Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Esterase-like Activity Experiments
2.3. Fluorescence Spectral Measurements
2.4. Molecular Docking Studies
2.5. Site Marker Competitive Experiments
2.6. Synchronous Fluorescence Studies
2.7. UV–Vis Spectrophotometry
2.8. 3D Spectral Studies
2.9. CD Studies
3. Results and Discussion
3.1. Effect of TCS and PSNPs on HSA Esterase Activity
3.2. Fluorescence Spectra Analysis
3.2.1. Fluorescence Quenching Study
3.2.2. Fluorescence Quenching Mechanism
3.3. The Conformational and Amino Acid Microenvironment Changes of HSA
3.3.1. Molecular Docking Studies
3.3.2. Site Marker Competitive Experiment
3.3.3. Synchronous Fluorescence Analysis
3.3.4. UV–Vis Absorption Spectra Investigations
3.3.5. 3D Fluorescence Analysis
3.3.6. CD Spectroscopy Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Man, Y.B.; Wong, M.H.; Owen, R.B.; Chow, K.L. Environmental health impacts of microplastics exposure on structural organization levels in the human body. Sci. Total Environ. 2022, 825, 154025. [Google Scholar] [CrossRef] [PubMed]
- Cozar, A.; Echevarria, F.; Ignacio Gonzalez-Gordillo, J.; Irigoien, X.; Ubeda, B.; Hernandez-Leon, S.; Palma, A.T.; Navarro, S.; Garcia-de-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Vuppaladadiyam, S.S.V.; Vuppaladadiyam, A.K.; Sahoo, A.; Urgunde, A.; Murugavelh, S.; Šrámek, V.; Pohořelý, M.; Trakal, L.; Bhattacharya, S.; Sarmah, A.K.; et al. Waste to energy: Trending key challenges and current technologies in waste plastic management. Sci. Total Environ. 2024, 913, 169436. [Google Scholar] [CrossRef] [PubMed]
- Alfaro-Núñez, A.; Astorga, D.; Cáceres-Farías, L.; Bastidas, L.; Soto Villegas, C.; Macay, K.; Christensen, J.H. Microplastic pollution in seawater and marine organisms across the Tropical Eastern Pacific and Galápagos. Sci. Rep. 2021, 11, 6424. [Google Scholar] [CrossRef]
- Sighicelli, M.; Pietrelli, L.; Lecce, F.; Iannilli, V.; Falconieri, M.; Coscia, L.; Di Vito, S.; Nuglio, S.; Zampetti, G. Microplastic pollution in the surface waters of Italian Subalpine Lakes. Environ. Pollut. 2018, 236, 645–651. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, S.; Bittar, T.B.; Stubbins, A.; Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: Rates and microbial impacts. J. Hazard. Mater. 2020, 383, 121065. [Google Scholar] [CrossRef]
- Wang, W.; Gao, H.; Jin, S.; Li, R.; Na, G. The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review. Ecotoxicol. Environ. Saf. 2019, 173, 110–117. [Google Scholar] [CrossRef]
- Nor, N.H.M.; Kooi, M.; Diepens, N.J.; Koelmans, A.A. Lifetime Accumulation of Microplastic in Children and Adults. Environ. Sci. Technol. 2021, 55, 5084–5096. [Google Scholar] [CrossRef]
- Lee, S.E.; Yoon, H.K.; Kim, D.Y.; Jeong, T.S.; Park, Y.S. An Emerging Role of Micro- and Nanoplastics in Vascular Diseases. Life 2024, 14, 255. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, J.; Zhu, Z.; Li, L.; Yu, F. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. Environ. Pollut. 2019, 254, 113104. [Google Scholar] [CrossRef]
- Cao, Y.X.; Zhao, M.J.; Ma, X.Y.; Song, Y.W.; Zuo, S.H.; Li, H.H.; Deng, W.Z. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Sci. Total Environ. 2021, 788, 147620. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhang, L.; Xiang, K.; Zhang, Y.; Wang, G.; Chen, L. Microplastic-contaminated antibiotics as an emerging threat to mammalian liver: Enhanced oxidative and inflammatory damages. Biomater. Sci. 2023, 11, 4298–4307. [Google Scholar] [CrossRef] [PubMed]
- Pani, B.S.U.L.; Chandrasekaran, N. Adsorption of clarithromycin on polystyrene nanoplastics surface and its combined adverse effect on serum albumin. Colloids Surf. B Biointerfaces 2024, 234, 113673. [Google Scholar] [CrossRef]
- Okeke, E.S.; Ezeorba, T.P.C.; Chen, Y.; Mao, G.H.; Feng, W.W.; Wu, X.Y. Association of tetrabromobisphenol A (TBBPA) with micro/nano-plastics: A review of recent findings on ecotoxicological and health impacts. Sci. Total Environ. 2024, 927, 172308. [Google Scholar] [CrossRef]
- Dar, O.I.; Raouf, A.; Deng, P.; Sunil, S.; Megha, A.; Kaur, A.; Jia, A.-Q.; Faggio, C. Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: A review. Environ. Technol. Innov. 2022, 25, 102122. [Google Scholar] [CrossRef]
- Li, J.; Fang, L.; Xi, M.; Ni, A.; Qian, Q.; Wang, Z.; Wang, H.; Yan, J. Toxic effects of triclosan on hepatic and intestinal lipid accumulation in zebrafish via regulation of m6A-RNA methylation. Aquat. Toxicol. 2024, 269, 106884. [Google Scholar] [CrossRef]
- Lee, J.-S.; Lee, J.-S.; Kim, H.S. Toxic effects of triclosan in aquatic organisms: A review focusing on single and combined exposure of environmental conditions and pollutants. Sci. Total Environ. 2024, 920, 170902. [Google Scholar] [CrossRef]
- Chen, X.; Mou, L.; Qu, J.; Wu, L.; Liu, C. Adverse effects of triclosan exposure on health and potential molecular mechanisms. Sci. Total Environ. 2023, 879, 163068. [Google Scholar] [CrossRef]
- Yan, J.; Joseph, M.A.; Reynolds, S.A.; Geer, L.A. Association between Urinary Triclosan and Serum Testosterone Levels in US Adult Males from NHANES, 2011–2012. Int. J. Environ. Res. Public Health 2020, 17, 7412. [Google Scholar] [CrossRef]
- Pullaguri, N.; Umale, A.; Bhargava, A. Neurotoxic mechanisms of triclosan: The antimicrobial agent emerging as a toxicant. J. Biochem. Mol. Toxicol. 2023, 37, e23244. [Google Scholar] [CrossRef]
- Li, Z.; Xian, H.; Ye, R.; Zhong, Y.; Liang, B.; Huang, Y.; Dai, M.; Guo, J.; Tang, S.; Ren, X.; et al. Gender-specific effects of polystyrene nanoplastic exposure on triclosan-induced reproductive toxicity in zebrafish (Danio rerio). Sci. Total Environ. 2024, 932, 172876. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, C.; Ma, Z.; Zeng, L.; Wang, H.; Cheng, X.; Zhang, C.; Xue, Y.; Yuan, Y.; Li, J.; et al. Co-exposure to polystyrene nanoplastics and triclosan induces synergistic cytotoxicity in human KGN granulosa cells by promoting reactive oxygen species accumulation. Ecotoxicol. Environ. Saf. 2024, 273, 116121. [Google Scholar] [CrossRef] [PubMed]
- Poureshghi, F.; Ghandforoushan, P.; Safarnejad, A.; Soltani, S. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods. J. Photochem. Photobiol. B Biol. 2017, 166, 187–192. [Google Scholar] [CrossRef]
- Zhao, Z.; Shi, T.; Chu, Y.; Cao, Y.; Cheng, S.; Na, R.; Wang, Y. Comparison of the interactions of flupyrimin and nitenpyram with serum albumins via multiple analysis methods. Chemosphere 2022, 289, 133139. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, J.; Zhang, J.; Yang, J.; Wang, X.; Peng, X. Protective effects of three structurally similar polyphenolic compounds against oxidative damage and their binding properties to human serum albumin. Food Chem. 2021, 349, 129118. [Google Scholar] [CrossRef]
- Rabbani, G.; Ahn, S.N. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int. J. Biol. Macromol. 2019, 123, 979–990. [Google Scholar] [CrossRef]
- Zargar, S.; Wani, T.A.; Alsaif, N.A.; Khayyat, A.I.A. A Comprehensive Investigation of Interactions between Antipsychotic Drug Quetiapine and Human Serum Albumin Using Multi-Spectroscopic, Biochemical, and Molecular Modeling Approaches. Molecules 2022, 27, 2589. [Google Scholar] [CrossRef]
- Heo, J.; Kim, J.; Lee, J.; Lee, H.J.; Shin, D.W.; Lee, S.Y.; Chung, C.H.; Na, H.K.; Wi, J.S. Sub-ppm-level detection of nanoplastics using au nanograting and application to disposable plasticware. Spectrosc. Lett. 2024, 57, 658–665. [Google Scholar] [CrossRef]
- Amir, M.; Javed, S. Elucidation of binding dynamics of tyrosine kinase inhibitor tepotinib, to human serum albumin, using spectroscopic and computational approach. Int. J. Biol. Macromol. 2023, 241, 124656. [Google Scholar] [CrossRef]
- Yao, J.; Li, H.; Lan, J.; Bao, Y.; Du, X.; Zhao, Z.; Hu, G. Spectroscopic investigations on the interaction between nano plastic and catalase on molecular level. Sci. Total Environ. 2023, 863, 160903. [Google Scholar] [CrossRef]
- Cheng, C.; Zhou, J.; Liao, J.; Li, Y.; Wang, L.; Liu, H.; Wu, L. Investigation on the interactions of contaminant triclosan with human serum albumin: Spectroscopic and molecular docking studies. J. Mol. Struct. 2024, 1295, 136737. [Google Scholar] [CrossRef]
- Chen, Y. The research for distribution and toxicity of triclosan in the environment. Environ. Dev. 2018, 30, 107–109. [Google Scholar] [CrossRef]
- Li, C.; Gao, Y.; He, S.; Chi, H.-Y.; Li, Z.-C.; Zhou, X.-X.; Yan, B. Quantification of Nanoplastic Uptake in Cucumber Plants by Pyrolysis Gas Chromatography/Mass Spectrometry. Environ. Sci. Technol. Lett. 2021, 8, 633–638. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Lan, J.; Guan, R.; Bao, Y.; Du, X.; Zhao, Z.; Shi, R.; Hollert, H.; Zhao, X. The weakened physiological functions of human serum albumin in presence of polystyrene nanoplastics. Int. J. Biol. Macromol. 2024, 261, 129609. [Google Scholar] [CrossRef]
- Shahraki, S.; Samareh Delarami, H.; Poorsargol, M.; Sori Nezami, Z. Structural and functional changes of catalase through interaction with Erlotinib hydrochloride. Use of Chou’s 5-steps rule to study mechanisms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119940. [Google Scholar] [CrossRef]
- Mathew, M.; Sreedhanya, S.; Manoj, P.; Aravindakumar, C.T.; Aravind, U.K. Exploring the Interaction of Bisphenol-S with Serum Albumins: A Better or Worse Alternative for Bisphenol A? J. Phys. Chem. B 2014, 118, 3832–3843. [Google Scholar] [CrossRef]
- Malleda, C.; Ahalawat, N.; Gokara, M.; Subramanyam, R. Molecular dynamics simulation studies of betulinic acid with human serum albumin. J. Mol. Model. 2012, 18, 2589–2597. [Google Scholar] [CrossRef]
- Raza, M.; Yang, J.; Yun, W.; Ahmad, A.; Khan, A.; Yuan, Q. Insights from spectroscopic and in-silico techniques for the exploitation of biomolecular interactions between Human serum albumin and Paromomycin. Colloids Surf. B Biointerfaces 2017, 157, 242–253. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Xiang, X.; Mei, P.; Dai, J.; Zhang, L.-L.; Liu, Y. Spectroscopic studies on the interaction of Congo Red with bovine serum albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 72, 907–914. [Google Scholar] [CrossRef]
- Yue, Y.; Chen, X.; Qin, J.; Yao, X. Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling. Colloids Surf. B Biointerfaces 2009, 69, 51–57. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Y.; Cai, X.; Wu, Y.; Du, E.; Zheng, L.; Peng, M. Investigating haloacetic acids–human serum albumin interactions: A comprehensive approach using multi-spectroscopy, DFT calculations, and molecular docking. J. Mol. Struct. 2024, 1299, 137143. [Google Scholar] [CrossRef]
- Rao, H.; Qi, W.; Su, R.; He, Z.; Peng, X. Mechanistic and conformational studies on the interaction of human serum albumin with rhodamine B by NMR, spectroscopic and molecular modeling methods. J. Mol. Liq. 2020, 316, 113889. [Google Scholar] [CrossRef]
- Xiang, H.; Sun, Q.; Wang, W.; Li, S.; Xiang, X.; Li, Z.; Liao, X.; Li, H. Study of conformational and functional changes caused by binding of environmental pollutant tonalide to human serum albumin. Chemosphere 2021, 270, 129431. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, L.; Sun, Q.; Gan, N.; Zhang, Q.; Yang, J.; Yi, B.; Liao, X.; Zhu, D.; Li, H. Study on the interaction between 2,6-dihydroxybenzoic acid nicotine salt and human serum albumin by multi-spectroscopy and molecular dynamics simulation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120868. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, D.; Chandrasekaran, N.; Waychal, Y.; Mukherjee, A. Nanoplastics alter the conformation and activity of human serum albumin. Nanoimpact 2022, 27, 100412. [Google Scholar] [CrossRef]
- Rajendran, D.; Chandrasekaran, N. Unveiling the Modification of Esterase-like Activity of Serum Albumin by Nanoplastics and Their Cocontaminants. ACS Omega 2023, 8, 43719–43731. [Google Scholar] [CrossRef]
- Chen, C.Z.; Sun, C.X.; Wang, B.; Zhang, Z.G.; Yu, G. Adsorption behavior of triclosan on polystyrene nanoplastics: The roles of particle size, surface functionalization, and environmental factors. Sci. Total Environ. 2024, 906, 167430. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Panahi-Azar, V. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chem. 2016, 202, 426–431. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Zhang, Y. Potential ability of different types of cyclodextrins to modulate the interaction between bovine serum albumin and 1-hydroxypyrene. Food Chem. 2021, 343, 128516. [Google Scholar] [CrossRef]
- Yan, J.; Wu, D.; Ma, X.; Wang, L.; Xu, K.; Li, H. Spectral and molecular modeling studies on the influence of β-cyclodextrin and its derivatives on aripiprazole-human serum albumin binding. Carbohydr. Polym. 2015, 131, 65–74. [Google Scholar] [CrossRef]
- Pawar, S.; Joshi, R.; Ottoor, D. Spectroscopic and molecular docking study to understand the binding interaction of rosiglitazone with bovine serum albumin in presence of valsartan. J. Lumin. 2018, 197, 200–210. [Google Scholar] [CrossRef]
- Ju, P.; Zhang, Y.; Zheng, Y.; Gao, F.; Jiang, F.; Li, J.; Sun, C. Probing the toxic interactions between polyvinyl chloride microplastics and Human Serum Albumin by multispectroscopic techniques. Sci. Total Environ. 2020, 734, 139219. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yan, X.; Yang, D.; Chen, S.; Yuan, H. Probing the Interaction between Isoflucypram Fungicides and Human Serum Albumin: Multiple Spectroscopic and Molecular Modeling Investigations. Int. J. Mol. Sci. 2023, 24, 2521. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yao, J.; Li, H.; Lan, J.; Hollert, H.; Zhao, X. Interaction of polystyrene nanoplastics and hemoglobin is determined by both particle curvature and available surface area. Sci. Total Environ. 2023, 899, 165617. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, O.; Samsonov, S.A.; Chmurzynski, L.; Wyrzykowski, D.; Zamojc, K. Investigation of hexacyanoferrate(II)/(III) charge-dependent interactions with bovine and human serum albumins. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 293, 122505. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Hong, X.; Fang, M.; Zong, W.; Li, X.; Wang, J. The molecular interaction of three haloacetic acids with bovine serum albumin and the underlying mechanisms. J. Mol. Liq. 2023, 370, 120976. [Google Scholar] [CrossRef]
- Bhimaneni, S.P.; Bhati, V.; Bhosale, S.; Kumar, A. Investigates interaction between abscisic acid and bovine serum albumin using various spectroscopic and in-silico techniques. J. Mol. Struct. 2021, 1224, 129018. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, L.; Wang, Y.; Zhou, J.; Ding, J.; Li, W.; Xin, Y.; Fan, S.; Wang, Z.; Wang, Y. Biointeractions of Herbicide Atrazine with Human Serum Albumin: UV-Vis, Fluorescence and Circular Dichroism Approaches. Int. J. Environ. Res. Public Health 2018, 15, 116. [Google Scholar] [CrossRef]
- Rabbani, G.; Baig, M.H.; Jan, A.T.; Lee, E.J.; Khan, M.V.; Zaman, M.; Farouk, A.-E.; Khan, R.H.; Choi, I. Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. Int. J. Biol. Macromol. 2017, 105, 1572–1580. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, S.; Kokot, S. Spectrometric study of the interaction between Alpinetin and bovine serum albumin using chemometrics approaches. Anal. Chim. Acta 2010, 663, 139–146. [Google Scholar] [CrossRef]
- Eftink, M.R.; Ghiron, C.A. Fluorescence quenching studies with proteins. Anal. Biochem. 1981, 114, 199–227. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.S.; Li, H.M.; Yao, J.Q.; Lan, J.; Bao, Y.; Zhao, L.N.; Zong, W.S.; Zhang, Q.; Hollert, H.; Zhao, X.C. Binding of Tetrabromobisphenol A and S to Human Serum Albumin Is Weakened by Coexisting Nanoplastics and Environmental Kosmotropes. Environ. Sci. Technol. 2023, 57, 4464–4470. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Wu, X.Q.; Yang, Y.N.; Liu, X.N.; Zhu, M.Q.; Fan, S.S.; Wang, Z.; Xue, J.Y.; Hua, R.M.; Wang, Y.; et al. Multi-spectroscopic measurements, molecular modeling and density functional theory calculations for interactions of 2,7-dibromocarbazole and 3,6-dibromocarbazole with serum albumin. Sci. Total Environ. 2019, 686, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, X.; Zhang, Y.; Zi, Y.; Qian, Y.; Gao, H.; Lin, S. Binding of triclosan to human serum albumin: Insight into the molecular toxicity of emerging contaminant. Environ. Sci. Pollut. Res. 2012, 19, 2528–2536. [Google Scholar] [CrossRef]
- Shen, H.; Wang, J.; Ao, J.; Ye, L.; Shi, Y.; Liu, Y.; Li, M.; Luo, A. The inhibitory mechanism of pentacyclic triterpenoid acids on pancreatic lipase and cholesterol esterase. Food Biosci. 2023, 51, 102341. [Google Scholar] [CrossRef]
- Jana, G.; Sing, S.; Das, A.; Basu, A. Interaction of food colorant indigo carmine with human and bovine serum albumins: A multispectroscopic, calorimetric, and theoretical investigation. Int. J. Biol. Macromol. 2024, 259, 129143. [Google Scholar] [CrossRef]
- Li, N.; Yang, X.; Chen, F.; Zeng, G.; Zhou, L.; Li, X.; Tuo, X. Spectroscopic and in silico insight into the interaction between dicofol and human serum albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 264, 120277. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.Q.; Liu, J.; Na, R.S.; Liu, F.; Wu, X.W.; Fan, S.S.; Wang, Z.; Pan, D.D.; Tang, J.; et al. Comparative Interactions of Dihydroquinazolin Derivatives with Human Serum Albumin Observed via Multiple Spectroscopy. Appl. Sci. 2017, 7, 200. [Google Scholar] [CrossRef]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 1976, 12, 1052–1061. [Google Scholar]
- Rahman, S.; Iram, S.; Rehman, M.T.; Hussain, A.; Jan, A.T.; Kim, J. Study of Amiloride Binding to Human Serum Albumin: Insights from Thermodynamic, Spectroscopic, and Molecular Docking Investigations. Molecules 2023, 28, 7688. [Google Scholar] [CrossRef]
- Chibber, S.; Ahmad, I. Molecular docking, a tool to determine interaction of CuO and TiO2 nanoparticles with human serum albumin. Biochem. Biophys. Rep. 2016, 6, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.H.; Wang, W.Q.; Zhou, Y.W.; Gao, X.J.; Zhang, Q.; Zhang, M.H. Research on the Interaction Mechanism and Structural Changes in Human Serum Albumin with Hispidin Using Spectroscopy and Molecular Docking. Molecules 2024, 29, 655. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, Y.; Liang, H. Interactive Association of Drugs Binding to Human Serum Albumin. Int. J. Mol. Sci. 2014, 15, 3580–3595. [Google Scholar] [CrossRef]
- Patel, R.; Maurya, J.K.; Mir, M.U.H.; Kumari, M.; Maurya, N. An insight into the binding between ester-functionalized cationic Gemini surfactant and lysozyme. J. Lumin. 2014, 154, 298–304. [Google Scholar] [CrossRef]
- Chen, P.; Niu, M.; Qiu, Y.; Zhang, Y.; Xu, J.; Wang, R.; Wang, Y. Physiological effects of maize stressed by HPPD inhibitor herbicides via multi-spectral technology and two-dimensional correlation spectrum technology. Ecotoxicol. Environ. Saf. 2024, 272, 116087. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, N.; Wang, L. Probing the binding of vitexin to human serum albumin by multispectroscopic techniques. J. Lumin. 2011, 131, 880–887. [Google Scholar] [CrossRef]
- Lan, J.; Wang, Y.; Li, H.; Guan, R.; Zhao, Z.; Bao, Y.; Du, X.; Hollert, H.; Zhao, X. Binding divergence of polystyrene nanoparticles with serum albumin caused by surface functionalization. Sci. Total Environ. 2023, 903, 166578. [Google Scholar] [CrossRef]
- Samperi, M.; Vittorio, S.; De Luca, L.; Romeo, A.; Monsu Scolaro, L. Interaction of Aggregated Cationic Porphyrins with Human Serum Albumin. Int. J. Mol. Sci. 2023, 24, 2099. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Zhu, M.; Wang, L.; Zen, X.; Fan, S.; Wang, Z.; Li, H.; Na, R.; Zhao, X.; et al. Biophysical characterization of interactions between falcarinol-type polyacetylenes and human serum albumin via multispectroscopy and molecular docking techniques. J. Lumin. 2018, 200, 111–119. [Google Scholar] [CrossRef]
- Du, K.; Du, X.; Sun, Z.; Wang, Y.; Bao, Y.; Lan, J.; Shi, R.; Zhao, Z. Effects of polystyrene nanoplastics on the binding of ciprofloxacin to bovine serum albumin. Colloids Surf. A Physicochem. Eng. Asp. 2024, 685, 133218. [Google Scholar] [CrossRef]
- Singh, P.; Gopi, P.; Rani, M.S.S.; Singh, S.; Pandya, P. Biophysical and structural characterization of tetramethrin serum protein complex and its toxicological implications. J. Mol. Recognit. 2024, 37, e3076. [Google Scholar] [CrossRef] [PubMed]
- Tekyeh, M.S.H.; Shushtarian, S.M.M.; Bakhsh, A.I.; Tackallou, S.H.; Lanjanian, H. Spectroscopic investigation and structural simulation in human serum albumin with hydroxychloroquine/Silybum marianum and a possible potential COVID-19 drug candidate. Arch. Pharm. 2024, 357, e2300751. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lu, D.; Liu, Q.S.; Li, Y.; Feng, R.; Hao, F.; Qu, G.; Zhou, Q.; Jiang, G. Hematological Effects of Gold Nanorods on Erythrocytes: Hemolysis and Hemoglobin Conformational and Functional Changes. Adv. Sci. 2017, 4, 1700296. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, R.; Chi, Z.; Teng, Y.; Qin, P. New Insights into the Behavior of Bovine Serum Albumin Adsorbed onto Carbon Nanotubes: Comprehensive Spectroscopic Studies. J. Phys. Chem. B 2010, 114, 5625–5631. [Google Scholar] [CrossRef]
- Pan, X.; Qin, P.; Liu, R.; Wang, J. Characterizing the Interaction between Tartrazine and Two Serum Albumins by a Hybrid Spectroscopic Approach. J. Agric. Food Chem. 2011, 59, 6650–6656. [Google Scholar] [CrossRef]
- Jin, X.Y.; Xu, Z.; Zhang, M.W.; Jia, W.C.; Xie, D.P. Potential toxic effects of perfluorobutanesulfonyl fluoride analysis based on multiple-spectroscopy techniques and molecular modelling analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 308, 123677. [Google Scholar] [CrossRef]
- Knowles, T.P.; Vendruscolo, M.; Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 2014, 15, 384–396. [Google Scholar] [CrossRef]
System | T (K) | KSV (×107 M−1) | Kq (×1015 M−1 s−1) | R2 |
---|---|---|---|---|
HSA-TCS | 273 | 4.03 | 4.03 | 0.991 |
293 | 3.33 | 3.33 | 0.990 | |
313 | 1.96 | 1.96 | 0.991 | |
HSA-TCS-PSNPs | 273 | 4.35 | 4.35 | 0.992 |
293 | 3.52 | 3.52 | 0.993 | |
313 | 2.58 | 2.58 | 0.992 |
System | Peak | Peak Position [λex/λem (nm/nm)] | Intensity |
---|---|---|---|
HSA | Peak A | 280/331 | 64.53 |
Peak B | 226/331 | 58.48 | |
HAS + TCS | Peak A | 280/331 | 54.57 |
Peak B | 226/328 | 47.49 | |
HAS + TCS + NPs | Peak A | 280/328 | 52.10 |
Peak B | 226/325 | 43.50 |
System | α-Helix | β-Sheet | β-Turns | Other |
---|---|---|---|---|
HSA | 50.7 | 11.6 | 11.6 | 27.4 |
HAS + TCS | 43.6 | 7.90 | 10.4 | 32.1 |
HAS + TCS + PSNPs | 41.3 | 12.1 | 9.40 | 26.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, Y.; Wang, Y.; Liu, H.; Lan, J.; Li, Z.; Zong, W.; Zhao, Z. Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin. Life 2025, 15, 112. https://doi.org/10.3390/life15010112
Bao Y, Wang Y, Liu H, Lan J, Li Z, Zong W, Zhao Z. Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin. Life. 2025; 15(1):112. https://doi.org/10.3390/life15010112
Chicago/Turabian StyleBao, Yan, Yaoyao Wang, Hongbin Liu, Jing Lan, Zhicai Li, Wansong Zong, and Zongshan Zhao. 2025. "Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin" Life 15, no. 1: 112. https://doi.org/10.3390/life15010112
APA StyleBao, Y., Wang, Y., Liu, H., Lan, J., Li, Z., Zong, W., & Zhao, Z. (2025). Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin. Life, 15(1), 112. https://doi.org/10.3390/life15010112