Spatial–Temporal Dynamics of Adventitious Roots of Typha domingensis Pers. Seedlings Grown with Auxin/Cytokinin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Germination of Typha Seeds
2.2. Cultures in the Rhizotron
2.3. Image-Based Phenotyping of Root Explants Cultivated in Rhizotron
Parameter | Formula | Description | References |
Elongation rate (TE) mm d−1 | l(0) Total root length (LR)/days of culture n(d) | [17] | |
Branching rate (TRAM) Roots d−1 | nr(0) Number of adventitious roots/days of culture n(d) | [17] | |
Relative growth rate (TCR) mm mm−1 d−1 | Growth rate relative to root length at the end of the culture time with regards to the initial root length | [38,39,40] | |
Root length density (DLR) mm cm−3 | Overall length of roots per unit volume root length /volume | [17] | |
Branching density (DRAM) cm−3 | [17] |
2.4. Effects of Plant Growth Regulators and Light/Dark Conditions
2.5. Statistical Analysis
3. Results
3.1. Effect of Phytohormones on Dynamics of Rhizogenesis of Typha domingensis Seedlings
3.2. Effects of Growth Regulators, Explant Type, and Light Conditions on the Spatial–Temporal Dynamics of Phenotyping of the Root System
3.3. Selection of Rhizogenic Lines Based on Four Traits from the Phenotyping Image Data of the Root System
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos-Díaz, M.S.; Barrón-Cruz, M.C. Lead, Chromium and Manganese Removal by in Vitro Root Cultures of Two Aquatic Macrophytes Species: Typha Latifolia L. and Scirpus Americanus Pers. Int. J. Phytoremediation 2011, 13, 538–551. [Google Scholar] [CrossRef]
- Steffens, B.; Rasmussen, A. The physiology of adventitious roots. Plant Physiol. 2016, 170, 603–617. [Google Scholar] [CrossRef] [PubMed]
- Doran, P.M. Application of plant tissue cultures in phytoremediation research: Incentives and limitations. Biotechnol. Bioeng. 2009, 103, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2011, 45, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Sato, Y.; Goto, S.; Teraoka, S.; Takagaki, K.; Takehara, A.; Sano, S.; Sakakibara, M. Establishment of an Aseptic Culture System and Analysis of the Effective Growth Conditions for Eleocharis acicularis Ramets for Use in Phytoremediation. Environments 2017, 4, 40. [Google Scholar] [CrossRef]
- Gunarathne, V.; Mayakaduwa, S.; Ashiq, A.; Weerakoon, S.R.; Biswas, J.K.; Vithanage, M. Transgenic plants: Benefits, applications, and potential risks in phytoremediation. In Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids; Narasimha, M., Prasad, V., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Berkeley, CA, USA, 2019; pp. 89–102. [Google Scholar] [CrossRef]
- Rai, P.K.; Kim, K.H.; Lee, S.S.; Lee, J.H. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Sci. Total Environ. 2020, 705, 135858. [Google Scholar] [CrossRef]
- Silva-Navas, J.; Moreno-Risueno, M.A.; Manzano, C.; Pallero-Baena, M.; Navarro Neila, S.; Tellez-Robledo, B.; Garcia-Mina, J.; Baigorri, R.; Gallego, J.; del Pozo, J.C. D-Root, a system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 2015, 84, 244–255. [Google Scholar] [CrossRef]
- Gonin, M.; Bergougnoux, V.; Nguyen, T.D.; Gantet, P.; Champion, A. What Makes Adventitious Roots? Plants 2019, 8, 240. [Google Scholar] [CrossRef]
- Singh, P.; Mohanta, T.K.; Sinha, A.K. Unraveling the intricate nexus of molecular mechanisms governing rice root development: OsMPK3/6 and auxin-cytokinin interplay. PLoS ONE 2015, 10, e0123620. [Google Scholar] [CrossRef]
- Arsova, B.; Foster, K.J.; Shelden, M.C.; Bramley, H.; Watt, M. Dynamics in plant roots and shoots minimize stress, save energy and maintain water and nutrient uptake. New Phytol. 2020, 225, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Postma, J.A.; Schurr, U.; Fiorani, F. Dynamic root growth and architecture responses to limiting nutrient availability: Linking physiological models and experimentation. Biotechnol. Adv. 2014, 32, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Tracy, S.R.; Nagel, K.A.; Postma, J.A.; Fassbender, H.; Wasson, A.; Watt, M. Crop improvement from phenotyping roots: Highlights reveal expanding opportunities. Trends Plant Sci. 2020, 25, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Hussner, A. Growth response and root system development of the invasive Ludwigia grandiflora and Ludwigia peploides to nutrient availability and water level. Fundam. Appl. Limnol. 2010, 177, 189–196. [Google Scholar] [CrossRef]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Advancements in root growth measurement technologies and observation capabilities for container-grown plants. Plants 2015, 4, 369–392. [Google Scholar] [CrossRef] [PubMed]
- Kalogiros, D.I.; Adu, M.O.; White, P.J.; Broadley, M.R.; Draye, X.; Ptashnyk, M.; Bengough, A.G.; Dupuy, L.X. Analysis of root growth from a phenotyping data set using a density-based model. J. Exp. Bot. 2016, 67, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Escutia-Lara, Y.; Barrera, E.D.L.; Martínez-de la Cruz, Y.; Lindig-Cisneros, R. Respuesta a la adición de nitrógeno y fósforo en el crecimiento de Typha domingensis y Schoenoplectus americanus. Boletín Soc. Botánica México 2010, 87, 83–87. [Google Scholar] [CrossRef]
- Brix, H.; Lorenzen, B.; Mendelssohn, I.A.; McKee, K.L.; Miao, S. Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades? BMC Plant Biol. 2010, 10, 1. [Google Scholar] [CrossRef]
- Hegazy, A.K.; Abdel-Ghani, N.T.; El-Chaghaby, G.A. Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int. J. Environ. Sci. Technol. 2011, 8, 639–648. [Google Scholar] [CrossRef]
- Sricoth, T.; Meeinkuirt, W.; Pichtel, J.; Taeprayoon, P.; Saengwilai, P. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ. Sci. Pollut. Res. Int. 2018, 25, 5344–5358. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, G.A.; Mufarrege, M.M.; Hadad, H.R.; Maine, M.A. Nitrogen and phosphorus removal and Typha domingensis tolerance in a floating treatment wetland. Sci. Total Environ. 2019, 650, 233–240. [Google Scholar] [CrossRef]
- Bansal, S.; Lishawa, S.C.; Newman, S.; Tangen, B.A.; Wilcox, D.; Albert, D.; Anteau, M.J.; Chimney, M.J.; Cressey, R.L.; DeKeyser, E.; et al. Typha (Cattail) Invasion in North American Wetlands: Biology, Regional Problems, Impacts, Ecosystem Services, and Management. Wetlands 2019, 39, 645–684. [Google Scholar] [CrossRef]
- Mexicano, L.; Nagler, P.L.; Zamora-Arroyo, F.; Glenn, E.P. Vegetation dynamics in response to water inflow rates and fire in a brackish Typha domingensis Pers. marsh in the delta of the Colorado River, Mexico. Ecol. Eng. 2013, 59, 167–175. [Google Scholar] [CrossRef]
- Santos-Díaz, M.D.S.; Barrón-Cruz, M.D.C.; Alfaro de la Torre, M.C. Induction of in vitro roots cultures of Typha latifolia and Scirpus americanus and study of their capacity to remove heavy metals. Electron. J. Biotechnol. 2007, 10, 417–424. [Google Scholar] [CrossRef]
- Tillich, H.J. Seedling diversity and the homologies of seedling organs in the order poales (monocotyledons). Ann. Bot. 2007, 100, 1413–1429. [Google Scholar] [CrossRef] [PubMed]
- Gomes, G.L.B.; Scortecci, K.C. Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biol. 2021, 23, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Ryder, G. Informe Mundial de las Naciones Unidas Sobre el Desarrollo de los Recursos Hídricos, 2017: Aguas Residuales: El Recurso no Explotado; Programa Mundial de la UNESCO de Evaluación de los Recursos Hídricos; UNESCO: London, UK, 2017; 202p, ISBN 978-92-3-300058-2. [Google Scholar]
- Dalla Vecchia, A.; Villa, P.; Bolpagni, R. Functional traits in macrophyte studies: Current trends and future research agenda. Aquat. Bot. 2020, 167, 103290. [Google Scholar] [CrossRef]
- Hernández-Piedra, G.; Ruiz-Carrera, V.; Sánchez, A.J.; Hernández-Franyutti, A.; Azpeitia-Morales, A. Morpho-histological development of the somatic embryos of Typha domingensis. PeerJ 2018, 6, e5952. [Google Scholar] [CrossRef]
- Hernández-Piedra, G.; Ruiz-Carrera, V.; Sánchez, A.J.; Azpeitia-Morales, A.; Calva-Calva, G. Induction of hairy roots on somatic embryos of rhizoclones from Typha domingensis seedlings. Plants 2020, 9, 1679. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lobet, G.; Draye, X.; Périlleux, C. An online database for plant image analysis software tools. Plant Methods 2013, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Bellini, C.; Pacurar, D.; Perrone, I. Adventitious Roots and Lateral Roots: Similarities and Differences. Annu. Rev. Plant Biol. 2014, 65, 639–666. [Google Scholar] [CrossRef] [PubMed]
- Rasband, W.S. ImageJ: Image processing and analysis in Java. Astrophys. Source Code Libr. 2012. ascl-1206.013. [Google Scholar]
- Rasband, W.S. ImageJ; U. S. National Institutes of Health: Bethesda, MD, USA, 2018. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pathak, R.K.; Gupta, S.M.; Gaur, V.S.; Pandey, D. Systems biology for smart crops and agricultural innovation: Filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. Omics A J. Integr. Biol. 2015, 19, 581–601. [Google Scholar] [CrossRef]
- Mufarrege, M.M.; Hadad, H.R.; Di Luca, G.A.; Maine, M.A. Metal dynamics and tolerance of Typha domingensis exposed to high concentrations of Cr, Ni and Zn. Ecotoxicol. Environ. Saf. 2014, 105, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Adu, M.; Asare, O.; Asare-Bediako, P.A.; Amenorpe, E.; Ackah, G.; Afutu, F.K.; Yawson, D.O. Characterising shoot and root system trait variability and contribution to genotypic variability in juvenile cassava (Manihot esculenta Crantz) plants. Heliyon 2018, 4, e00665. [Google Scholar] [CrossRef]
- Figueroa-Bustos, V.; Palta, J.; Chen, Y.; Siddique, K. Characterization of Root and Shoot Traits in Wheat Cultivars with Putative Differences in Root System Size. Agronomy 2018, 8, 109. [Google Scholar] [CrossRef]
- de la Fuente, A.C.; Jaramillo, N.; Barata, J.M.S.; Noireau, F.; Diotaiuti, L. Misidentification of two Brazilian triatomes, Triatoma arthurneivai and Triatoma wygodzinskyi, revealed by geometric morphometrics. Med. Vet. Entomol. 2011, 25, 178–183. [Google Scholar] [CrossRef]
- Sommer, C.; Gerlich, D.W. Machine learning in cell biology–teaching computers to recognize phenotypes. J. Cell Sci. 2013, 126, 5529–5539. [Google Scholar] [CrossRef]
- Druege, U.; Franken, P.; Hajirezaei, M.R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front. Plant Sci. 2016, 7, 381. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.A. Plant roots. Growth, activity and interaction with soils. Ann. Bot. 2007, 100, 151–152. [Google Scholar] [CrossRef]
- Wu, D.; Wang, H.; Wang, H.; Wang, Z.; Cai, W. Effects of the combined application of indole acetic acid and kinetin on the arsenic extraction efficiency of soil after planting Pteris vittata. J. Agro-Environ. Sci. 2018, 37, 1705–1715. [Google Scholar]
- Sun, H.; Tao, J.; Hou, M.; Huang, S.; Chen, S.; Liang, Z.; Xie, T.; Wei, X.; Xie, X.; Yoneyama, K.; et al. A strigolactone signal is required for adventitious root formation in rice. Ann. Bot. 2015, 5, 1155–1162. [Google Scholar] [CrossRef]
- Muga, H.E.; Mihelcic, J.R. Sustainability of wastewater treatment technologies. J. Environ. Manag. 2008, 88, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Review of organic wastewater compound concentrations and removal in onsite wastewater treatment systems. Environ. Sci. Technol. 2017, 51, 7304–7317. [Google Scholar] [CrossRef] [PubMed]
- Vandenbrink, J.P.; Kiss, J.Z.; Herranz, R.; Medina, F.J. Light and gravity signals synergize in modulating plant development. Front. Plant Sci. 2014, 5, 563. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Li, F.; Cui, H. Analytical method to aggregate multi-machine SFR model with applications in power system dynamic studies. IEEE Trans. Power Syst. 2018, 33, 6355–6367. [Google Scholar] [CrossRef]
- Henry, H.; Naujokas, M.F.; Attanayake, C.; Basta, N.T.; Cheng, Z.; Hettiarachchi, G.M.; Maddaloni, M.; Schadt, C.; Scheckel, K.G. Bioavailability-based in situ remediation to meet future lead (Pb) standards in urban soils and gardens. Environ. Sci. Technol. 2015, 49, 8948–8958. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, M.; Goyal, D. Analyzing remediation potential of wastewater through wetland plants: A review. Environ. Prog. Sustain. Energy 2014, 33, 9–27. [Google Scholar] [CrossRef]
- Mohsenipour, M.; Shahid, S.; Ebrahimi, K. Removal techniques of nitrate from water. Asian J. Chem. 2014, 26, 7881. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef]
- Rodriguez-Dominguez, M.A.; Bonefeld, B.E.; Ambye-Jensen, M.; Brix, H.; Arias, C.A. The use of treatment wetlands plants for protein and cellulose valorization in biorefinery platform. Sci. Total Environ. 2022, 810, 152376. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, C.; Sun, Y.C.; Zhang, Q.; Lv, M.W.; Guo, K.; Li, J.L. Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Sci. Total Environ. 2019, 689, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
Treatment | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 |
---|---|---|---|---|---|---|---|---|---|
CIN (mg/L) | 0 | 0 | 0 | 0.1 | 0.1 | 0.1 | 1 | 1 | 1 |
AIA (mg/L) | 0 | 0.1 | 1 | 0 | 0.1 | 1 | 0 | 0.1 | 1 |
Explant | Seed | Root | CBAS | Root | CBAS | Seed | CBAS | Seed | Root |
Contact Surface | Growth Rate | ||||||
---|---|---|---|---|---|---|---|
NR | LR | DRAM | DLR | TE | TRAM | TCR | |
AIA/CIN | Roots Plant−1 | Root mm Plant−1 | Root cm−3 | Root mm cm−3 | Root mm d−1 | Root d−1 | Root mm mm−1 d−1 |
0.0–0.0 | 11.67 ± 0.95 ª | 150.02 ± 9.94 a | 0.23 ± 0.02 a | 3.00 ± 0.20 ª | 5.57 ± 0.83 a | 0.62 ± 0.08 a | 0.26 ± 0.02 a |
0.0–0.1 | 5.00 ± 1.10 abc | 30.38 ± 2.85 ab | 0.10 ± 0.02 def | 0.61 ± 0.06 ab | 3.19 ± 0.35 c | 0.43 ± 0.06 bcd | 0.18 ± 0.02 c |
0.0–1.0 | 3.33 ± 0.56 bc | 27.30 ± 3.73 ab | 0.07 ± 0.01 ef | 0.55 ± 0.07 ab | 3.36 ± 0.26 c | 0.36 ± 0.05 bcd | 0.19 ± 0.01 bc |
0.0–10.0 | 3.00 ± 0.37 bc | 22.77 ± 2.10 b | 0.06 ± 0.01 ef | 0.46 ± 0.04 b | 3.23 ± 0.38 c | 0.40 ± 0.04 bcd | 0.18 ± 0.02 bc |
0.1–0.0 | 7.50 ± 1.28 abc | 90.97 ± 21.65 ab | 0.15 ± 0.03 bc | 1.82 ± 0.43 ab | 4.74 ± 0.59 ab | 0.52 ± 0.06 ab | 0.24 ± 0.02 ab |
0.1–0.1 | 7.33 ± 1.02 abc | 66.10 ± 15.61 ab | 0.14 ± 0.02 bc | 1.32 ± 0.31 ab | 3.67 ± 0.43 bc | 0.45± 0.08 abcd | 0.20 ± 0.02 abc |
0.1–1.0 | 7.67 ± 0.67 abc | 49.98 ± 3.47 ab | 0.15 ± 0.01 bc | 1.00 ± 0.07 ab | 3.29 ± 0.58 c | 0.38± 0.06 bcd | 0.18 ± 0.03 c |
0.1–10.0 | 3.17 ± 0.40 bc | 21.67 ± 2.33 b | 0.06 ± 0.01 ef | 0.43 ± 0.05 b | 2.86 ± 0.27 c | 0.40 ± 0.04 bcd | 0.17 ± 0.02 c |
1.0–0.0 | 8.50 ± 0.56 ab | 66.86 ± 8.07 ab | 0.17 ± 0.01 ab | 1.34 ± 0.16 ab | 3.36 ± 0.51 c | 0.52 ± 0.10 ab | 0.18 ± 0.03 bc |
1.0–0.1 | 6.80 ± 0.95 abc | 55.17 ± 16.13 ab | 0.14 ± 0.02 bcd | 1.10 ± 0.32 ab | 2.74 ± 0.23 c | 0.50 ± 0.10 abc | 0.16 ± 0.01 c |
1.0–1.0 | 5.33 ± 1.23 abc | 26.33 ± 4.21 ab | 0.11 ± 0.06 cde | 0.53 ± 0.08 ab | 2.83 ± 0.33 c | 0.33 ± 0.03 cd | 0.17 ± 0.02 c |
1.0–10.0 | 3.00 ± 0.45 bc | 26.45 ± 2.31 b | 0.06 ± 0.01 ef | 0.41 ± 0.05 b | 2.74 ± 0.41 c | 0.43 ± 0.06 bcd | 0.16 ± 0.02 c |
10.0–0.0 | 5.00 ± 0.86 abc | 54.62 ± 16.62 ab | 0.10 ± 0.02 def | 1.09 ± 0.33 ab | 3.47 ± 0.38 bc | 0.33 ± 0.03 cd | 0.20 ± 0.02 bc |
10.0–0.1 | 4.00 ± 0.93 abc | 32.81 ± 6.13 b | 0.08 ± 0.05 f | 0.66 ± 0.21 b | 2.90 ± 0.44 c | 0.31 ± 0.02 cd | 0.17 ± 0.02 c |
10.0–1.0 | 2.05 ± 0.22 bc | 23.78 ± 2.16 b | 0.05 ± 0.00 ef | 0.48 ± 0.04 b | 3.25 ± 0.31 c | 0.29 ± 0.00 d | 0.19 ± 0.02 bc |
10.0–10.0 | 2.33 ± 0.21 c | 20.33 ± 2.98 b | 0.05 ± 0.01 f | 0.40 ± 0.06 b | 2.84 ± 0.43 c | 0.31 ± 0.02 cd | 0.16 ± 0.02 c |
Contact Surface | Growth Rate | ||||||
---|---|---|---|---|---|---|---|
NR | LR | DRAM | DLR | TE | TRAM | TCR | |
AIA/BAP | Roots Plant−1 | Root mm Plant−1 | Root cm−3 | Root mm cm−3 | Root mm d−1 | Root d−1 | Root mm mm−1 d−1 |
0.0–0.0 | 11.33 ± 0.84 a | 84.18 ± 16.62 a | 0.23 ± 0.02 a | 1.68 ± 0.12 a | 5.43 ± 1.04 | 0.60 ± 0.10 a | 0.25 ± 0.03 |
0.0–0.1 | 3.04 ± 0.40 abc | 22.87 ± 0.83 ab | 0.06 ± 0.02 abc | 0.46 ± 0.02 ab | 3.27 ± 0.12 | 0.55 ± 0.06 abc | 0.19 ± 0.01 |
0.0–1.0 | 2.33 ± 0.21 bc | 19.25 ± 1.46 ab | 0.05 ± 0.01 bc | 0.39 ± 0.03 ab | 2.80 ± 0.20 | 0.33 ± 0.03 ef | 0.17 ± 0.01 |
0.0–10.0 | 2.50 ± 0.22 bc | 23.20 ± 2.03 ab | 0.05 ±0.01 bc | 0.46 ± 0.04 ab | 3.31 ± 0.29 | 0.36 ± 0.05 def | 0.02 ± 0.01 |
0.1–0.0 | 6.33 ± 0.67 ab | 40.78 ± 8.26 ab | 0.13 ± 0.03 ab | 0.82 ± 0.17 ab | 3.16 ± 0.36 | 0.48 ± 0.05 bcd | 0.18 ± 0.01 |
0.1–0.1 | 3.00 ± 0.37 abc | 20.20 ± 3.30 ab | 0.06 ± 0.02 abc | 0.40 ± 0.07 ab | 2.85 ± 0.46 | 0.40 ± 0.04 def | 0.16 ± 0.03 |
0.1–1.0 | 2.00 ± 0.00 c | 17.05 ± 1.96 b | 0.04 ± 0.00 c | 0.34 ±0.04 b | 2.44± 0.28 | 0.29 ± 0.00 f | 0.14 ± 0.02 |
0.1–10.0 | 2.67 ± 0.21 abc | 16.23 ± 1.42 b | 0.05 ± 0.01 abc | 0.32 ± 0.03 b | 2.32± 0.20 | 0.38 ± 0.03 ef | 0.14 ± 0.01 |
1.0–0.0 | 6.00 ± 0.58 ab | 83.92 ± 17.37 a | 0.12 ± 0.03 ab | 1.68 ± 0.35 a | 4.85 ± 1.08 | 0.57 ± 0.05 ab | 0.23 ± 0.02 |
1.0–0.1 | 2.17 ± 0.17 bc | 17.12 ± 1.94 b | 0.04 ± 0.01 bc | 0.34 ± 0.04 b | 2.52± 0.14 | 0.31 ± 0.02 ef | 0.15 ± 0.01 |
1.0–1.0 | 2.50 ± 0.22 abc | 19.78 ± 1.65 ab | 0.05 ± 0.01 abc | 0.40 ± 0.03 ab | 2.83 ± 0.24 | 0.43 ± 0.04 cde | 0.17 ± 0.01 |
1.0–10.0 | 2.23 ± 0.21 bc | 18.93 ± 0.99 ab | 0.05 ± 0.00 bc | 0.38 ± 0.02 ab | 2.67 ± 0.16 | 0.33 ± 0.05 ef | 0.16 ± 0.01 |
10.0–0.0 | 2.50 ± 0.34 abc | 17.40 ± 0.83 b | 0.05 ± 0.02 abc | 0.35 ± 0.02 b | 2.49 ± 0.12 | 0.38 ± 0.05 def | 0.15 ± 0.01 |
10.0–0.1 | 2.83 ± 0.31 abc | 21.18 ± 2.58 ab | 0.06 ± 0.00 abc | 0.42 ± 0.04 ab | 3.01 ± 0.36 | 0.38 ± 0.03 def | 0.17 ± 0.02 |
10.0–1.0 | 2.17 ± 0.17 bc | 17.93 ± 2.30 ab | 0.04 ± 0.01 bc | 0.36 ± 0.05 ab | 2.56 ± 0.33 | 0.31 ± 0.05 ef | 0.15 ± 0.02 |
10.0–10.0 | 2.50 ± 0.34 abc | 17.82 ± 3.11 b | 0.05 ± 0.01 abc | 0.36 ± 0.06 b | 2.55 ± 0.44 | 0.33 ± 0.06 ef | 0.15 ± 0.02 |
Light (Exp 3) | ||||||||
AIA | CIN | Explant | NR | LTR | TRAM | TE | DRAM | DLTR |
0.0 | 0.0 | Seed | 9.60 ± 2.87 | 11.60 ± 3.58 | 0.34 ± 0.10 | 0.41 ± 0.13 | 0.19 ± 0.06 | 0.23 ± 0.07 |
0.0 | 0.1 | Root | 1.00 ± 0.00 | 0 | 0.04 ± 0.00 | 0 | 0.02 ± 0.00 | 0 |
0.0 | 1.0 | CBAS | 10.60 ± 1.69 | 9.76 ± 1.48 | 0.38 ± 0.06 | 0.35 ± 0.05 | 0.21 ± 0.03 | 0.20 ± 0.03 |
0.1 | 0.0 | Root | 1.00 ± 0.00 | 0 | 0.04 ± 0.00 | 0 | 0.02 ± 0.00 | 0 |
0.1 | 0.1 | CBAS | 11.40 ± 0.68 | 6.38 ± 0.79 | 0.41 ± 0.02 | 0.23 ± 0.03 | 0.23 ± 0.01 | 0.13 ± 0.02 |
0.1 | 1.0 | Seed | 11.40 ± 0.68 | 8.38 ± 0.71 | 0.41 ± 0.02 | 0.30 ± 0.03 | 0.23 ± 0.01 | 0.17 ± 0.01 |
1.0 | 0.0 | CBAS | 6.60 ± 1.57 | 2.34 ± 0.60 | 0.24 ± 0.06 | 0.08 ± 0.02 | 0.13 ± 0.03 | 0.05 ± 0.01 |
1.0 | 0.1 | Seed | 7.20 ± 1.11 | 3.18 | 0.26 ± 0.04 | 0.11 ± 0.03 | 0.14 ± 0.02 | 0.06 ± 0.01 |
1.0 | 1.0 | Root | 1.00 ± 0.00 | 0 | 0.04 ± 0.00 | 0 | 0.02 ± 0.00 | 0 |
Dark (Exp 4) | ||||||||
0.0 | 0.0 | Seed | 11.00 ± 1.10 | 12.20 ± 1.64 | 0.39 ± 0.39 | 0.44 ± 0.06 | 0.22 ± 0.02 | 0.24 ± 0.03 |
0.0 | 0.1 | Root | 1.00 ± 0.00 | 0 | 0.04 ± 0.00 | 0 | 0.02 ± 0.00 | 0 |
0.0 | 1.0 | CBAS | 5.80 ± 2.44 | 5.30 ± 3.35 | 0.21 ± 0.09 | 0.19 ± 0.12 | 0.12 ± 0.05 | 0.11 ± 0.07 |
0.1 | 0.0 | Root | 1.00 ± 0.00 | 0 | 0.04 ± 0.00 | 0 | 0.02 ± 0.00 | 0 |
0.1 | 0.1 | CBAS | 9.20 ± 1.53 | 5.44 ± 0.90 | 0.33 ± 0.05 | 0.19 ± 0.03 | 0.18 ± 0.03 | 0.11 ± 0.02 |
0.1 | 1.0 | Seed | 11.4 ± 0.68 | 8.38 ± 0.71 | 0.41 ± 0.02 | 0.30 ± 0.03 | 0.23 ± 0.01 | 0.17 ± 0.01 |
1.0 | 0.0 | CBAS | 5.20 ± 2.27 | 4.38 ± 2.17 | 0.19 ± 0.08 | 0.16 ± 0.08 | 0.10 ± 0.05 | 0.09 ± 0.04 |
1.0 | 0.1 | Seed | 8.20 ± 2.35 | 5.32 ± 1.79 | 0.29 ± 0.08 | 0.19 ± 0.06 | 0.16 ± 0.05 | 0.11 ± 0.04 |
1.0 | 1.0 | Root | 1.00 ± 0.00 | 0 | 0.04 ± 0.00 | 0 | 0.02 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Piedra, G.; Ruiz-Carrera, V.; Sánchez, A.J.; Escalante-Espinosa, E.; Calva-Calva, G. Spatial–Temporal Dynamics of Adventitious Roots of Typha domingensis Pers. Seedlings Grown with Auxin/Cytokinin. Life 2025, 15, 121. https://doi.org/10.3390/life15010121
Hernández-Piedra G, Ruiz-Carrera V, Sánchez AJ, Escalante-Espinosa E, Calva-Calva G. Spatial–Temporal Dynamics of Adventitious Roots of Typha domingensis Pers. Seedlings Grown with Auxin/Cytokinin. Life. 2025; 15(1):121. https://doi.org/10.3390/life15010121
Chicago/Turabian StyleHernández-Piedra, Guadalupe, Violeta Ruiz-Carrera, Alberto J. Sánchez, Erika Escalante-Espinosa, and Graciano Calva-Calva. 2025. "Spatial–Temporal Dynamics of Adventitious Roots of Typha domingensis Pers. Seedlings Grown with Auxin/Cytokinin" Life 15, no. 1: 121. https://doi.org/10.3390/life15010121
APA StyleHernández-Piedra, G., Ruiz-Carrera, V., Sánchez, A. J., Escalante-Espinosa, E., & Calva-Calva, G. (2025). Spatial–Temporal Dynamics of Adventitious Roots of Typha domingensis Pers. Seedlings Grown with Auxin/Cytokinin. Life, 15(1), 121. https://doi.org/10.3390/life15010121