Effects of Drying Methods on the Phytochemical Contents, Antioxidant Properties, and Anti-Diabetic Activity of Nasturtium officinale R.Br. (Betong Watercress) from Southern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Drying Processes
- Roasting (R): Betong watercress was roasted in a cooking pan at 50 °C for 40 min.
- Roasting and drying (RD): Betong watercress was roasted in a cooking pan at 50 °C for 20 min. It was then dried in an electric hot air dryer (Model ET450-16T, Yok Intertrade, Chiang Mai, Thailand) at 80 °C for one hour.
- Blanching, roasting, and drying (BRD): Betong watercress was blanched at 80 °C for 30 s and rapidly cooled in cold water. It was then desiccated until almost dry, roasted in a cooking pan at 50 °C for 20 min, and finally dried in an electric hot air dryer at 80 °C for one hour.
2.2. Preparation of Watercress Aqueous Extract
2.3. Total Glucosinolate Content
2.4. Total Phenolic Content
2.5. Total Flavonoid Content
2.6. Antioxidant Activities
2.6.1. Assay of Ferric Reducing Antioxidant Power (FRAP)
2.6.2. Assay of DPPH Radical Scavenging Activity
2.6.3. Assay of ABTS Radical Scavenging Activity
2.7. Assay of Pancreatic α-Amylase Inhibition
2.8. Statistical Analysis
3. Results
3.1. Determination of Drying Yields and Extraction Yields of Betong Watercress Extracts
3.2. Determination of Total Phenolic, Total Flavonoid, and Total Glucosinolate Contents of Betong Watercress Extracts
3.3. Antioxidant Activities of Betong Watercress Extracts
3.4. α-Amylase Enzyme Inhibition of Betong Watercress Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saidi, S.; Remok, F.; Handaq, N.; Drioiche, A.; Gourich, A.A.; Menyiy, N.E.; Amalich, S.; Elouardi, M.; Touijer, H.; Bouhrim, M.; et al. Phytochemical Profile, Antioxidant, Antimicrobial, and Antidiabetic Activities of Ajuga iva (L.). Life 2023, 13, 1165. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Hahn, A.; Greupner, T.; Wasserfurth, P.; Rosales-López, M.; Hornbacher, J.; Papenbrock, J. Watercress—Cultivation methods and health effects. J. Appl. Bot. Food Qual. 2019, 92, 232–239. [Google Scholar]
- Zeb, A. Phenolic profile and antioxidant potential of wild watercress (Nasturtium officinale L.). SpringerPlus 2015, 4, 714. [Google Scholar] [CrossRef] [PubMed]
- Schulze, H.; Hornbacher, J.; Wasserfurth, P.; Reichel, T.; Günther, T.; Krings, U.; Krüger, K.; Hahn, A.; Papenbrock, J.; Schuchardt, J.P. Immunomodulating Effect of the Consumption of Watercress (Nasturtium officinale) on Exercise-Induced Inflammation in Humans. Foods 2021, 10, 1774. [Google Scholar] [CrossRef]
- Lam, V.P.; Choi, J.; Park, J. Enhancing Growth and Glucosinolate Accumulation in Watercress (Nasturtium officinale L.) by Regulating Light Intensity and Photoperiod in Plant Factories. Agriculture 2021, 11, 723. [Google Scholar] [CrossRef]
- Noia, J.D. Defining Powerhouse Fruits and Vegetables: A Nutrient Density Approach. Prev. Chronic Dis. 2014, 11, E95. [Google Scholar]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C.F.R. Chapter 12—Watercress. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 197–219. [Google Scholar]
- Kyriakou, S.; Michailidou, K.; Amery, T.; Stewart, K.; Winyard, P.G.; Trafalis, D.T.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Polyphenolics, glucosinolates and isothiocyanates profiling of aerial parts of Nasturtium officinale (Watercress). Front. Plant Sci. 2022, 13, 998755. [Google Scholar] [CrossRef]
- Kyriakou, S.; Potamiti, L.; Demosthenous, N.; Amery, T.; Stewart, K.; Winyard, P.G.; Franco, R.; Pappa, A.; Panayiotidis, M.I. A Naturally Derived Watercress Flower-Based Phenethyl Isothiocyanate-Enriched Extract Induces the Activation of Intrinsic Apoptosis via Subcellular Ultrastructural and Ca2+ Efflux Alterations in an In Vitro Model of Human Malignant Melanoma. Nutrients 2023, 15, 4044. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress)—A review. Fitoterapia 2018, 129, 283–292. [Google Scholar] [CrossRef]
- Clemente, M.; Miguel, D.; Felipe, K.; Fujiwara, G.; Fernandes, C.; Fatima, J.; Dias, G.; Maria, S.; Zenin, W.; Cristina, B.; et al. Can Medicinal Properties of Watercress be Relevant to Human Health? A Systematic Review Based on Preclinical Study In Vivo. Pharmacogn. Rev. 2019, 13, 10–15. [Google Scholar] [CrossRef]
- Abu-Odeh, A.M.; Talib, W.H. Middle East Medicinal Plants in the Treatment of Diabetes: A Review. Molecules 2021, 26, 742. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, S.; Tragkola, V.; Alghol, H.; Anestopoulos, I.; Amery, T.; Stewart, K.; Winyard, P.G.; Trafalis, D.T.; Franco, R.; Pappa, A.; et al. Evaluation of Bioactive Properties of Lipophilic Fractions of Edible and Non-Edible Parts of Nasturtium officinale (Watercress) in a Model of Human Malignant Melanoma Cells. Pharmaceuticals 2022, 15, 141. [Google Scholar] [CrossRef] [PubMed]
- Panahi-Kokhdan, E.; Khodabandehloo, H.; Ghahremani, H.; Doustimotlagh, A.H. A Narrative Review on Therapeutic Potentials of Watercress in Human Disorders. Evid. Based Complement. Altern. Med. 2021, 2021, 5516450. [Google Scholar] [CrossRef] [PubMed]
- Pandey, Y.; Bhatt, S.S.; Debbarma, N. Watercress (Nasturtium officinale): A Potential Source of Nutraceuticals. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2685–2691. [Google Scholar] [CrossRef]
- Janchawee, B.; Wongsakul, A.; Prutipanlai, S.; Ruangrut, P. Effect of Betong Watercress and Phenethyl Isothiocyanate on N-Demethylation of Caffeine in Rats. Trop. J. Pharm. Res. 2014, 13, 559. [Google Scholar] [CrossRef]
- Pignata, G.; Ertani, A.; Casale, M.; Niñirola, D.; Egea-Gilabert, C.; Fernández, J.A.; Nicola, S. Understanding the Postharvest Phytochemical Composition Fates of Packaged Watercress (Nasturtium officinale R. Br.) Grown in a Floating System and Treated with Bacillus subtilis as PGPR. Plants 2022, 11, 589. [Google Scholar] [CrossRef]
- Jeon, J.; Bong, S.J.; Park, J.S.; Park, Y.K.; Arasu, M.V.; Al-Dhabi, N.A.; Park, S.U. De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R. Br.). BMC Genom. 2017, 18, 401. [Google Scholar] [CrossRef]
- Miletić, N.; Nićetin, M. Food-Drying Applications for Plant Products: A Comparative Analysis. Foods 2023, 12, 3739. [Google Scholar] [CrossRef]
- Grassino, A.N.; Karlović, S.; Šošo, L.; Dujmić, F.; Sabolović, M.B.; Marelja, M.; Brnčić, M. Influence of Different Drying Processes on the Chemical and Texture Profile of Cucurbita maxima Pulp. Foods 2024, 13, 520. [Google Scholar] [CrossRef]
- Chobot, M.; Kozłowska, M.; Ignaczak, A.; Kowalska, H. Development of drying and roasting processes for the production of plant-based pro-healthy snacks in the light of nutritional trends and sustainable techniques. Trends Food Sci. Technol. 2024, 149, 104553. [Google Scholar] [CrossRef]
- Tayeh, N. Development of tea product from Betong Watercress; Yala Rajabhat University: Yala, Thailand, 2018. [Google Scholar]
- Aksornthong, C.; Prutipanlai, S.; Ruangrut, P.; Janchawee, B. Cooking has the potential to decrease the antitumor effect of fresh Betong watercress. J. Food Biochem. 2019, 43, e12783. [Google Scholar] [CrossRef]
- Rajchasom, S.; Tancharoenrat Vuthijumnonk, J.; Sombatnan, P. Effect of Different Tea Process on Antioxidant Capacity and Consumer Acceptance of Doi Saket Purple Rice Leaf Tea. RMUTP Res. J. Sci. Technol. 2023, 17, 137–148. [Google Scholar]
- Doheny-Adams, T.; Redeker, K.; Kittipol, V.; Bancroft, I.; Hartley, S.E. Development of an efficient glucosinolate extraction method. Plant Methods 2017, 13, 17. [Google Scholar] [CrossRef]
- Ishida, M.; Nagata, M.; Ohara, T.; Kakizaki, T.; Hatakeyama, K.; Nishio, T. Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Breed. Sci. 2012, 62, 63–70. [Google Scholar] [CrossRef]
- Uyumlu, A.; Çağlar-Yılmaz, H. Determination of some trace and heavy elements, in vitro antioxidant activity, total phenolic and Phenethyl isothiocyanate content in Watercress from Turkey. Emir. J. Food Agric. 2022, 34, 537–543. [Google Scholar]
- Martono, Y.; Yanuarsih, F.F.; Aminu, N.R.; Muninggar, J. Fractionation and determination of phenolic and flavonoid compound from Moringa oleifera leaves. J. Phys. Conf. Ser. 2019, 1307, 012014. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef]
- Taşkın, D.; Bilgiç Alkaya, D.; Dölen, E. Evaluation of Antioxidant Capacity and Analysis of Major Phenolic Compounds in Achillea grandifolia by HPLC-DAD with Q-TOF LC/MS Confirmation. Chiang Mai J. Sci. 2018, 45, 287–298. [Google Scholar]
- Payne, A.C.; Mazzer, A.; Clarkson, G.J.; Taylor, G. Antioxidant assays—Consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Sci. Nutr. 2013, 1, 439–444. [Google Scholar] [CrossRef]
- Aires, A.; Carvalho, R.; Rosa, E.A.; Saavedra, M.J. Phytochemical characterization and antioxidant properties of baby-leaf watercress produced under organic production system. CyTA-J. Food 2013, 11, 343–351. [Google Scholar] [CrossRef]
- Mfotie Njoya, E. Chapter 31—Medicinal plants, antioxidant potential, and cancer. In Cancer, 2nd ed.; Preedy, V.R., Patel, V.B., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 349–357. [Google Scholar]
- Arulvendhan, V.; Saravana-Bhavan, P.; Rajaganesh, R. Molecular Identification and Phytochemical Analysis and Bioactivity Assessment of Catharanthus roseus Leaf Extract: Exploring Antioxidant Potential and Antimicrobial Activities. Appl. Biochem. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Ratnavathi, C.V.; Komala, V.V. Chapter 1—Sorghum Grain Quality. In Sorghum Biochemistry; Ratnavathi, C.V., Patil, J.V., Chavan, U.D., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 1–61. [Google Scholar]
- Ononamadu, C.; Ezeigwe, O.; Owolarafe, T.; Ihegboro, G.; Lawal, T.; Salawu, K.; Umeoguaju, U.; Aminu, I. Starch-iodine assay method underestimates α-amylase inhibitory potential of antioxidative compounds and extracts. BioTechnologia 2020, 101, 45–54. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Kemsawasd, V.; Hudthagosol, C.; Sanporkha, P.; Sapwarobol, S.; Suttisansanee, U. The Effects of Different Roasting Methods on the Phenolic Contents, Antioxidant Potential, and In Vitro Inhibitory Activities of Sacha Inchi Seeds. Foods 2023, 12, 4178. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J.D. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Hassan, A.B.; Al-Maiman, S.A.; Alshammari, G.M.; Mohammed, M.A.; Alhuthayli, H.F.; Ahmed, I.A.M.; Alfawaz, M.A.; Yagoub, A.E.A.; Fickak, A.; Osman, M.A. Effects of Boiling and Roasting Treatments on the Content of Total Phenolics and Flavonoids and the Antioxidant Activity of Peanut (Arachis hypogaea L.) Pod Shells. Processes 2021, 9, 1542. [Google Scholar] [CrossRef]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef]
- Thuwapanichayanan, R.; Phowong, C.; Jaisut, D.; Stencl, J. Effects of Pretreatments and Drying Temperatures on Drying Characteristics, Antioxidant Properties and Color of Ginger Slice. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62, 1125–1134. [Google Scholar] [CrossRef]
- Zagorska, J.; Czernicka-Bos, L.; Kukula-Koch, W.; Szalak, R.; Koch, W. Impact of Thermal Processing on the Composition of Secondary Metabolites of Ginger Rhizome—A Review. Foods 2022, 11, 3484. [Google Scholar] [CrossRef]
- Aires, A.; Carvalho, R.; Rosa, E. Glucosinolate composition of Brassica is affected by postharvest, food processing and myrosinase activity. J. Food Process. Preserv. 2012, 36, 214–224. [Google Scholar] [CrossRef]
- Hofmann, T.; Kuhnert, A.; Schubert, A.; Gill, C.; Rowland, I.R.; Pool-Zobel, B.L.; Glei, M. Modulation of detoxification enzymes by watercress: In vitro and in vivo investigations in human peripheral blood cells. Eur. J. Nutr. 2009, 48, 483–491. [Google Scholar] [CrossRef]
- Lafarga, T.; Bobo, G.; Viñas, I.; Collazo, C.; Aguiló-Aguayo, I. Effects of thermal and non-thermal processing of cruciferous vegetables on glucosinolates and its derived forms. J. Food Sci. Technol. 2018, 55, 1973–1981. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Zhao, X.; Wang, Y.; Yu, X. Influence of roasting on the thermal degradation pathway in the glucosinolates of fragrant rapeseed oil: Implications to flavour profiles. Food Chem. X 2022, 16, 100503. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Marhuenda, J.; García-Viguera, C.; Zafrilla, P.; Moreno, D.A. Influence of Cooking Methods on Glucosinolates and Isothiocyanates Content in Novel Cruciferous Foods. Foods 2019, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Bricker, G.V.; Riedl, K.M.; Ralston, R.A.; Tober, K.L.; Oberyszyn, T.M.; Schwartz, S.J. Isothiocyanate metabolism, distribution, and interconversion in mice following consumption of thermally processed broccoli sprouts or purified sulforaphane. Mol. Nutr. Food Res. 2014, 58, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Naveen, J.; Baskaran, V. Antidiabetic plant-derived nutraceuticals: A critical review. Eur. J. Nutr. 2018, 57, 1275–1299. [Google Scholar] [CrossRef]
- Kijkuokool, P.; Ounjaijean, S.; Rerkasem, K.; Koonyosying, P.; Kulprachakarn, K. Evaluation of Antioxidant Activity, Total Phenolic Content, and Total Flavonoid Content of Betong Watercress. In Proceedings of the International Conference on Food and Applied Bioscience 2024, Kantary Hills Hotel, Chiang Mai, Thailand, 8–9 February 2024. [Google Scholar]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Alderhami, S.A.; Abdelshafeek, K.A.; Abdallah, W.E.; Elhenawy, A.A.; Alomari, A.A. Glucosinolates with Their Hydrolysis Products from Two Cruciferous Plants with Study of Antidiabetic Activity Based on Molecular Docking. Biomed. Pharmacol. J. 2021, 14, 2047–2062. [Google Scholar] [CrossRef]
- Dedvisitsakul, P.; Watla-Iad, K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon 2022, 8, e10740. [Google Scholar] [CrossRef]
Drying Processes | Total Phenolic Content 1,2 | Total Flavonoid Content 1,3 |
---|---|---|
R | 36.27 ± 2.99 a | 6.58 ± 0.65 a |
RD | 28.72 ± 1.21 b | 5.57 ± 0.08 ab |
BRD | 24.46 ± 1.56 b | 4.38 ± 0.60 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kijkuokool, P.; Stepanov, I.; Ounjaijean, S.; Koonyosying, P.; Rerkasem, K.; Chuljerm, H.; Parklak, W.; Kulprachakarn, K. Effects of Drying Methods on the Phytochemical Contents, Antioxidant Properties, and Anti-Diabetic Activity of Nasturtium officinale R.Br. (Betong Watercress) from Southern Thailand. Life 2024, 14, 1204. https://doi.org/10.3390/life14091204
Kijkuokool P, Stepanov I, Ounjaijean S, Koonyosying P, Rerkasem K, Chuljerm H, Parklak W, Kulprachakarn K. Effects of Drying Methods on the Phytochemical Contents, Antioxidant Properties, and Anti-Diabetic Activity of Nasturtium officinale R.Br. (Betong Watercress) from Southern Thailand. Life. 2024; 14(9):1204. https://doi.org/10.3390/life14091204
Chicago/Turabian StyleKijkuokool, Praporn, Irina Stepanov, Sakaewan Ounjaijean, Pimpisid Koonyosying, Kittipan Rerkasem, Hataichanok Chuljerm, Wason Parklak, and Kanokwan Kulprachakarn. 2024. "Effects of Drying Methods on the Phytochemical Contents, Antioxidant Properties, and Anti-Diabetic Activity of Nasturtium officinale R.Br. (Betong Watercress) from Southern Thailand" Life 14, no. 9: 1204. https://doi.org/10.3390/life14091204
APA StyleKijkuokool, P., Stepanov, I., Ounjaijean, S., Koonyosying, P., Rerkasem, K., Chuljerm, H., Parklak, W., & Kulprachakarn, K. (2024). Effects of Drying Methods on the Phytochemical Contents, Antioxidant Properties, and Anti-Diabetic Activity of Nasturtium officinale R.Br. (Betong Watercress) from Southern Thailand. Life, 14(9), 1204. https://doi.org/10.3390/life14091204