Capsaicin (But Not Other Vanillins) Enhances Estrogen Binding to Its Receptor: Implications for Power Sports and Cancers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Testable Predictions
4.2. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, W.; Lan, Y.; Chen, C.; Song, M.; Xiao, J.; Huang, Q.; Cao, Y.; Ho, C.T.; Lu, M. Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism. Crit. Rev. Food Sci. Nutr. 2023, 63, 3634–3652. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S.S.; Harb, A.A.; Almasri, I.M.; Bustanji, Y.K. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Front Physiol. 2022, 13, 1066023. [Google Scholar] [CrossRef]
- Jiang, Z.; Qu, H.; Lin, G.; Shi, D.; Chen, K.; Gao, Z. Lipid-Lowering Efficacy of the Capsaicin in Patients With Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022, 9, 812294. [Google Scholar] [CrossRef]
- Li, R.; Lan, Y.; Chen, C.; Cao, Y.; Huang, Q.; Ho, C.T.; Lu, M. Anti-obesity effects of capsaicin and the underlying mechanisms: A review. Food Funct. 2020, 11, 7356–7370. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Memon, A.R.; Chen, S.; Ramirez-Campillo, R.; Barreto, G.; Haugen, M.E.; Schoenfeld, B.J. Effects of Capsaicin and Capsiate on Endurance Performance: A Meta-Analysis. Nutrients 2022, 14, 4531. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Chen, C.W.; Wang, S.Y.; Wu, F.S. 17Beta-estradiol mediates the sex difference in capsaicin-induced nociception in rats. J. Pharmacol. Exp. Ther. 2009, 331, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Cabañero, D.; Villalba-Riquelme, E.; Fernández-Ballester, G.; Fernández-Carvajal, A.; Ferrer-Montiel, A. ThermoTRP channels in pain sexual dimorphism: New insights for drug intervention. Pharmacol. Ther. 2022, 240, 108297. [Google Scholar] [CrossRef] [PubMed]
- Seol, S.H.; Chung, G. Estrogen-dependent regulation of transient receptor potential vanilloid 1 (TRPV1) and P2X purinoceptor 3 (P2X3): Implication in burning mouth syndrome. J. Dent. Sci. 2022, 17, 8–13. [Google Scholar] [CrossRef]
- Barcelon, E.; Chung, S.; Lee, J.; Lee, S.J. Sexual Dimorphism in the Mechanism of Pain Central Sensitization. Cells 2023, 12, 2028. [Google Scholar] [CrossRef]
- Riley, J.L.; Robinson, M.E.; Wise, E.A.; Price, D. A meta-analytic review of pain perception across the menstrual cycle. Pain 1999, 81, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.; Chaban, V.V. Expression of P2X3 and TRPV1 receptors in primary sensory neurons from estrogen receptors-α and estrogen receptor-β knockout mice. Neuroreport 2012, 23, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Meignié, A.; Duclos, M.; Carling, C.; Orhant, E.; Provost, P.; Toussaint, J.F.; Antero, J. The Effects of Menstrual Cycle Phase on Elite Athlete Performance: A Critical and Systematic Review. Front. Physiol. 2021, 12, 654585. [Google Scholar] [CrossRef] [PubMed]
- De Paoli, M.; Zakharia, A.; Werstuck, G.H. The Role of Estrogen in INS Resistance: A Review of Clinical and Preclinical Data. Am. J. Pathol. 2021, 191, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Marchand, G.B.; Carreau, A.M.; Weisnagel, S.J.; Bergeron, J.; Labrie, F.; Lemieux, S.; Tchernof, A. Increased body fat mass explains the positive association between circulating estradiol and INS resistance in postmenopausal women. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E448–E456. [Google Scholar] [CrossRef]
- Barros, R.P.; Gustafsson, J.Å. Estrogen receptors and the metabolic network. Cell Metab. 2011, 14, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Poitout, V.; Hagman, D.; Stein, R.; Artner, I.; Robertson, R.P.; Harmon, J.S. Regulation of the INS gene by glucose and fatty acids. J. Nutr. 2006, 136, 873–876. [Google Scholar] [CrossRef]
- Root-Bernstein, R.; Podufaly, A.; Dillon, P.F. Estradiol Binds to Insulin and the Insulin Receptor Decreasing Insulin Binding in vitro. Front. Endocrinol. 2014, 5, 118. [Google Scholar] [CrossRef]
- Gourdy, P.; Guillaume, M.; Fontaine, C.; Adlanmerini, M.; Montagner, A.; Laurell, H.; Lenfant, F.; Arnal, J.F. Estrogen receptor subcellular localization and cardiometabolism. Mol. Metab. 2018, 15, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, I.; Jinbo, A.; Kitagaki, H.; Golovtchenko-Matsumoto, A.M.; Seno, N. Detection of lectin-sugar interaction by ultraviolet difference spectroscopy. J. Biochem. 1980, 88, 1093–1096. [Google Scholar] [CrossRef]
- Dillon, P.F.; Root-Bernstein, R.; Lieder, C.M. Ascorbate enhancement of H1 histamine receptor sensitivity coincides with ascorbate oxidation inhibition by histamine receptors. Am. J. Physiol. Cell Phys. 2006, 291, C977–C984. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Z.; Zheng, D.; Li, C.; Liu, Y. Interactions of chromium (III) and chromium (VI) with bovine serum albumin studied by UV spectroscopy, circular dichroism, and fluorimetry. Biol. Trace Elem. Res. 2009, 130, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Pan, D.Q.; Wang, X.X.; Liu, T.T.; Jiang, M.; Wang, Q. Characterizing the binding interaction between antimalarial artemether (AMT) and bovine serum albumin (BSA); Spectroscopic and molecular docking methods. J. Photochem. Photobiol. B 2016, 162, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.Q.; Jiang, M.; Liu, T.T.; Wang, Q.; Shi, J.H. Combined spectroscopies and molecular docking approach to characterizing the binding interaction of enalapril with bovine serum albumin. Luminescence 2017, 32, 481–490. [Google Scholar] [CrossRef]
- Root-Bernstein, R.; Churchill, B. Co-Evolution of Opioid and Adrenergic Ligands and Receptors: Shared, Complementary Modules Explain Evolution of Functional Interactions and Suggest Novel Engineering Possibilities. Life 2021, 11, 1217. [Google Scholar] [CrossRef] [PubMed]
- Root-Bernstein, R.S.; Bernstein, M.I. ‘Evolutionary poker’: An agent-based model of interactome emergence and epistasis tested against Lenski’s long-term E. coli experiments. J. Physiol. 2024, 602, 2511–2535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, X.; Zhang, L.; Sun, H.; Liu, X. Capsaicin Reduces Blood Glucose by Increasing Insulin Levels and Glycogen Content Better than Capsiate in Streptozotocin-Induced Diabetic Rats. J. Agric. Food Chem. 2017, 65, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Bliss, E.; Brown, L. Capsaicin in Metabolic Syndrome. Nutrients 2018, 10, 630. [Google Scholar] [CrossRef] [PubMed]
- Lotteau, S.; Ducreux, S.; Romestaing, C.; Legrand, C.; Van Coppenolle, F. Characterization of functional TRPV1 channels in the sarcoplasmic reticulum of mouse skeletal muscle. PLoS ONE. 2013, 8, e58673. [Google Scholar] [CrossRef]
- Yoshioka, M.; Lim, K.; Kikuzato, S.; Kiyonaga, A.; Tanaka, H.; Shindo, M.; Suzuki, M. Effects of red-pepper diet on the energy metabolism in men. J. Nutr. Sci. Vitaminol. 1995, 41, 647–656. [Google Scholar] [CrossRef]
- Shin, K.O.; Moritani, T. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men. J. Nutr. Sci. Vitaminol. 2007, 53, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Hwang, J.T.; Park, H.S.; Kwon, D.Y.; Kim, M.S. Capsaicin Stimulates Glucose Uptake in C2c12 Muscle Cells via the Reactive Oxygen Species (Ros)/Ampk/P38 Mapk Pathway. Biochem. Biophys. Res. Commun. 2013, 439, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Bort, A.; Sánchez, B.G.; Mateos-Gómez, P.A.; Dίaz-Laviada, I.; Rodrίguez-Henche, N. Capsaicin Targets Lipogenesis in Hepg2 Cells through Ampk Activation, Akt Inhibition and Ppars Regulation. Int. J. Mol. Sci. 2019, 20, 1660. [Google Scholar] [CrossRef] [PubMed]
- Addo, K.A.; Palakodety, N.; Fry, R.C. ACET Modulates the Expression of Steroidogenesis-Associated Genes and Estradiol Levels in Human Placental JEG-3 Cells. Toxicol. Sci. 2021, 179, 44–52. [Google Scholar] [CrossRef]
- Boizet-Bonhoure, B.; Déjardin, S.; Rossitto, M.; Poulat, F.; Philibert, P. Using Experimental Models to Decipher the Effects of ACET and NSAIDs on Reproductive Development and Health. Front. Toxicol. 2022, 4, 835360. [Google Scholar] [CrossRef] [PubMed]
- Rossitto, M.; Ollivier, M.; Déjardin, S.; Pruvost, A.; Brun, C.; Marchive, C.; Nguyen, A.L.; Ghettas, A.; Keime, C.; de Massy, B.; et al. In utero exposure to ACET and ibuprofen leads to intergenerational accelerated reproductive aging in female mice. Commun. Biol. 2019, 2, 310. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Gonzalez, P.; Anderson, R.A.; Macdonald, J.; van den Driesche, S.; Kilcoyne, K.; Jørgensen, A.; McKinnell, C.; Macpherson, S.; Sharpe, R.M.; Mitchell, R.T. Effects of Exposure to ACET and Ibuprofen on Fetal Germ Cell Development in Both Sexes in Rodent and Human Using Multiple Experimental Systems. Environ. Health Perspect. 2018, 126, 047006. [Google Scholar] [CrossRef]
- Yurteri, A.; Mercan, N.; Kilic, M.; Celik, M.; Dogar, F.; Yildirim, A. Does VAN ACID affect fracture healing? An experimental study in a rat model of femur fracture. J. Appl. Biomed. 2024, 22, 67–73. [Google Scholar] [CrossRef]
- Xiao, H.H.; Gao, Q.G.; Zhang, Y.; Wong, K.C.; Dai, Y.; Yao, X.S.; Wong, M.S. VAN ACID exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ESR1 signaling pathway. J. Steroid Biochem. Mol. Biol. 2014, 144 Pt B, 382–391. [Google Scholar] [CrossRef]
- Richards, J.B.; Joseph, L.; Schwartzman, K.; Kreiger, N.; Tenenhouse, A.; Goltzman, D.; Canadian Multicentre Osteoporosis Study Group. The effect of cyclooxygenase-2 inhibitors on bone mineral density: Results from the Canadian Multicentre Osteoporosis Study. Osteoporos. Int. 2006, 17, 1410–1419. [Google Scholar] [CrossRef]
- Apostu, D.; Lucaciu, O.; Lucaciu, G.D.; Crisan, B.; Crisan, L.; Baciut, M.; Onisor, F.; Baciut, G.; Câmpian, R.S.; Bran, S. Systemic drugs that influence titanium implant osseointegration. Drug Metab. Rev. 2017 49, 92–104. [CrossRef]
- Luján-Méndez, F.; Roldán-Padrón, O.; Castro-Ruíz, J.E.; López-Martínez, J.; García-Gasca, T. Capsaicinoids and Their Effects on Cancer: The “Double-Edged Sword” Postulate from the Molecular Scale. Cells 2023, 12, 2573. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, T.L.; Olawale, F.; Olisah, C.; Adetunji, A.E.; Aremu, A.O. Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer. Front Oncol. 2022, 12, 908487. [Google Scholar] [CrossRef]
- Elkholi, R.; Renault, T.T.; Serasinghe, M.N.; Chipuk, J.E. Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy? Cancer Metab. 2014, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- Ziglioli, F.; Frattini, A.; Maestroni, U.; Dinale, F.; Ciufifeda, M.; Cortellini, P. Vanilloid-mediated apoptosis in prostate cancer cells through a TRPV-1 dependent and a TRPV-1-independent mechanism. Acta Biomed. 2009, 80, 13–20. [Google Scholar]
- Bose, S.; Le, A. Glucose Metabolism in Cancer. Adv. Exp. Med. Biol. 2018, 1063, 3–12. [Google Scholar] [CrossRef]
- Parashar, P.; Tripathi, C.B.; Arya, M.; Kanoujia, J.; Singh, M.; Yadav, A.; Kaithwas, G.; Saraf, S.A. A synergistic approach for management of lung carcinoma through folic acid functionalized co-therapy of capsaicin and gefitinib nanoparticles: Enhanced apoptosis and metalloproteinase-9 down-regulation. Phytomedicine 2019, 53, 107–123. [Google Scholar] [CrossRef]
- Chakraborty, S.; Adhikary, A.; Mazumdar, M.; Mukherjee, S.; Bhattacharjee, P.; Guha, D.; Choudhuri, T.; Chattopadhyay, S.; Sa, G.; Sen, A.; et al. Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis. PLoS ONE. 2014, 9, e99743. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Chen, C.-Y.; Chen, X.; Chen, H.; Su, M.; Sun, H.; Li, Y.; Tu, B.; Wang, Z.; Liu, C.-M. Capsaicin exerts anti-benign prostatic hyperplasia effects via inhibiting androgen receptor signaling pathway. Biocell 2023, 47, 1389–1396. [Google Scholar] [CrossRef]
- El-Kott, A.F.; Bin-Meferij, M.M. Suppressive effects of capsaicin against N-nitrosomethylurea-induced mammary tumorigenesis in rats. Biomed. Pharmacother. 2018, 98, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, Z.; Tu, B.; Shao, Z.; Li, Y.; Han, D.; Jiang, Y.; Zhang, P.; Zhang, W.; Wu, Y.; et al. Capsaicin reduces blood glucose and prevents prostate growth by regulating androgen, rage/IGF-1/AKT, TGF-β/smad signalling pathway and reversing epithelial-mesenchymal transition in streptozotocin-induced diabetic mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 7659–7671. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Wang, H.C.; Hsu, Y.C.; Cho, C.L.; Yang, M.Y.; Chien, C.Y. Capsaicin Induces Autophagy and Apoptosis in Human Nasopharyngeal Carcinoma Cells by Downregulating the PI3K/AKT/mTOR Pathway. Int. J. Mol. Sci. 2017, 18, 1343. [Google Scholar] [CrossRef]
- Sarmiento-Machado, L.M.; Romualdo, G.R.; Zapaterini, J.R.; Tablas, M.B.; Fernandes, A.A.H.; Moreno, F.S.; Barbisan, L.F. Protective Effects of Dietary Capsaicin on the Initiation Step of a Two-Stage Hepatocarcinogenesis Rat Model. Nutr. Cancer 2021, 73, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Torrecillas, A.; Schneider, M.; Fernández-Martínez, A.M.; Ausili, A.; de Godos, A.M.; Corbalán-García, S.; Gómez-Fernández, J.C. Capsaicin fluidifies the membrane and localizes itself near the lipid–water interface. ACS Chem. Neurosci. 2015, 6, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
Binding (Kd) | Capsaicin | Vanillin | Van Acid | Acetaminophen |
---|---|---|---|---|
Estradiol | No binding | No binding | No binding | No binding |
Estriol | No binding | No binding | No binding | No binding |
5-Pregnan-3β-OL-2O-one | No binding | No binding | No binding | No binding |
Progesterone | No binding | No binding | No binding | No binding |
4-Androstene-3,17-dione | No binding | No binding | No binding | No binding |
Insulin | 4 µM | 50 µM | 4 µM | 70 µM |
Article | Capsaicin Upregulates | Downregulates or Inhibits | Species |
---|---|---|---|
[26] | >Serum INS (CAP 6 mg/kg) | >Fasting blood glucose levels and serum level of glycosylated protein | T1DM rats |
[28] | >Ca2+ ion release into the cell via TRPV-1 activation >Muscle actin–myosin interaction >Force generation >Intramuscular triglyceride consumption | Mice | |
[29] | >Fat metabolism through neuroadrenergic effects of TRPV-1 activation | Human (male) | |
[30] | >Sympathetic modulation (adrenal catecholamine secretion) and thermogenesis | Human (male) | |
[27] | >INS sensitivity—TRPV-1 activation stimulated GLP-1 release * >Fatty acid oxidation—modulated via TRPV1 activation >INS secretion from pancreatic β-cells *** | > Inflammatory factors ** | Human * Mice ** Both *** |
[31] | >Glucose uptake via AMPK activation and increasing p38 MAPK phosphorylation >Stimulation of ROS generation | Mice | |
[32] | >Activation of AMPK pathway | > Lipogenesis > Inhibition of AKT/mTOR pathway | Human HepG2 cells |
Article | Upregulates | Downregulates or Inhibits | Species | Cancer-Related Effects |
---|---|---|---|---|
[43] | >MDR-1 pathway → downregulates MDR-1 transcription (improves sensitivity) | Human HepG2 cells | >Sensitizes human cancer cells to cytocidal effects of chemotherapeutic agents >Selectivity to kill cancer cells with minimal damage to normal cells | |
[43] | >Bax/Bcl2 pathways → increased expression of Bax (apoptotic gene) | >Bax/Bcl2 pathway → decreased expression of Bcl-2 (prosurvival gene) | Human | >Induces apoptosis |
[46] | >Increase in reduced glutathione and DPPH | >Cell cycle arrest in G0/G1 and G2/M phase >Suppresses ROS production | Human | >Inhibits cell proliferation |
[44] | >Cleavage of procaspase-3 to caspase-3 >Interaction with caspase-1 >TRPV1-mediated Ca+ influx | Human (prostate cancer cells) | >Induces apoptosis | |
[51] | >Increases levels of LC3-II and Atg5 >Enhances p62 and Fap-1 degradation | Human nasopharyngeal carcinoma | >Regulation of autophagic pathways | |
[47] | >Activates p53-SMAR1 positive feedback loop >Decreases endothelial cell migration and network reformation | >VEGF expression | Human (NSCLC cells) | >Inhibition of tumor angiogenesis and metastasis |
[52] | >Blocked metastatic burden >Mechanism unknown | Mice: TRPV1+ vs. TRPV1- | >Chemoprevention | |
[49] | >Increases estradiol, progesterone, CEA and malondialdehyde levels | >Decreased antioxidant enzymes | Rats (female) | >Blocks formation of nitrosomethylurea-induced mammary tumors |
[53] | >Increases membrane fluidity | DPPC mem-brane model | ||
[48] | Mice | >Attenuates testosterone-induced prostate growth | ||
[50] | >TGF-β1/Smad signaling pathway → expression of N-cadherin, vimentin, fibronectin >TRPV-1-mediated apoptosis | >TGF-β1/Smad signaling pathway → expression of E-cadherin, TGFBR2, TGF-β1 and p-Smad2/3 >IGF-1/AKT signaling pathway → expression of IGF-1, IGF-1R, p-AKT and RAGE >Androgen signaling pathway → expression of 5-αreductase type II, AR and PSA | Mice | >Ameliorated changes to the histological structure, prostate weight and prostate index (prostate/body weight ratio) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrowicz, M.; Root-Bernstein, R. Capsaicin (But Not Other Vanillins) Enhances Estrogen Binding to Its Receptor: Implications for Power Sports and Cancers. Life 2025, 15, 208. https://doi.org/10.3390/life15020208
Pietrowicz M, Root-Bernstein R. Capsaicin (But Not Other Vanillins) Enhances Estrogen Binding to Its Receptor: Implications for Power Sports and Cancers. Life. 2025; 15(2):208. https://doi.org/10.3390/life15020208
Chicago/Turabian StylePietrowicz, Maja, and Robert Root-Bernstein. 2025. "Capsaicin (But Not Other Vanillins) Enhances Estrogen Binding to Its Receptor: Implications for Power Sports and Cancers" Life 15, no. 2: 208. https://doi.org/10.3390/life15020208
APA StylePietrowicz, M., & Root-Bernstein, R. (2025). Capsaicin (But Not Other Vanillins) Enhances Estrogen Binding to Its Receptor: Implications for Power Sports and Cancers. Life, 15(2), 208. https://doi.org/10.3390/life15020208