa using non-canonical tobramycin-based antibiotic adjuvants. Bioorg. Med. Chem. Lett. 2020, 30, 127575. [Google Scholar]
- WHO. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Halat, D.H. Moubareck CA, The Intriguing Carbapenemases of Pseudomonas aeruginosa: Current Status, Genetic Profile, and Global Epidemiology. Yale J. Biol. Med. 2022, 95, 507–515. [Google Scholar]
- Mizdal, C.R. Molecular docking, and anti-biofilm activity of gold-complexed sulfonamides on Pseudomonas aeruginosa. Microb. Pathog. 2018, 125, 393–400. [Google Scholar]
- Haghi, F.; Zeighami, H.; Monazami, A.; Toutouchi, F.; Nazaralian, S.; Naderi, G. Diversity of virulence genes in multidrug resistant Pseudomonas aeruginosa isolated from burn wound infections. Microb. Pathog. 2018, 115, 251–256. [Google Scholar]
- Shiralizadeh, S.; Keramat, F.; Hashemi, S.H.; Majzoobi, M.M.; Azimzadeh, M.; Alikhani, M.S.; Karami, P.; Rahimi, Z. Investigation of antimicrobial resistance patterns and molecular typing of Pseudomonas aeruginosa isolates among Coronavirus disease-19 patients. BMC Microbiol. 2023, 23, 84. [Google Scholar]
- Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Cont. 2018, 7, 212527. [Google Scholar]
- Patel, H.; Gajjar, D. Cell adhesion and twitching motility influence strong biofilm formation in Pseudomonas aeruginosa. Biofouling 2022, 38, 235–249. [Google Scholar] [PubMed]
- Karash, S.; Yahr, T.L. Genome-Wide Identification of Pseudomonas aeruginosa Genes Important for Desiccation Tolerance on Inanimate Surfaces. mSystems 2022, 7, e0011422. [Google Scholar]
Strain ID | Source | Patient ID | Local | Origin | Date | MALDI-TOF MS a | |
---|---|---|---|---|---|---|---|
VITEK MS® (%) b | MALDI Biotyper® (Score) c | ||||||
PS001.21 | Urine | A | ICU d-1 | COVID-19 e | 07/12/2021 | P. aeruginosa (99.9) | P. aeruginosa (2.40) |
PS002.21 | Urine | B | ICU-1 | COVID-19 | 07/14/2021 | P. aeruginosa (99.9) | P. aeruginosa (2.05) |
PS003.21 | Tracheal secretion | C | ICU-1 | COVID-19 | 07/23/2021 | P. aeruginosa (84.0) | P. aeruginosa (2.27) |
PS005.21 | Tracheal secretion | D | ICU-1 | COVID-19 | 07/30/2021 | P. aeruginosa (99.9) | P. aeruginosa (2.03) |
PS006.21 | Tracheal secretion | E | ICU-1 | COVID-19 | 07/28/2021 | P. aeruginosa (99.9) | P. aeruginosa (2.31) |
PS007.21 | Urine | F | ICU-1 | COVID-19 | 08/06/2021 | P. aeruginosa (99.9) | P. aeruginosa (2.04) |
PS008.21 | Oral swab | G | ICU-1 | COVID-19 | 08/06/2021 | P. aeruginosa (95.1) | P. aeruginosa (2.03) |
PS010.22 | Rectal swab | H | ICU-2 | HIPCC f | 01/27/2022 | P. aeruginosa (99.9) | P. aeruginosa (2.33) |
PS011.22 | Tracheal secretion | I | Medical Clinic g-1 | Non-COVID-19 | 02/17/2022 | P. aeruginosa (92.7) | P. aeruginosa (2.00) |
PS012.22 | Rectal swab | J | ICU-2 | HIPCC | 02/23/2022 | P. aeruginosa (99.9) | P. aeruginosa (2.31) |
PS013.22 | Urine | K | ICU-2 | Non-COVID-19 | 02/28/2022 | P. aeruginosa (96.1) | P. aeruginosa (2.22) |
PS014.22 | Urine | L | ICU-2 | COVID-19 | 03/01/2022 | P. aeruginosa (82.7) | P. aeruginosa (2.34) |
PS015.22 | Tracheal secretion | M | ICU-1 | COVID-19 | 02/24/2022 | P. aeruginosa (91.6) | P. aeruginosa (2.00) |
PS016.22 | Tracheal secretion | N | ICU-2 | Non-COVID-19 | 03/05/2022 | P. aeruginosa (92.0) | P. aeruginosa (2.04) |
PS017.22 | Tracheal secretion | O | ICU-1 | COVID-19 | 03/04/2022 | P. aeruginosa (99.4) | P. aeruginosa (2.26) |
PS018.22 | Tracheal secretion | C | ICU-1 | COVID-19 | 03/09/2022 | P. aeruginosa (99.9) | P. aeruginosa (2.10) |
PS019.22 | Tracheal secretion | M | ICU-1 | COVID-19 | 03/13/2022 | P. aeruginosa (99.9) | P. aeruginosa (2.01) |
PS020.22 | Urine | P | Medical Clinic-2 | Non-COVID-19 | 03/17/2022 | P. aeruginosa (99.9) | P. aeruginosa (2.07) |
Strain ID | NCBI a Access Number | Base Pair Length | Identification (%) |
---|---|---|---|
PS001/21 | OQ944132 | 1027 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS002/21 | OQ944133 | 856 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS003/21 | OQ944134 | 858 | P. aeruginosa (99.30)/P. paraeruginosa (99.30) |
PS005/21 | OQ945448 | 873 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS006/21 | OQ945449 | 928 | P. aeruginosa (99.78)/P. paraeruginosa (99.78) |
PS007/21 | OR041497 | 1337 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS008/21 | OQ945450 | 849 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS010/22 | OQ945451 | 874 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS011/22 | OR041498 | 1333 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS012/22 | OQ945452 | 873 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS013/22 | OQ945453 | 588 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS014/22 | OQ945454 | 1016 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS015/22 | OQ945455 | 975 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS016/22 | OQ945456 | 922 | P. aeruginosa (99.89)/P. paraeruginosa (99.89) |
PS017/22 | OQ945457 | 1003 | P. aeruginosa (99.90)/P. paraeruginosa (99.90) |
PS018/22 | OQ945458 | 935 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS019/22 | OQ945459 | 905 | P. aeruginosa (100)/P. paraeruginosa (100) |
PS020/22 | OQ945460 | 1025 | P. aeruginosa (99.41)/P. paraeruginosa (99.41) |
Strains | SXT | CAZ | CEF | CRO | CXM | FOX | TZP | AMI | GEN | CIP | NOR | MEM | IPM | Magiorakos et al. (2012) Classification [17] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PS001.21 | R | I | I | R | R | R | I | S | S | S | S | S | I | MDR |
PS002.21 | R | I | I | R | R | R | I | S | S | I | S | S | R | MDR |
PS003.21 | S | R | R | R | R | R | R | S | R | R | R | R | R | MDR |
PS005.21 | S | I | I | R | R | R | I | S | S | S | S | S | I | N-MDR |
PS006.21 | S | R | R | R | R | R | R | S | I | I | S | R | R | MDR |
PS007.21 | R | I | I | R | R | R | I | S | S | I | S | S | I | MDR |
PS008.21 | S | S | S | R | R | R | S | S | S | S | S | S | S | N-MDR |
PS010.22 | S | R | I | R | R | R | S | S | S | R | S | R | R | MDR |
PS011.22 | S | R | R | R | R | R | R | S | S | S | S | S | S | MDR |
PS012.22 | S | I | I | R | R | R | R | S | S | R | S | I | I | MDR |
PS013.22 | R | I | I | R | R | R | I | S | S | I | S | S | I | MDR |
PS014.22 | R | I | I | R | R | R | I | S | S | I | S | S | I | MDR |
PS015.22 | S | R | I | R | R | R | R | S | S | S | S | S | S | MDR |
PS016.22 | S | S | S | R | R | R | S | S | S | S | S | S | S | N-MDR |
PS017.22 | S | S | S | R | R | R | S | S | S | S | S | S | S | N-MDR |
PS018.22 | S | R | I | R | R | R | I | S | S | S | S | I | R | MDR |
PS019.22 | S | R | I | R | R | R | S | S | S | S | S | R | R | MDR |
PS020.22 | R | I | I | R | R | R | I | S | S | I | S | S | I | MDR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, P.A.; Santos, M.C.S.d.; de Miranda, R.V.d.S.L.; da Costa, L.V.; da Silva, R.P.P.; de Miranda, C.A.C.; da Silva, A.P.R.; Forsythe, S.J.; Bôas, M.H.S.V.; Brandão, M.L.L. Evaluation of Antimicrobial Resistance Patterns of Pseudomonas aeruginosa Strains Isolated among COVID-19 Patients in Brazil Typed by Fourier-Transform Infrared Spectroscopy. Life 2024, 14, 1079. https://doi.org/10.3390/life14091079
de Souza PA, Santos MCSd, de Miranda RVdSL, da Costa LV, da Silva RPP, de Miranda CAC, da Silva APR, Forsythe SJ, Bôas MHSV, Brandão MLL. Evaluation of Antimicrobial Resistance Patterns of Pseudomonas aeruginosa Strains Isolated among COVID-19 Patients in Brazil Typed by Fourier-Transform Infrared Spectroscopy. Life. 2024; 14(9):1079. https://doi.org/10.3390/life14091079
Chicago/Turabian Stylede Souza, Paula Araujo, Milena Cristina Silva dos Santos, Rebeca Vitória da Silva Lage de Miranda, Luciana Veloso da Costa, Raphael Paiva Paschoal da Silva, Catia Aparecida Chaia de Miranda, Ana Paula Roque da Silva, Stephen James Forsythe, Maria Helena Simões Villas Bôas, and Marcelo Luiz Lima Brandão. 2024. "Evaluation of Antimicrobial Resistance Patterns of Pseudomonas aeruginosa Strains Isolated among COVID-19 Patients in Brazil Typed by Fourier-Transform Infrared Spectroscopy" Life 14, no. 9: 1079. https://doi.org/10.3390/life14091079
APA Stylede Souza, P. A., Santos, M. C. S. d., de Miranda, R. V. d. S. L., da Costa, L. V., da Silva, R. P. P., de Miranda, C. A. C., da Silva, A. P. R., Forsythe, S. J., Bôas, M. H. S. V., & Brandão, M. L. L. (2024). Evaluation of Antimicrobial Resistance Patterns of Pseudomonas aeruginosa Strains Isolated among COVID-19 Patients in Brazil Typed by Fourier-Transform Infrared Spectroscopy. Life, 14(9), 1079. https://doi.org/10.3390/life14091079