Advances in the Study of Heartwood Formation in Trees
Abstract
:1. Introduction
2. Mechanisms and Regulation of Heartwood Formation
2.1. Metabolism
2.2. Hormonal Influences
2.3. Transcriptional Regulation
2.4. Cell Biology
2.5. Environmental Influences
3. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guerriero, G.; Sergeant, K.; Hausman, J.-F. Wood biosynthesis and typologies: A molecular rhapsody. Tree Physiol. 2014, 34, 839–855. [Google Scholar] [CrossRef]
- Lachaud, S.; Catesson, A.-M.; Bonnemain, J.-L. Structure and functions of the vascular cambium. Comptes Rendus L’académie Sci.-Ser. III-Sci. 1999, 322, 633–650. [Google Scholar] [CrossRef]
- Crang, R.; Lyons-Sobaski, S.; Wise, R. Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants; Springer: Cham, Switzerland, 2018; pp. 479–507. [Google Scholar]
- Nagai, S.; Utsumi, Y. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae). Am. J. Bot. 2012, 99, 1553–1561. [Google Scholar] [CrossRef]
- Pallardy, S.G. Physiology of Woody Plants, 3rd ed.; Academic Press: Amsterdam, The Netherlands, 2010; pp. 19–22. [Google Scholar]
- Arunkumar, A.N.; Rekha, G.J.; Warrier, R.; Karaba, N.N. Indian Sandalwood: A Compendium; Springer: Singapore, 2022; pp. 183–185. [Google Scholar]
- Luo, B.; He, R.; Yang, Y. A review of physiological function of sapwood and formation mechanism of heartwood. J. Beijing For. Univ. 2018, 40, 120–129. (In Chinese) [Google Scholar]
- Bamber, R.K. Sapwood and heartwood. For. Comm. N. S. W. 1987, 2, 1–7. [Google Scholar]
- Bergström, B. Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 2003, 76, 45–53. [Google Scholar] [CrossRef]
- Lim, K.-J.; Paasela, T.; Harju, A.; Venäläinen, M.; Paulin, L.; Auvinen, P.; Kärkkäinen, K.; Teeri, T.H. Developmental changes in Scots pine transcriptome during heartwood formation. Plant Physiol. 2016, 172, 1403–1417. [Google Scholar] [CrossRef] [PubMed]
- Samuels, A.; Kaneda, M.; Rensing, K.H. The cell biology of wood formation: From cambial divisions to mature secondary xylem. Botany 2006, 84, 631–639. [Google Scholar]
- Bannan, M. Origin and cellular character of xylem rays in gymnosperms. Bot. Gaz. 1934, 96, 260–281. [Google Scholar] [CrossRef]
- Ma, R.; Liu, H.; Fu, Y.; Li, Y.; Wei, P.; Liu, Z. Variation of chemical components in sapwood, transition zone, and heartwood of Dalbergia odorifera and its relationship with heartwood formation. Forests 2021, 12, 577. [Google Scholar] [CrossRef]
- Magel, E.; Hübner, B. Distribution of phenylalanine ammonia lyase and chalcone synthase within trunks of Robinia pseudoacacia L. Botanica Acta 1997, 110, 314–322. [Google Scholar] [CrossRef]
- Kampe, A.; Magel, E. New insights into heartwood and heartwood formation. In Cellular Aspects of Wood Formation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 71–95. [Google Scholar]
- Daigaku, K. Wood Research: Bulletin of the Wood Research Institute Kyoto University; Kyoto University: Kyoto, Japan, 1970; Volume 59, pp. 180–199. [Google Scholar]
- Celedon, J.M.; Bohlmann, J. An extended model of heartwood secondary metabolism informed by functional genomics. Tree Physiol. 2018, 38, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Moshchenskaya, Y.L.; Galibina, N.A.; Tarelkina, T.V.; Nikerova, K.M.; Korzhenevsky, M.A.; Semenova, L.I. Cambial Age Influences PCD Gene Expression during Xylem Development and Heartwood Formation. Plants 2023, 12, 4072. [Google Scholar] [CrossRef]
- Chattaway, M.M. The sapwood-heartwood transition. Aust. For. 1952, 16, 25–34. [Google Scholar] [CrossRef]
- Wen, L.; Chen, S.; Wei, P.; Fu, Y. Morphological, Physiological, Biochemical and Metabolite Analyses of Parenchyma Cells Reveal Heartwood Formation Mechanism of Schima superba. Forests 2024, 15, 984. [Google Scholar] [CrossRef]
- Johansson, T.; Hjelm, B. Frequency of false heartwood of stems of poplar growing on farmland in Sweden. Forests 2013, 4, 28–42. [Google Scholar] [CrossRef]
- Déjardin, A.; Laurans, F.; Arnaud, D.; Breton, C.; Pilate, G.; Leplé, J.-C. Wood formation in Angiosperms. Comptes Rendus Biol. 2010, 333, 325–334. [Google Scholar] [CrossRef]
- Ma, R.; Luo, J.; Wang, W.; Fu, Y. Changes in the physiological activity of parenchyma cells in Dalbergia odorifera xylem and its relationship with heartwood formation. BMC Plant Biol. 2023, 23, 559. [Google Scholar] [CrossRef]
- Tzin, V.; Malitsky, S.; Zvi, M.M.B.; Bedair, M.; Sumner, L.; Aharoni, A.; Galili, G. Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. New Phytol. 2012, 194, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ma, R. Changes in Physiological Function and Secondary Metabolite Biosynthesis of Xylem Pa-Renchyma Cells During Heartwood Formation of Dalbergia odorifera. Ph.D. Thesis, Guangxi University, Nanning, China, 2023. [Google Scholar]
- Hillis, W. Heartwood formation and its influence on utilization. Wood Sci. Technol. 1968, 2, 260–267. [Google Scholar] [CrossRef]
- Khviyuzov, S.; Gusakova, M.; Bogolitsyn, K.; Volkov, A. Differences in the physicochemical properties of lignins in the heartwood and sapwood of Pinus sylvestris. J. Wood Chem. Technol. 2021, 41, 177–184. [Google Scholar] [CrossRef]
- Lourenço, A.; Neiva, D.M.; Gominho, J.; Marques, A.V.; Pereira, H. Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Sci. Technol. 2015, 49, 159–175. [Google Scholar] [CrossRef]
- Meng, S.; Lian, N.; Qin, F.; Yang, S.; Meng, D.; Bian, Z.; Xiang, L.; Lu, J. The AREB transcription factor SaAREB6 promotes drought stress-induced santalol biosynthesis in sandalwood. Hortic. Res. 2024, uhae347. [Google Scholar] [CrossRef]
- Zha, W.; Zhang, F.; Shao, J.; Ma, X.; Zhu, J.; Sun, P.; Wu, R.; Zi, J. Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil. Nat. Commun. 2022, 13, 2508. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Chavez, M.L.; Moniodis, J.; Madilao, L.L.; Jancsik, S.; Keeling, C.I.; Barbour, E.L.; Ghisalberti, E.L.; Plummer, J.A.; Jones, C.G.; Bohlmann, J. Biosynthesis of sandalwood oil: Santalum album CYP76F cytochromes P450 produce santalols and bergamotol. PLoS ONE 2013, 8, e75053. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, M.; Kang, S.; Yang, C.; Meng, H.; Yang, Y.; Zhao, X.; Gao, Z.; Xu, Y.; Jin, Y. Molecular mechanism underlying mechanical wounding-induced flavonoid accumulation in Dalbergia odorifera T. Chen, an endangered tree that produces Chinese Rosewood. Genes 2020, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Pharmacopoeia, C. The State Pharmacopoeia Commission of PR China; China Medical Science: Beijing, China, 2010; Volume 3. (In Chinese) [Google Scholar]
- Ekeberg, D.; Flæte, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef]
- Lindberg, L.; Willför, S.; Holmbom, B. Antibacterial effects of knotwood extractives on paper mill bacteria. J. Ind. Microbiol. Biotechnol. 2004, 31, 137–147. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Z.; Yan, C.; Chen, Z.; Li, X.; Zeng, B.; Hu, B. Comparative physiological, biochemical, metabolomic, and transcriptomic analyses reveal the formation mechanism of heartwood for Acacia melanoxylon. BMC Plant Biol. 2024, 24, 308. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, K. Biology of Heartwood Formation in Sitka Spruce and Scots Pine. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2011. [Google Scholar]
- Grover, A. Plant chitinases: Genetic diversity and physiological roles. Crit. Rev. Plant Sci. 2012, 31, 57–73. [Google Scholar] [CrossRef]
- Chowdhary, A.A.; Mishra, S.; Mehrotra, S.; Upadhyay, S.K.; Bagal, D.; Srivastava, V. Plant transcription factors: An overview of their role in plant life. In Plant Transcription Factors; Academic Press: Cambridge, MA, USA, 2023; pp. 3–20. [Google Scholar]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Ma, R.; Luo, J.; Wang, W.; Song, T.; Fu, Y. Function of the R2R3-MYB transcription factors in Dalbergia odorifera and their relationship with heartwood formation. Int. J. Mol. Sci. 2023, 24, 12430. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, K.; Treu, A. Lignification and cell wall thickening of ray parenchyma cells in Scots pine sapwood. IAWA J. 2021, 42, 235–243. [Google Scholar] [CrossRef]
- Holbrook, N.M.; Zwieniecki, M.A. Vascular Transport in Plants; Elsevier: Alpharetta, GA, USA, 2011; pp. 3–69. [Google Scholar]
- Datta, S.; Kumar, A. Histochemical studies of the transition from sapwood to heartwood in Tectona grandis. IAWA J. 1987, 8, 363–368. [Google Scholar] [CrossRef]
- Coleman, H.D. Modification of Cellulose Biosynthesis Through Varied Expression of Sucrose Metabolism Genes in Tobacco and Hybrid Poplar. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2008. [Google Scholar]
- Song, K.; Liu, B.; Jiang, X.; Yin, Y. Cellular changes of tracheids and ray parenchyma cells from cambium to heartwood in Cunninghamia lanceolata. J. Trop. For. Sci. 2011, 23, 478–487. [Google Scholar]
- Ucar, M.B.; Ucar, G. Characterization of methanol extracts from Quercus hartwissiana wood and bark. Chem. Nat. Compd. 2011, 47, 697–703. [Google Scholar] [CrossRef]
- Chrysler, M.A. Tyloses in tracheids of conifers. New Phytol. 1908, 7, 198–204. [Google Scholar] [CrossRef]
- Kuroda, K.; Yamashita, K.; Fujiwara, T. Cellular level observation of water loss and the refilling of tracheids in the xylem of Cryptomeria japonica during heartwood formation. Trees 2009, 23, 1163–1172. [Google Scholar] [CrossRef]
- Sundharamoorthy, S.; Govindarajan, N.; Chinnapillai, A.; Raju, I. Macro-microscopic atlas on heartwood of Santalum album L. (sandalwood). Pharmacogn. J. 2018, 10, 730–733. [Google Scholar] [CrossRef]
- Climent, J.; Chambel, M.R.; Pérez, E.; Gil, L.; Pardos, J. Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis. Can. J. For. Res. 2002, 32, 103–111. [Google Scholar] [CrossRef]
- Sorz, J.; Hietz, P. Is oxygen involved in beech (Fagus sylvatica) red heartwood formation? Trees 2008, 22, 175–185. [Google Scholar] [CrossRef]
- Dey, D.C.; Dwyer, J.; Wiedenbeck, J. Relationship between tree value, diameter, and age in high-quality sugar maple (Acer saccharum) on the Menominee Reservation, Wisconsin. J. For. 2017, 115, 397–405. [Google Scholar] [CrossRef]
- Huggett, B.A.; Schaberg, P.G.; Hawley, G.J.; Eagar, C. Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest. Can. J. For. Res. 2007, 37, 1692–1700. [Google Scholar] [CrossRef]
- Yanai, R.D.; Germain, R.H.; Anderson, N.M.; Coates, T.A.; Mishler, A.K. Heart size of sugar maple sawlogs across six northern states. J. For. 2009, 107, 95–100. [Google Scholar] [CrossRef]
- Williams, P.A.; Taylor, E.T. Soil-Site Relationships with Heartwood/Color Formation in Sugar Maple in Southern Ontario. In Proceedings of the 22nd Central Hardwood Forest Conference: Managing Future Forests Today, Morgantown, WV, USA, 6–8 April 2022; USDA Forest Service Northern Research Station One Gifford Pinchot Drive: Madison, WI, USA, 2024; Volume 219, p. 101. [Google Scholar]
- Nakada, R.; Fukatsu, E. Seasonal variation of heartwood formation in Larix kaempferi. Tree Physiol. 2012, 32, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Sperry, J.S. Functional and ecological xylem anatomy. Perspect. Plant Ecol. 2001, 4, 97–115. [Google Scholar] [CrossRef]
- de Almeida, M.N.F.; Vidaurre, G.B.; Pezzopane, J.E.M.; Lousada, J.L.P.C.; Silva, M.E.C.M.; Câmara, A.P.; Rocha, S.M.G.; de Oliveira, J.C.L.; Campoe, O.C.; Carneiro, R.L. Heartwood variation of Eucalyptus urophylla is influenced by climatic conditions. Forest Ecol. Manag. 2020, 458, 117743. [Google Scholar] [CrossRef]
- Berthier, S.; Kokutse, A.D.; Stokes, A.; Fourcaud, T. Irregular heartwood formation in maritime pine (Pinus pinaster Ait): Consequences for biomechanical and hydraulic tree functioning. Ann. Bot. 2001, 87, 19–25. [Google Scholar] [CrossRef]
- Taylor, A.M.; Gartner, B.L.; Morrell, J.J. Heartwood formation and natural durability—A review. Wood Fiber Sci. 2002, 34, 587–611. [Google Scholar]
- Eklund, L. Internal oxygen levels decrease during the growing season and with increasing stem height. Trees 2000, 14, 177–180. [Google Scholar] [CrossRef]
- Carrodus, B. Carbon dioxide and the formation of heartwood. New Phytol. 1971, 70, 939–943. [Google Scholar] [CrossRef]
- Spicer, R.; Holbrook, N. Within-stem oxygen concentration and sap flow in four temperate tree species: Does long-lived xylem parenchyma experience hypoxia? Plant Cell Environ. 2005, 28, 192–201. [Google Scholar] [CrossRef]
- Hart, J.H. Development of Wound Heartwood in Iowa Hardwoods. Ph.D. Thesis, Iowa State University, Ann Arbor, MI, USA, 1963. [Google Scholar]
- Hillis, W.E. Heartwood and Tree Exudates; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 157–165. [Google Scholar]
- Harju, A.M.; Venäläinen, M.; Laakso, T.; Saranpää, P. Wounding response in xylem of Scots pine seedlings shows wide genetic variation and connection with the constitutive defence of heartwood. Tree Physiol. 2009, 29, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Bamber, R. Heartwood, its function and formation. Wood Sci. Technol. 1976, 10, 1–8. [Google Scholar] [CrossRef]
- Yamada, T. Defense mechanisms in the sapwood of living trees against microbial infection. J. For. Res. 2001, 6, 127–137. [Google Scholar] [CrossRef]
- Magel, E.A.; Hillinger, C.; Wagner, T.; Höll, W. Oxidative pentose phosphate pathway and pyridine nucleotides in relation to heartwood formation in Robinia pseudoacacia L. Phytochemistry 2001, 57, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Qin, F.; Wang, S.; Li, X.; Zhou, Y.; Meng, S. Advances in the Study of Heartwood Formation in Trees. Life 2025, 15, 93. https://doi.org/10.3390/life15010093
Yang S, Qin F, Wang S, Li X, Zhou Y, Meng S. Advances in the Study of Heartwood Formation in Trees. Life. 2025; 15(1):93. https://doi.org/10.3390/life15010093
Chicago/Turabian StyleYang, Shuqi, Fangcuo Qin, Shengkun Wang, Xiang Li, Yunqing Zhou, and Sen Meng. 2025. "Advances in the Study of Heartwood Formation in Trees" Life 15, no. 1: 93. https://doi.org/10.3390/life15010093
APA StyleYang, S., Qin, F., Wang, S., Li, X., Zhou, Y., & Meng, S. (2025). Advances in the Study of Heartwood Formation in Trees. Life, 15(1), 93. https://doi.org/10.3390/life15010093