The Neural Basis of Salt Perception: A Focus on Potassium Chloride as a Sodium Alternative
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gustatory Event-Related Potentials (ERPs) and Study Design
2.3. Stimuli
2.4. EEG Acquisition and Data Pre-Processing
2.5. EEG Topographical Analysis and Source Localization
2.6. Demographics and Behavioral Data Analysis
3. Results
3.1. First Lab Session—Stimuli Ratings
3.2. Gustatory ERPs
3.3. Microstates Segmentation
3.4. Sources Localization on the Microstates Specific for Each Condition
4. Discussion
4.1. Palatability of the Potassium Chloride
4.2. Scalp Topography and Brain Sources of Salty-Taste
4.3. Study Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kearney, P.M.; Whelton, M.; Reynold, K.; Muntner, P.; Whelton, P.P.K.; He, D.J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.; Hoorn, S.V.; Murray, C.J.L.; Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of dis-ease. Lancet 2002, 360, 1347–1360. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; A MacGregor, G. Salt reduction lowers cardiovascular risk: Meta-analysis of outcome trials. Lancet 2011, 378, 380–382. [Google Scholar] [CrossRef]
- Bushara, K.O.; Hanakawa, T.; Immisch, I.; Toma, K.; Kansaku, K.; Hallett, M. Neural correlates of cross-modal binding. Nat. Neurosci. 2003, 6, 190–195. [Google Scholar] [CrossRef]
- Ma, H.; Wang, X.; Li, X.; Heianza, Y.; Qi, L. Adding Salt to Foods and Risk of Cardiovascular Disease. J. Am. Coll. Cardiol. 2022, 80, 2157–2167. [Google Scholar] [CrossRef]
- Nagata, C.; Takatsuka, N.; Shimizu, N.; Shimizu, H. Sodium Intake and Risk of Death From Stroke in Japanese Men and Women. Stroke 2004, 35, 1543–1547. [Google Scholar] [CrossRef]
- Li, Z.; Hu, L.; Rong, X.; Luo, J.; Xu, X.; Zhao, Y. Role of no table salt on hypertension and stroke based on large sample size from National Health and Nutrition Examination Survey database. BMC Public Health 2022, 22, 1292. [Google Scholar] [CrossRef]
- Messerli, F.H.; Schmieder, R.E.; Weir, M.R. Salt: A perpetrator of hypertensive target organ disease? Arch. Intern. Med. 1997, 157, 2449–2452. [Google Scholar] [CrossRef]
- Cheng, Y.-B.; Chan, C.-M.; Xu, T.-Y.; Chen, Y.-L.; Ding, F.-H.; Li, Y.; Wang, J.-G. Left ventricular structure and function in relation to sodium dietary intake and renal handling in untreated Chinese patients. Hypertens. Res. 2024, 48, 148–156. [Google Scholar] [CrossRef]
- World Health Organization. Action on Salt and Hypertension: Reducing Cardiovascular Disease Burden in the WHO European Region; World Health Organization: Geneva, Switzerland, 15 May 2024. [Google Scholar]
- Niki, M.; Yoshida, R.; Takai, S.; Ninomiya, Y. Gustatory signaling in the periphery: Detection, transmission, and modulation of taste information. Biol. Pharm. Bull. 2010, 33, 1772–1777. [Google Scholar] [CrossRef] [PubMed]
- Shigemura, N.; Ninomiya, Y. Recent advances in molecular mechanisms of taste signaling and modifying. Int. Rev. Cell Mol. Biol. 2016, 323, 71–106. [Google Scholar] [PubMed]
- Son, M.; Park, T.H. The bioelectronic nose and tongue using olfactory and taste receptors: Analytical tools for food quality and safety assessment. Biotechnol. Adv. 2018, 36, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Le, B.; Yu, B.; Amin, M.S.; Liu, R.; Zhang, N.; Soladoye, O.P.; Aluko, R.E.; Zhang, Y.; Fu, Y. Salt taste receptors and associated salty/salt taste-enhancing peptides: A comprehensive review of structure and function. Trends Food Sci. Technol. 2022, 129, 657–666. [Google Scholar] [CrossRef]
- Sood, S.; Methven, L.; Cheng, Q. Role of taste receptors in salty taste perception of minerals and amino acids and developments in salt reduction strategies: A review. Crit. Rev. Food Sci. Nutr. 2024, 1–15. [Google Scholar] [CrossRef]
- Van Der Klaauw, N.J.; Smith, D.V. Taste quality profiles for fifteen organic and inorganic salts. Physiol. Behav. 1995, 58, 295–306. [Google Scholar] [CrossRef]
- Li, N.; Prescott, J.; Wu, Y.; Barzi, F.; Yu, X.; Zhao, L.; Neal, B. For the China Salt Substitute Study Collaborative Group. The effects of a reduced-sodium, high-potassium salt substitute on food taste and acceptability in rural northern China. Br. J. Nutr. 2008, 101, 1088–1093. [Google Scholar] [CrossRef]
- Walker, J.C.; Dando, R. Sodium Replacement with KCl and MSG: Attitudes, Perception and Acceptance in Reduced Salt Soups. Foods 2023, 12, 2063. [Google Scholar] [CrossRef]
- Shen, D.; Song, H.; Zou, T.; Raza, A.; Li, P.; Li, K.; Xiong, J. Reduction and efficiency of sodium salt: A review. J. Sci. Food Agric. 2022, 102, 3931–3939. [Google Scholar] [CrossRef]
- Whelton, P.K.; He, J.; Cutler, J.A.; Brancati, F.L.; Appel, L.J.; Follmann, D.; Klag, M.J. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997, 277, 1624–1632. [Google Scholar] [CrossRef]
- Sun, N.; Jiang, Y.; Wang, H.; Yuan, Y.; Cheng, W.; Han, Q.; Yuan, H.; Yang, L.; Guo, Z.; Sun, Y.; et al. Survey on sodium and potassium intake in patients with hypertension in China. J. Clin. Hypertens. 2021, 23, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.H.; Welling, P. Insights into Salt Handling and Blood Pressure. N. Engl. J. Med. 2021, 385, 1981–1993. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hu, C.; Zhang, Y.; Xie, H.; Wei, Y. Gustatory event-related potential alterations in olfactory dysfunction patients. Neurol. Sci. 2022, 43, 2899–2908. [Google Scholar] [CrossRef] [PubMed]
- González-España, J.J.; Back, K.J.; Reynolds, D.; Contreras-Vidal, J.L. Decoding Taste from EEG: Gustatory Evoked Potentials During Wine Tasting. In Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics, Oahu, HI, USA, 1–4 October 2023; pp. 4253–4258. [Google Scholar]
- Mastinu, M.; Grzeschuchna, L.S.; Mignot, C.; Guducu, C.; Bogdanov, V.; Hummel, T. Time–frequency analysis of gustatory event related potentials (gERP) in taste disorders. Sci. Rep. 2024, 14, 2512. [Google Scholar] [CrossRef]
- Gotow, N.; Kobayakawa, T. Trial measurement of brain activity underlying olfactory–gustatory synchrony perception using event-related potentials from five female participants. J. Neurosci. Res. 2019, 97, 253–266. [Google Scholar] [CrossRef]
- Iannilli, E.; Noennig, N.; Hummel, T.; Schoenfeld, A. Spatio-temporal correlates of taste processing in the human primary gustatory cortex. Neuroscience 2014, 273, 92–99. [Google Scholar] [CrossRef]
- Iannilli, E.; Broy, F.; Kunz, S.; Hummel, T. Age-related changes of gustatory function depend on alteration of neuronal circuits. J. Neurosci. Res. 2017, 95, 1927–1936. [Google Scholar] [CrossRef]
- Mouillot, T.; Brindisi, M.-C.; Gauthier, C.; Barthet, S.; Quere, C.; Litime, D.; Perrignon-Sommet, M.; Grall, S.; Lienard, F.; Fenech, C.; et al. Prolonged latency of the gustatory evoked potentials for sucrose solution in subjects living with obesity compared with normal-weight subjects. Int. J. Obes. 2024, 48, 1720–1727. [Google Scholar] [CrossRef]
- Iannilli, E.; Berger, M.; Fürer, R.; Hummel, T. A gustatory stimulator. J. Neurosci. Methods 2015, 255, 12–16. [Google Scholar] [CrossRef]
- Iannilli, E. Electroencephalography and Gustatory Event-Related Potentials Measures to Oral Stimuli. In Basic Protocols on Emotions, Senses, and Foods; Springer: New York, NY, USA, 2023; pp. 247–262. [Google Scholar]
- Landis, B.N.; Welge-Luessen, A.; Brämerson, A.; Bende, M.; Mueller, C.A.; Nordin, S.; Hummel, T. “Taste Strips”–A rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J. Neurol. 2009, 256, 242–248. [Google Scholar] [CrossRef]
- Schuster, B.; Iannilli, E.; Gudziol, V.; Landis, B.N. Gustatory testing for clinicians. B-ENT 2009, 5 (Suppl. 13), 109–113. [Google Scholar] [PubMed]
- Oleszkiewicz, A.; Schriever, V.A.; Croy, I.; Hähner, A.; Hummel, T. Updated Sniffin’ Sticks normative data based on an extended sample of 9139 subjects. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Chicago, IL, USA, 2014. [Google Scholar]
- Michel, C.M.; Koenig, T.; Brandeis, D.; Gianotti, L.R.; Wackermann, J. (Eds.) Electrical Neuroimaging; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Lehmann, D.; Ozaki, H.; Pal, I. EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Bréchet, L.; Brunet, D.; Birot, G.; Gruetter, R.; Michel, C.M.; Jorge, J. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage 2019, 194, 82–92. [Google Scholar] [CrossRef]
- Mai, J.K.; Assheueer, J.; Paxinos, G. Atlas of the Human Brain; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- De Peralta Menendez, R.G.; Murray, M.M.; Michel, C.M.; Martuzzi, R.; Andino, S.L.G. Electrical neuroimaging based on biophysical constraints. Neuroimage 2004, 21, 527–539. [Google Scholar] [CrossRef]
- Scherg, M.; Von Cramon, D. A new interpretation of the generators of BAEP waves I–V: Results of a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 1985, 62, 290–299. [Google Scholar] [CrossRef]
- Jacobson, M.F. Salt the Forgotten Killer; Center for Science in the Public Interest: Washington, DC, USA, 2005; 27p. [Google Scholar]
- Kilcast, D.; Angus, F. Reducing salt in foods: Practical strategies. In Woodhead Publishing in Food Science, Technology and Nutrition; Elsevier: Amsterdam, The Netherlands, 2007; pp. 130–210. [Google Scholar]
- Hooge, S.; Chambers, D. A Comparison of Basic Taste Modalities, Using a Descriptive Analysis Technique, for Varying Levels of Sodium and Kcl in Two Model Soup Systems. J. Sens. Stud. 2010, 25, 521–535. [Google Scholar] [CrossRef]
- World Health Organization. SHAKE the Salt Habit; (No. WHO/NMH/PND/16.4); World Health Organization: Geneva, Switzerland, 21 March 2017. [Google Scholar]
- Pause, B.M.; Sojka, B.; Krauel, K.; Ferstl, R. The nature of the late positive complex within the olfactory event-related potential (OERP). Psychophysiology 1996, 33, 376–384. [Google Scholar] [CrossRef]
- Small, D.M. Taste representation in the human insula. Brain Struct. Funct. 2010, 214, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Iannilli, E.; Gudziol, V. Gustatory pathway in humans: A review of models of taste perception and their potential lateralization. J. Neurosci. Res. 2018, 97, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Iannilli, E.; Singh, P.B.; Schuster, B.; Gerber, J.; Hummel, T. Taste laterality studied by means of umami and salt stimuli: An fMRI study. NeuroImage 2012, 60, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, T.C.; Macaluso, D.A.; Eslinger, P.J. Taste perception in patients with insular cortex lesions. Behav. Neurosci. 1999, 113, 663–671. [Google Scholar] [CrossRef]
- Craig, A.D.; Chen, K.; Bandy, D.; Reiman, E.M. Thermosensory activation of insular cortex. Nat. Neurosci. 2000, 3, 184–190. [Google Scholar] [CrossRef]
- Ibañez, A.; Gleichgerrcht, E.; Manes, F. Clinical effects of insular damage in humans. Anat. Embryol. 2010, 214, 397–410. [Google Scholar] [CrossRef]
- Bermúdez-Rattoni, F. Molecular mechanisms of taste-recognition memory. Nat. Rev. Neurosci. 2004, 5, 209–217. [Google Scholar] [CrossRef]
- Bermudez-Rattoni, F. The forgotten insular cortex: Its role on recognition memory formation. Neurobiol. Learn. Mem. 2014, 109, 207–216. [Google Scholar] [CrossRef]
- Ben-Ari, S.; Rosenblum, K. Molecular Mechanisms Underlying Memory Consolidation of Taste Information in the Cortex. Front. Behav. Neurosci. 2012, 5, 87. [Google Scholar] [CrossRef]
- Challis, R.C.; Ma, M. Sour taste finds closure in a potassium channel. Proc. Natl. Acad. Sci. USA 2016, 113, 246–247. [Google Scholar] [CrossRef]
- Bradley, M.M. Natural selective attention: Orienting and emotion. Psychophysiology 2009, 46, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Banaschewski, T.; Brandeis, D. Annotation: What electrical brain activity tells us about brain function those other techniques cannot tell us–a child psychiatric perspective. J. Child Psychol. Psychiatry 2007, 48, 415–435. [Google Scholar] [CrossRef] [PubMed]
- Chikazoe, J.; Lee, D.H.; Kriegeskorte, N.; Anderson, A.K. Distinct representations of basic taste qualities in human gustatory cortex. Nat. Commun. 2019, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, L.; Royet, J.; Catenoix, H.; Montavont, A.; Isnard, J.; Mauguière, F. Gustatory and olfactory responses to stimulation of the human insula. Ann. Neurol. 2017, 82, 360–370. [Google Scholar] [CrossRef]
- Mălîia, M.-D.; Donos, C.; Barborica, A.; Popa, I.; Ciurea, J.; Cinatti, S.; Mîndruţă, I. Functional mapping and effective connectivity of the human operculum. Cortex 2018, 109, 303–321. [Google Scholar] [CrossRef]
- Rolls, E.T. The orbitofrontal cortex, food reward, body weight and obesity. Soc. Cogn. Affect. Neurosci. 2023, 18, nsab044. [Google Scholar] [CrossRef]
Condition | Map | Talairach (mm) | Brain Area | Source Point | ||
---|---|---|---|---|---|---|
x | y | z | ||||
KCl | Map 1 | 40 | −20 | 16 | Insula (Ic)/Rolandic Operculum (ROp) | RPS38 |
Map 8 | −48 | 38 | 2 | Inferior Frontal Gyrus triangular part (IFGtrp) | LAI371 | |
4 | 58 | −2 | Medial Transverse Frontopolar Gyrus (MTFpG) | RAI 431 | ||
43 | −27 | 22 | Parietal Operculum (POp) | RPS 171 | ||
Mixture | Map 9 | 50 | −60 | 19 | Superior Temporal Gyrus (STG) | RPS144 |
−48 | 31 | 14 | Inferior Frontal Gyrus triangular part (IFGtrp)/Medial Frontal Gyrus (MFG) | LAS624 | ||
Map 10 | 57 | −16 | 22 | Frontoparietal Operculum (FPOp) | RAS52 | |
24 | 57 | 3 | Medial Transverse Frontopolar Gyrus (MTFpG) | RAI265 | ||
−48 | 38 | 2 | Inferior Frontal Gyrus triangular part (IFGtrp) | LAI 371 | ||
NaCl | Map 11 | 51 | 5 | 16 | Frontal Operculum (Fop) | RAS33 |
−45 | 2 | 42 | Medial Frontal Gyrus (MFG) | LAS637 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannilli, E.; Fürer, R.; Welge-Lüssen, A.; Hummel, T. The Neural Basis of Salt Perception: A Focus on Potassium Chloride as a Sodium Alternative. Life 2025, 15, 207. https://doi.org/10.3390/life15020207
Iannilli E, Fürer R, Welge-Lüssen A, Hummel T. The Neural Basis of Salt Perception: A Focus on Potassium Chloride as a Sodium Alternative. Life. 2025; 15(2):207. https://doi.org/10.3390/life15020207
Chicago/Turabian StyleIannilli, Emilia, Raffaela Fürer, Antje Welge-Lüssen, and Thomas Hummel. 2025. "The Neural Basis of Salt Perception: A Focus on Potassium Chloride as a Sodium Alternative" Life 15, no. 2: 207. https://doi.org/10.3390/life15020207
APA StyleIannilli, E., Fürer, R., Welge-Lüssen, A., & Hummel, T. (2025). The Neural Basis of Salt Perception: A Focus on Potassium Chloride as a Sodium Alternative. Life, 15(2), 207. https://doi.org/10.3390/life15020207