Navigating the Collective: Nanoparticle-Assisted Identification of Leader Cancer Cells During Migration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Calibration Experiments
2.3. Nanoparticle Encapsulation and Actin Staining
2.4. Microscopy and Imaging
2.5. F-Actin Anisotropy and Orientation Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive Analysis of Estrogen Receptor (ER)-Negative, Progesterone Receptor (PR)-Negative, and HER2-Negative Invasive Breast Cancer, the so-Called Triple-Negative Phenotype: A Population-Based Study from the California Cancer Registry. Cancer 2007, 109, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.Y.; Chang, C.J.; Cheng, J.S. Survival, Treatment Regimens and Medical Costs of Women Newly Diagnosed with Metastatic Triple-Negative Breast Cancer. Sci. Rep. 2022, 12, 729. [Google Scholar] [CrossRef] [PubMed]
- Lindman, H.; Wiklund, F.; Andersen, K.K. Long-Term Treatment Patterns and Survival in Metastatic Breast Cancer by Intrinsic Subtypes—An Observational Cohort Study in Sweden. BMC Cancer 2022, 22, 1006. [Google Scholar] [CrossRef] [PubMed]
- Frangioni, J.V. New Technologies for Human Cancer Imaging. J. Clin. Oncol. 2008, 26, 4012–4021. [Google Scholar] [CrossRef]
- Lee, M.S.; Min, N.Y.; Kwon, H.J.; Kim, Y.; Lee, I.K. Revolutionizing Non-Invasive Biomarker Discoveries: The Power of Methylation Screening Analysis in Cell-Free DNA Liquid Biopsy. Open J. Genet. 2023, 13, 48–74. [Google Scholar] [CrossRef]
- Damodaran, S.; Berger, M.F.; Roychowdhury, S. Clinical Tumor Sequencing: Opportunities and Challenges for Precision Cancer Medicine. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e175–e182. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Q.; Liu, Q.; Zhang, Q.; Huang, Q.; Yu, Z. The Serum Tumor Markers in Combination for Clinical Diagnosis of Lung Cancer. Clin. Lab. 2020, 66, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Núñez, C. Blood-Based Protein Biomarkers in Breast Cancer. Clin. Chim. Acta 2019, 490, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Scapa, E.; Broide, E.; Pinhasov, I. The Effect of Colonoscopy on Tumor Markers. Surg. Laparosc. Endosc. Percutan. Tech. 1997, 7, 477–479. [Google Scholar] [CrossRef]
- Merkher, Y.; Kontareva, E.; Melekhova, A.; Leonov, S. Abstract PO-042: Nanoparticles Imaging for Cancer Metastasis Diagnosis. Clin. Cancer Res. 2021, 27, PO-042. [Google Scholar] [CrossRef]
- Alexandrova, A.; Kontareva, E.; Pustovalova, M.; Leonov, S.; Merkher, Y. Nanoparticle’s Encapsulation as a Marker for Leading Cells in Collective Migration of Breast Cancer Cells. JCO Glob. Oncol. 2024, 10, 129. [Google Scholar] [CrossRef]
- Kontareva, E.; Maksimova, K.; Pustovalova, M.; Leonov, S.; Merkher, Y. Nanoparticle’s Encapsulation Ability Is More Efficient for Characterization of Invading Breast Cancer Cells Than EMT Markers. JCO Glob. Oncol. 2024, 10, 128. [Google Scholar] [CrossRef]
- Merkher, Y.; Kontareva, E.; Bogdan, E.; Achkasov, K.; Maximova, K.; Grolman, J.M.; Leonov, S. Encapsulation and Adhesion of Nanoparticles as a Potential Biomarker for TNBC Cells Metastatic Propensity. Sci. Rep. 2023, 13, 12289. [Google Scholar] [CrossRef]
- Yulia, M.; Elizaveta, K.; Elizaveta, B.; Konstantin, A.; Joshua, G. Leonov Sergey Nanoparticle Cellular Endocytosis as Potential Prognostic Biomarker for Cancer Progression. FEBS Open Bio 2021, 11, 429–430. [Google Scholar] [CrossRef]
- Srinivasan, S.; Burckhardt, C.J.; Bhave, M.; Chen, Z.; Chen, P.H.; Wang, X.; Danuser, G.; Schmid, S.L. A Noncanonical Role for Dynamin-1 in Regulating Early Stages of Clathrin-Mediated Endocytosis in Non-Neuronal Cells. PLoS Biol. 2018, 16, e2005377. [Google Scholar] [CrossRef] [PubMed]
- Benmerah, A.; Lamaze, C.; Bègue, B.; Schmid, S.L.; Dautry-Varsat, A.; Cerf-Bensussan, N. Ap-2/Eps15 Interaction Is Required for Receptor-Mediated Endocytosis. J. Cell Biol. 1998, 140, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Matsui, H.; Tomizawa, K. Amphiphysin I and Regulation of Synaptic Vesicle Endocytosis. Acta Med. Okayama 2009, 63, 305–323. [Google Scholar] [CrossRef]
- Lamaze, C.; Chuang, T.H.; Terlecky, L.J.; Bokoch, G.M.; Schmid, S.L. Regulation of Receptor-Mediated Endocytosis by Rho and Rac. Nature 1996, 382, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.A.; Piper, H.K.; Chen, B. WASP Family Proteins: Molecular Mechanisms and Implications in Human Disease. Eur. J. Cell Biol. 2022, 101, 151244. [Google Scholar] [CrossRef]
- Grahammer, F.; Ramakrishnan, S.K.; Rinschen, M.M.; Larionov, A.A.; Syed, M.; Khatib, H.; Roerden, M.; Sass, J.O.; Helmstaedter, M.; Osenberg, D.; et al. MTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells. J. Am. Soc. Nephrol. 2017, 28, 230–241. [Google Scholar] [CrossRef]
- Leonov, S.; Inyang, O.; Achkasov, K.; Bogdan, E.; Kontareva, E.; Chen, Y.; Fu, Y.; Osipov, A.N.; Pustovalova, M.; Merkher, Y.; et al. Proteomic Markers for Mechanobiological Properties of Metastatic Cancer Cells. Int. J. Mol. Sci. 2023, 24, 4773. [Google Scholar] [CrossRef]
- Ellis, S.; Mellor, H. Regulation of Endocytic Traffic by Rho Family GTPases. Trends Cell Biol. 2000, 10, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Caron, E.; Hall, A. Identification of Two Distinct Mechanisms of Phagocytosis Controlled by Different Rho GTPases. Science 1998, 282, 1717–1721. [Google Scholar] [CrossRef]
- Krugmann, S.; Jordens, I.; Gevaert, K.; Driessens, M.; Vandekerckhove, J.; Hall, A. Cdc42 Induces Filopodia by Promoting the Formation of an IRSp53:Mena Complex. Curr. Biol. 2001, 11, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Steffen, A.; Ladwein, M.; Dimchev, G.A.; Hein, A.; Schwenkmezger, L.; Arens, S.; Ladwein, K.I.; Holleboom, J.M.; Schur, F.; Small, J.V.; et al. Rac Function Is Critical for Cell Migration but Not Required for Spreading and Focal Adhesion Formation. J. Cell Sci. 2013, 126, 4572–4588. [Google Scholar] [CrossRef]
- Chrzanowska-Wodnicka, M.; Burridge, K. Rho-Stimulated Contractility Drives the Formation of Stress Fibers and Focal Adhesions. J. Cell Biol. 1996, 133, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Blanchoin, L.; Boujemaa-Paterski, R.; Sykes, C.; Plastino, J. Actin Dynamics, Architecture, and Mechanics in Cell Motility. Physiol. Rev. 2014, 94, 235–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Lin, H.-H.; Tang, M.-J.; Wang, Y.-K. Vimentin Contributes to Epithelial-Mesenchymal Transition Cancer Cell Mechanics by Mediating Cytoskeletal Organization and Focal Adhesion Maturation. Oncotarget 2015, 6, 15966–15983. [Google Scholar] [CrossRef]
- Chugh, P.; Clark, A.G.; Smith, M.B.; Cassani, D.A.D.; Dierkes, K.; Ragab, A.; Roux, P.P.; Charras, G.; Salbreux, G.; Paluch, E.K. Actin Cortex Architecture Regulates Cell Surface Tension. Nat. Cell Biol. 2017, 19, 689–697. [Google Scholar] [CrossRef]
- Bray, D.; White, J.G. Cortical Flow Anim. Cells. Science 1988, 239, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, M.; Tafazzoli-Shadpour, M.; Khani, M.M. Correlation of the Cell Mechanical Behavior and Quantified Cytoskeletal Parameters in Normal and Cancerous Breast Cell Lines. Biorheology 2019, 56, 207–219. [Google Scholar] [CrossRef]
- Fujimoto, L.M.; Roth, R.; Heuser, J.E.; Schmid, S.L. Actin Assembly Plays a Variable, but Not Obligatory Role in Receptor-Mediated Endocytosis. Traffic 2000, 1, 161–171. [Google Scholar] [CrossRef]
- Alvarez-Elizondo, M.B.M.B.M.B.; Merkher, Y.; Shleifer, G.; Gashri, C.; Weihs, D. Actin as a Target to Reduce Cell Invasiveness in Initial Stages of Metastasis. Ann. Biomed. Eng. 2020, 49, 1342–1352. [Google Scholar] [CrossRef]
- Friedl, P.; Alexander, S. Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell 2011, 147, 992–1009. [Google Scholar] [CrossRef] [PubMed]
- Iida, J.; Nesbella, M.; Lehman, J.; Mural, R.; Shriver, C. Role for CD44 in Enhancing Invasion, Migration, and Growth of Triple Negative (TN) Breast Cancer Cells. Cancer Res. 2009, 69, 6161. [Google Scholar] [CrossRef]
- Clark, A.G.; Vignjevic, D.M. Modes of Cancer Cell Invasion and the Role of the Microenvironment. Curr. Opin. Cell Biol. 2015, 36, 13–22. [Google Scholar] [CrossRef]
- Patsialou, A.; Bravo-Cordero, J.J.; Wang, Y.; Entenberg, D.; Liu, H.; Clarke, M.; Condeelis, J.S. Intravital Multiphoton Imaging Reveals Multicellular Streaming as a Crucial Component of in Vivo Cell Migration in Human Breast Tumors. Intravital 2013, 2, e25294. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.J.; Padmanaban, V.; Silvestri, V.; Schipper, K.; Cohen, J.D.; Fairchild, A.N.; Gorin, M.A.; Verdone, J.E.; Pienta, K.J.; Bader, J.S.; et al. Polyclonal Breast Cancer Metastases Arise from Collective Dissemination of Keratin 14-Expressing Tumor Cell Clusters. Proc. Natl. Acad. Sci. USA 2016, 113, E854–E863. [Google Scholar] [CrossRef]
- Mayor, R.; Etienne-Manneville, S. The Front and Rear of Collective Cell Migration. Nat. Rev. Mol. Cell Biol. 2016, 17, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Kalinin, V. Cell—Extracellular Matrix Interaction in Glioma Growth. In Silico Model. J. Integr. Bioinform. 2020, 17, 20200027. [Google Scholar] [CrossRef]
- Friedl, P.; Mayor, R. Tuning Collective Cell Migration by Cell-Cell Junction Regulation. Cold Spring Harb. Perspect. Biol. 2017, 9, a029199. [Google Scholar] [CrossRef]
- Friedl, P.; Locker, J.; Sahai, E.; Segall, J.E. Classifying Collective Cancer Cell Invasion. Nat. Cell Biol. 2012, 14, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Friedl, P.; Gilmour, D. Collective Cell Migration in Morphogenesis, Regeneration and Cancer. Nat. Rev. Mol. Cell Biol. 2009, 10, 445–457. [Google Scholar] [CrossRef]
- Plutoni, C.; Keil, S.; Zeledon, C.; Delsin, L.E.A.; Decelle, B.; Roux, P.P.; Carréno, S.; Emery, G. Misshapen Coordinates Protrusion Restriction and Actomyosin Contractility during Collective Cell Migration. Nat. Commun. 2019, 10, 3940. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Murphy, J.; Jass, J.R.; Mochizuki, H.; Talbot, I.C. Tumour “budding” as an Index to Estimate the Potential of Aggressiveness in Rectal Cancer. Histopathology 2002, 40, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Song, K.; Hu, Z.; Cao, W.; Shuai, J.; Chen, S.; Nan, H.; Zheng, Y.; Jiang, X.; Zhang, H.; et al. Diversity of Collective Migration Patterns of Invasive Breast Cancer Cells Emerging during Microtrack Invasion. Phys. Rev. E 2019, 99, 062403. [Google Scholar] [CrossRef]
- Cui, Y.; Yamada, S. N-Cadherin Dependent Collective Cell Invasion of Prostate Cancer Cells Is Regulated by the N-Terminus of α-Catenin. PLoS ONE 2013, 8, e55069. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Cell Dissemination in Pancreatic Cancer. Cells 2022, 11, 3683. [Google Scholar] [CrossRef]
- Diz-Muñoz, A.; Romanczuk, P.; Yu, W.; Bergert, M.; Ivanovitch, K.; Salbreux, G.; Heisenberg, C.-P.; Paluch, E.K. Steering Cell Migration by Alternating Blebs and Actin-Rich Protrusions. BMC Biol. 2016, 14, 74. [Google Scholar] [CrossRef]
- Doran, B.R.; Moffitt, L.R.; Wilson, A.L.; Stephens, A.N.; Bilandzic, M. Leader Cells: Invade and Evade—The Frontline of Cancer Progression. Int. J. Mol. Sci. 2024, 25, 10554. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Ishikawa, T.; Minami, Y.; Nishita, M. Tactics of Cancer Invasion: Solitary and Collective Invasion. J. Biochem. 2020, 167, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Lien, Z.-Y.; Hsu, T.-C.; Liu, K.-K.; Liao, W.-S.; Hwang, K.-C.; Chao, J.-I. Cancer Cell Labeling and Tracking Using Fluorescent and Magnetic Nanodiamond. Biomaterials 2012, 33, 6172–6185. [Google Scholar] [CrossRef] [PubMed]
- Abuelmakarem, H.S.; Hamdy, O.; Sliem, M.A.; El-Azab, J.; Ahmed, W.A. Early Cancer Detection Using the Fluorescent Ashwagandha Chitosan Nanoparticles Combined with Near-Infrared Light Diffusion Characterization: In Vitro Study. Lasers Med. Sci. 2023, 38, 37. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Sugiura, S.; Takagi, T.; Satoh, T.; Sumaru, K.; Kanamori, T.; Okada, T.; Matsui, H. Morphology-Based Optical Separation of Subpopulations from a Heterogeneous Murine Breast Cancer Cell Line. PLoS ONE 2017, 12, e0179372. [Google Scholar] [CrossRef]
- Desjardins-Lecavalier, N.; Annis, M.G.; Nowakowski, A.; Kiepas, A.; Binan, L.; Roy, J.; Modica, G.; Hébert, S.; Kleinman, C.L.; Siegel, P.M.; et al. Migration Speed of Captured Breast Cancer Subpopulations Correlates with Metastatic Fitness. J. Cell Sci. 2023, 136, jcs260835. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim-Hashim, A.; Robertson-Tessi, M.; Enriquez-Navas, P.M.; Damaghi, M.; Balagurunathan, Y.; Wojtkowiak, J.W.; Russell, S.; Yoonseok, K.; Lloyd, M.C.; Bui, M.M.; et al. Defining Cancer Subpopulations by Adaptive Strategies Rather Than Molecular Properties Provides Novel Insights into Intratumoral Evolution. Cancer Res. 2017, 77, 2242–2254. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.E.; Sivanandan, R.; Kaczorowski, A.; Wolf, G.T.; Kaplan, M.J.; Dalerba, P.; Weissman, I.L.; Clarke, M.F.; Ailles, L.E. Identification of a Subpopulation of Cells with Cancer Stem Cell Properties in Head and Neck Squamous Cell Carcinoma. Proc. Natl. Acad. Sci. USA 2007, 104, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xue, X.; Li, W.; Wang, Q.; Han, L.; Brunson, T.; Xu, W.; Chambers-Harris, I.; Wang, Q.; Li, X.; et al. Heterogeneous DNA Methylation Status in Same-Cell Subpopulations of Ovarian Cancer Tissues. Tumor Biol. 2017, 39, 101042831770165. [Google Scholar] [CrossRef] [PubMed]
- Merkher, Y.; Inyang, O.; Kontareva, E.; Leonov, S. Assessing Propensity to Metastasize Using Nanoparticle Cellular Endocytosis. FEBS Open Bio. 2023, 13, P-01.1-31. [Google Scholar] [CrossRef]
- Mizrahi, A.; Lazar, A. Media for Cultivation of Animal Cells: An Overview. Cytotechnology 1988, 1, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Min, S.O.; Lee, S.W.; Bak, S.Y.; Kim, K.S. Ideal Sphere-Forming Culture Conditions to Maintain Pluripotency in a Hepatocellular Carcinoma Cell Lines. Cancer Cell Int. 2015, 15, 95. [Google Scholar] [CrossRef]
- Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. J. Investig. Dermatol. 2017, 137, e11–e16. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arnedo, A.; Torres Figueroa, F.; Clavijo, C.; Arbeláez, P.; Cruz, J.C.; Muñoz-Camargo, C. An Image J Plugin for the High Throughput Image Analysis of in Vitro Scratch Wound Healing Assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef]
- Boudaoud, A.; Burian, A.; Borowska-Wykręt, D.; Uyttewaal, M.; Wrzalik, R.; Kwiatkowska, D.; Hamant, O. FibrilTool, an ImageJ Plug-in to Quantify Fibrillar Structures in Raw Microscopy Images. Nat. Protoc. 2014, 9, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lopez, A.T.; Thevarajan, I.; Osuna, M.F.; Mallavarapu, M.; Gao, B.; Osborne, J.K. Unexpected Differences in the Speed of Non-Malignant versus Malignant Cell Migration Reveal Differential Basal Intracellular ATP Levels. Cancers 2023, 15, 5519. [Google Scholar] [CrossRef] [PubMed]
- Umar, H.; Rizaner, N.; Usman, A.G.; Aliyu, M.R.; Adun, H.; Ghali, U.M.; Uzun Ozsahin, D.; Abba, S.I. Prediction of Cell Migration in MDA-MB 231 and MCF-7 Human Breast Cancer Cells Treated with Albizia Lebbeck Methanolic Extract Using Multilinear Regression and Artificial Intelligence-Based Models. Pharmaceuticals 2023, 16, 858. [Google Scholar] [CrossRef] [PubMed]
- Gayan, S.; Teli, A.; Dey, T. Inherent Aggressive Character of Invasive and Non-Invasive Cells Dictates the in Vitro Migration Pattern of Multicellular Spheroid. Sci. Rep. 2017, 7, 11527. [Google Scholar] [CrossRef] [PubMed]
- Eslami Amirabadi, H.; Tuerlings, M.; Hollestelle, A.; SahebAli, S.; Luttge, R.; van Donkelaar, C.C.; Martens, J.W.M.; den Toonder, J.M.J. Characterizing the Invasion of Different Breast Cancer Cell Lines with Distinct E-Cadherin Status in 3D Using a Microfluidic System. Biomed. Microdevices 2019, 21, 101. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Park, S.; Patel, C.; Bai, Y.; Henary, K.; Raha, A.; Mohammadi, S.; You, L.; Geng, F. The Migration of Metastatic Breast Cancer Cells Is Regulated by Matrix Stiffness via YAP Signalling. Heliyon 2021, 7, e06252. [Google Scholar] [CrossRef]
- DeCamp, S.J.; Tsuda, V.M.K.; Ferruzzi, J.; Koehler, S.A.; Giblin, J.T.; Roblyer, D.; Zaman, M.H.; Weiss, S.T.; Kılıç, A.; De Marzio, M.; et al. Epithelial Layer Unjamming Shifts Energy Metabolism toward Glycolysis. Sci. Rep. 2020, 10, 18302. [Google Scholar] [CrossRef]
- Zanotelli, M.R.; Rahman-Zaman, A.; VanderBurgh, J.A.; Taufalele, P.V.; Jain, A.; Erickson, D.; Bordeleau, F.; Reinhart-King, C.A. Energetic Costs Regulated by Cell Mechanics and Confinement Are Predictive of Migration Path during Decision-Making. Nat. Commun. 2019, 10, 4185. [Google Scholar] [CrossRef]
- Wu, P.H.; Gilkes, D.M.; Phillip, J.M.; Narkar, A.; Cheng, T.W.T.; Marchand, J.; Lee, M.H.; Li, R.; Wirtz, D. Single-Cell Morphology Encodes Metastatic Potential. Sci. Adv. 2020, 6, eaaw6938. [Google Scholar] [CrossRef] [PubMed]
- Tse, J.M.; Cheng, G.; Tyrrell, J.A.; Wilcox-Adelman, S.A.; Boucher, Y.; Jain, R.K.; Munn, L.L. Mechanical Compression Drives Cancer Cells toward Invasive Phenotype. Proc. Natl. Acad. Sci. USA 2012, 109, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, A.; Cheng, M.; Bhujwalla, Z.M.; Krishnamachary, B.; Jiang, L.; Glunde, K. Breast Cancer Cell Adhesome and Degradome Interact to Drive Metastasis. NPJ Breast. Cancer 2015, 1, 15017. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Heyob, K.; Jacob, N.K.; Rogers, L.K. Alterative Expression and Localization of Profilin 1/VASPpS157 and Cofilin 1/VASPpS239 Regulates Metastatic Growth and Is Modified by DHA Supplementation. Mol. Cancer Ther. 2016, 15, 2220–2231. [Google Scholar] [CrossRef] [PubMed]
- Gowing, L.R.; Tellam, R.L.; Banyard, M.R.C. Microfilament Organization and Total Actin Content Are Decreased in Hybrids Derived from the Fusion of HeLa Cells with Human Fibroblasts. J. Cell Sci. 1984, 69, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, M.; Tafazzoli-Shadpour, M.; Khani, M.M. Altered Mechanical Properties of Actin Fibers Due to Breast Cancer Invasion: Parameter Identification Based on Micropipette Aspiration and Multiscale Tensegrity Modeling. Med. Biol. Eng. Comput. 2021, 59, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Goswami, S.; Lapidus, K.; Wells, A.L.; Wyckoff, J.B.; Sahai, E.; Singer, R.H.; Segall, J.E.; Condeelis, J.S. Identification and Testing of a Gene Expression Signature of Invasive Carcinoma Cells within Primary Mammary Tumors. Cancer Res. 2004, 64, 8585–8594. [Google Scholar] [CrossRef]
- Rao, K.M.K.; Cohen, H.J. Actin Cytoskeletal Network in Aging and Cancer. Mutat. Res./DNAging 1991, 256, 139–148. [Google Scholar] [CrossRef]
- Shankar, J.; Nabi, I.R. Actin Cytoskeleton Regulation of Epithelial Mesenchymal Transition in Metastatic Cancer Cells. PLoS ONE 2015, 10, e0119954. [Google Scholar] [CrossRef]
- Friedman, E.; Verderame, M.; Winawer, S.; Pollack, R. Actin Cytoskeletal Organization Loss in the Benign-to-Malignant Tumor Transition in Cultured Human Colonic Epithelial Cells. Cancer Res. 1984, 44, 3040–3050. [Google Scholar] [PubMed]
- Yang, D.-H.; Lee, J.-W.; Lee, J.; Moon, E.-Y. Dynamic Rearrangement of F-Actin Is Required to Maintain the Antitumor Effect of Trichostatin A. PLoS ONE 2014, 9, e97352. [Google Scholar] [CrossRef] [PubMed]
- Lostumbo, A.; Mehta, D.; Setty, S.; Nunez, R. Flow Cytometry: A New Approach for the Molecular Profiling of Breast Cancer. Exp. Mol. Pathol. 2006, 80, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Malhão, F.; Macedo, A.C.; Ramos, A.A.; Rocha, E. Morphometrical, Morphological, and Immunocytochemical Characterization of a Tool for Cytotoxicity Research: 3D Cultures of Breast Cell Lines Grown in Ultra-Low Attachment Plates. Toxics 2022, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Merkher, Y.; Weihs, D. Proximity of Metastatic Cells Enhances Their Mechanobiological Invasiveness. Ann. Biomed. Eng. 2017, 45, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Merkher, Y.; Horesh, Y.; Abramov, Z.; Shleifer, G.; Ben-Ishay, O.; Kluger, Y.; Weihs, D. Rapid Cancer Diagnosis and Early Prognosis of Metastatic Risk Based on Mechanical Invasiveness of Sampled Cells. Ann. Biomed. Eng. 2020, 48, 2846–2858. [Google Scholar] [CrossRef] [PubMed]
- Karimnia, N.; Wilson, A.L.; Green, E.; Matthews, A.; Jobling, T.W.; Plebanski, M.; Bilandzic, M.; Stephens, A.N. Chemoresistance Is Mediated by Ovarian Cancer Leader Cells in Vitro. J. Exp. Clin. Cancer Res. 2021, 40, 276. [Google Scholar] [CrossRef] [PubMed]
- Hwang, P.Y.; Brenot, A.; King, A.C.; Longmore, G.D.; George, S.C. Randomly Distributed K14+ Breast Tumor Cells Polarize to the Leading Edge and Guide Collective Migration in Response to Chemical and Mechanical Environmental Cues. Cancer Res. 2019, 79, 1899–1912. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 558493. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in Cancer Diagnosis: Progress, Challenges and Opportunities. J. Hematol. Oncol. 2019, 12, 137. [Google Scholar] [CrossRef]
- Karimnia, N.; Ho, G.-Y.; Stephens, A.N.; Bilandzic, M.; Karimnia, N.; Ho, G.-Y.; Stephens, A.N.; Bilandzic, M. Targeting Leader Cells in Ovarian Cancer as an Effective Therapeutic Option. In Ovarian Cancer—Updates in Tumour Biology and Therapeutics [Working Title]; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrova, A.; Kontareva, E.; Pustovalova, M.; Leonov, S.; Merkher, Y. Navigating the Collective: Nanoparticle-Assisted Identification of Leader Cancer Cells During Migration. Life 2025, 15, 127. https://doi.org/10.3390/life15010127
Alexandrova A, Kontareva E, Pustovalova M, Leonov S, Merkher Y. Navigating the Collective: Nanoparticle-Assisted Identification of Leader Cancer Cells During Migration. Life. 2025; 15(1):127. https://doi.org/10.3390/life15010127
Chicago/Turabian StyleAlexandrova, Anastasia, Elizaveta Kontareva, Margarita Pustovalova, Sergey Leonov, and Yulia Merkher. 2025. "Navigating the Collective: Nanoparticle-Assisted Identification of Leader Cancer Cells During Migration" Life 15, no. 1: 127. https://doi.org/10.3390/life15010127
APA StyleAlexandrova, A., Kontareva, E., Pustovalova, M., Leonov, S., & Merkher, Y. (2025). Navigating the Collective: Nanoparticle-Assisted Identification of Leader Cancer Cells During Migration. Life, 15(1), 127. https://doi.org/10.3390/life15010127