CT-Based Software-Generated Measurements Permit More Objective Assessments of Arithmetic Hip-Knee-Ankle Axis and Joint Line Obliquity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Radiological Assessment
2.3. Data Analysis
3. Results
3.1. Demographic Data
3.2. Primary Outcome
3.3. Secondary Outcome
3.4. Intra- and Inter-Observer Reliability of Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | Computed tomography |
RATKA | Robotic-assisted Total Knee Arthroplasty |
aHKA | Arithmetic hip–knee–ankle axis |
JLO | Joint line obliquity |
CPAK | Coronal Plane Alignment of the Knee |
LDFA | Lateral distal femoral angle |
MPTA | Medial proximal tibial angle |
TKA | Total Knee Arthroplasty |
JLCA | Joint line convergence angle |
LLR | Long limb radiographs |
3D | Three-dimensional |
References
- Huang, N.F.R.; Dowsey, M.M.; Ee, E.; Stoney, J.D.; Babazadeh, S.; Choong, P.F. Coronal alignment correlates with outcome after total knee arthroplasty: Five-year follow-up of a randomized controlled trial. J. Arthroplast. 2012, 27, 1737–1741. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, R.; Pratt, D.; Banda, J.; Fick, D.; Khan, R.; Robertson, B. Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature. J. Arthroplast. 2017, 32, 3854–3860. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.F.; Eccles, C.J.; Bhimani, S.J.; Denehy, K.M.; Bhimani, R.B.; Smith, L.S.; Malkani, A.L. Improved Patient Satisfaction following Robotic- Assisted Total Knee Arthroplasty. J. Knee Surg. 2021, 34, 730–738. [Google Scholar] [CrossRef]
- Bellemans, J.; Colyn, W.; Vandenneucker, H.; Victor, J. The Chitranjan Ranawat Award: Is Neutral Mechanical Alignment Normal for All Patients?: The Concept of Constitutional Varus. Clin. Orthop. Relat. Res. 2012, 470, 45–53. [Google Scholar] [CrossRef]
- MacDessi, S.J.; Griffiths-Jones, W.; Harris, I.A.; Bellemans, J.; Chen, D.B. Coronal Plane Alignment of the Knee (CPAK) classification. Bone Jt. J. 2021, 103, 329–337. [Google Scholar] [CrossRef]
- Griffiths-Jones, W.; Chen, D.B.; Harris, I.A.; Bellemans, J.; MacDessi, S.J. Arithmetic hip-knee-ankle angle (aHKA): An algorithm for estimating constitutional lower limb alignment in the arthritic patient population. Bone Jt. Open 2021, 2, 351–358. [Google Scholar] [CrossRef]
- MacDessi, S.J.; Griffiths-Jones, W.; Harris, I.A.; Bellemans, J.; Chen, D.B. The arithmetic HKA (aHKA) predicts the constitutional alignment of the arthritic knee compared to the normal contralateral knee: A matched-pairs radiographic study. Bone Jt. Open 2020, 1, 339–345. [Google Scholar] [CrossRef]
- Tarassoli, P.; Corban, L.E.; Wood, J.A.; Sergis, A.; Chen, D.B.; MacDessi, S.J. Long leg radiographs underestimate the degree of constitutional varus limb alignment and joint line obliquity in comparison with computed tomography: A radiographic study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4755–4765. [Google Scholar] [CrossRef]
- Nam, D.; Vajapey, S.; Nunley, R.M.; Barrack, R.L. The Impact of Imaging Modality on the Measurement of Coronal Plane Alignment After Total Knee Arthroplasty. J. Arthroplast. 2016, 31, 2314–2319. [Google Scholar] [CrossRef]
- Solayar, G.N.; Chinappa, J.; Harris, I.A.; Chen, D.B.; Macdessi, S.J. A Comparison of Plain Radiography with Computer Tomography in Determining Coronal and Sagittal Alignments following Total Knee Arthroplasty. Malays. Orthop. J. 2017, 11, 45–52. [Google Scholar]
- León-Muñoz, V.J.; López-López, M.; Martínez-Martínez, F.; Santonja-Medina, F. Comparison of weight-bearing full-length radiographs and computed-tomography-scan-based three-dimensional models in the assessment of knee joint coronal alignment. Knee 2020, 27, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Paley, D. Principles of Deformity Correction; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Mulpur, P.; Desai, K.; Mahajan, A.; Masilamani, A.; Hippalgaonkar, K.; Reddy, A. Radiological Evaluation of the Phenotype of Indian Osteoarthritic Knees based on the Coronal Plane Alignment of the Knee Classification (CPAK). Indian J. Orthop. 2022, 56, 2066–2076. [Google Scholar] [CrossRef] [PubMed]
- Şenel, A.; Eren, M.; Sert, S.; Gürpınar, T.; Çarkçı, E.; Polat, B. Phenotyping of the Turkish population according to Coronal Plane Alignment of the Knee classification: A retrospective cross-sectional study. Jt. Dis. Relat. Surg. 2024, 35, 194–201. [Google Scholar] [CrossRef]
- Coetzee, K.; Charilaou, J.; Burger, M.; Jordaan, J. Increased prevalence of valgus constitutional alignment subtypes in a South African arthritic population group using the coronal plane alignment of the knee (CPAK) classification. Knee 2024, 49, 158–166. [Google Scholar] [CrossRef]
- Ogawa, H.; Nakamura, Y.; Sengoku, M.; Shimokawa, T.; Sohmiya, K.; Ohnishi, K.; Matsumoto, K.; Akiyama, H. Medial proximal tibial angle at the posterior tibial plateau represents the pre-arthritic constitutional medial proximal tibial angle in anterior cruciate ligament-intact, advanced osteoarthritis of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2941–2947. [Google Scholar] [CrossRef]
- Stryker-Corporation. Mako TKA 2.0 Surgical Guide; Stryker-Corporation: Kalamazoo, MI, USA, 2020. [Google Scholar]
- Gieroba, T.J.; Marasco, S.; Babazadeh, S.; Bella, C.D.; Bavel, D. Arithmetic hip knee angle measurement on long leg radiograph versus computed tomography—Inter-observer and intra-observer reliability. Arthroplasty 2023, 5, 35. [Google Scholar] [CrossRef]
- Gbejuade, H.O.; White, P.; Hassaballa, M.; Porteous, A.J.; Robinson, J.R.; Murray, J.R. Do long leg supine CT scanograms correlate with weight-bearing full-length radiographs to measure lower limb coronal alignment? Knee 2014, 21, 549–552. [Google Scholar] [CrossRef]
- Holme, T.J.; Henckel, J.; Hartshorn, K.; Cobb, J.P.; Hart, A.J. Computed tomography scanogram compared to long leg radiograph for determining axial knee alignment. Acta Orthop. 2015, 86, 440–443. [Google Scholar] [CrossRef]
- Paternostre, F.; Schwab, P.-E.; Thienpont, E. The difference between weight-bearing and non-weight-bearing alignment in patient-specific instrumentation planning. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 674–679. [Google Scholar] [CrossRef]
- Schoenmakers, D.A.L.; Feczko, P.Z.; Boonen, B.; Schotanus, M.G.M.; Kort, N.P.; Emans, P.J. Measurement of lower limb alignment: There are within-person differences between weight-bearing and non-weight-bearing measurement modalities. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3569–3575. [Google Scholar] [CrossRef]
- Winter, A.; Ferguson, K.; Syme, B.; McMillan, J.; Holt, G. Pre-operative analysis of lower limb coronal alignment—A comparison of supine MRI versus standing full-length alignment radiographs. Knee 2014, 21, 1084–1087. [Google Scholar] [CrossRef] [PubMed]
- Australian Orthopaedic Association National Joint Replacement Registry. Hip, Knee & Shoulder Arthroplasty Annual Report; Australian Orthopaedic Association National Joint Replacement Registry: Sydney, Australia, 2023. [Google Scholar]
- Tran, G.; Khalil, L.S.; Wrubel, A.; Klochko, C.L.; Davis, J.J.; Soliman, S.B. Incidental findings detected on preoperative CT imaging obtained for robotic-assisted joint replacements: Clinical importance and the effect on the scheduled arthroplasty. Skelet. Radiol. 2021, 50, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.; Davis, E.T.; Parsons, H.; Mannion, E.G.; Khatri, C.; Ellard, D.R.; Blyth, M.J.; Clement, N.D.; Deehan, D.; Flynn, N.; et al. Robotic Arthroplasty Clinical and cost Effectiveness Randomised controlled trial (RACER-knee): A study protocol. BMJ Open 2023, 13, e068255. [Google Scholar] [CrossRef]
Variable | LLR, ° (Mean ± SD) | CT, ° (Mean ± SD) | Difference, ° (Mean ± SD) | p Value α | Cohen’s d δ |
---|---|---|---|---|---|
LDFA | 87.76 ± 2.53 | 88.02 ± 2.88 | 0.27 ± 2.95 | 0.045 | 0.09 |
MPTA | 85.60 ± 2.93 | 84.45 ± 2.52 | 1.15 ± 2.20 | <0.001 | −0.52 |
aHKA | −2.16 ± 4.26 | −3.57 ± 4.30 | 1.41 ± 3.85 | <0.001 | −0.37 |
JLO | 173.36 ± 3.44 | 172.47 ± 3.27 | 0.89 ± 3.50 | <0.001 | −0.25 |
Variable | Pearson’s r | Sample Size, N | p Value β |
---|---|---|---|
LDFA | 0.409 | 500 | <0.001 |
MPTA | 0.683 | 500 | <0.001 |
aHKA | 0.595 | 500 | <0.001 |
JLO | 0.456 | 500 | <0.001 |
CPAK Phenotype | LLR % (n) | CT % (n) | χ2 (df) | p Value |
---|---|---|---|---|
Apex distal JLO | ||||
Type I | 46.8 (234) | 59.8 (299) | 353.07 (4) | <0.001 |
Type II | 25.2 (126) | 23.6 (118) | ||
Type III | 13.8 (69) | 8.6 (43) | ||
Proportion of total (n = 500) | 85.8 (429) | 92.0 (460) | ||
Neutral JLO | ||||
Type IV | 5.0 (25) | 6.6 (33) | 11.80 (2) | <0.001 |
Type V | 7.2 (36) | 1.0 (5) | ||
Type VI | 1.8 (9) | 0.2 (1) | ||
Proportion of total (n = 500) | 14.0 (70) | 7.8 (39) | ||
Apex proximal JLO | ||||
Type VII | 0.2 (1) | 0.2 (1) | N/A | N/A |
Type VIII | 0 | 0 | ||
Type IX | 0 | 0 | ||
Proportion of total (n = 500) | 0.2 (1) | 0.2 (1) |
Parameter | Rater | Intraclass Correlation Coefficient | |||||||
---|---|---|---|---|---|---|---|---|---|
Intra-Observer | 95% Confidence Interval | Significance, p | Inter-Observer | 95% Confidence Interval | Significance, p | ||||
Lower Bound | Upper Bound | Lower Bound | Upper Bound | ||||||
LDFA | 1 | 0.984 | 0.972 | 0.992 | <0.001 | 0.991 | 0.982 | 0.995 | <0.001 |
2 | 0.993 | 0.986 | 0.996 | <0.001 | |||||
3 | 0.984 | 0.970 | 0.992 | <0.001 | |||||
MPTA | 1 | 0.980 | 0.963 | 0.990 | <0.001 | 0.984 | 0.970 | 0.992 | <0.001 |
2 | 0.986 | 0.973 | 0.993 | <0.001 | |||||
3 | 0.978 | 0.959 | 0.989 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, W.K.; Zulkhairi, S.Z.; Chua, H.S. CT-Based Software-Generated Measurements Permit More Objective Assessments of Arithmetic Hip-Knee-Ankle Axis and Joint Line Obliquity. Life 2025, 15, 188. https://doi.org/10.3390/life15020188
Wong WK, Zulkhairi SZ, Chua HS. CT-Based Software-Generated Measurements Permit More Objective Assessments of Arithmetic Hip-Knee-Ankle Axis and Joint Line Obliquity. Life. 2025; 15(2):188. https://doi.org/10.3390/life15020188
Chicago/Turabian StyleWong, Wai Kit, Siti Zubaidah Zulkhairi, and Hwa Sen Chua. 2025. "CT-Based Software-Generated Measurements Permit More Objective Assessments of Arithmetic Hip-Knee-Ankle Axis and Joint Line Obliquity" Life 15, no. 2: 188. https://doi.org/10.3390/life15020188
APA StyleWong, W. K., Zulkhairi, S. Z., & Chua, H. S. (2025). CT-Based Software-Generated Measurements Permit More Objective Assessments of Arithmetic Hip-Knee-Ankle Axis and Joint Line Obliquity. Life, 15(2), 188. https://doi.org/10.3390/life15020188