Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars
Abstract
:1. Introduction
2. Study Areas
2.1. The System of Mechertate-Chrita-Sidi El Hani (MCSH)
2.2. Vernal Crater: A Typical Martian Site for Mounds Formation
3. Methods
3.1. Tectonic Framework of the MCSH System
3.2. Hydrogeologic Framework of the MCSH System
3.3. Spring Mound Investigations
3.3.1. Tectono-Topographic Study: Spring Mound Morphology
3.3.2. Spring Mound Sedimentology
3.3.3. Spring Mound Hydrogeology
3.3.4. Spring Mound Magnetic Properties
3.3.5. Spring Mound Mineralogy
4. Results
4.1. Past and Current Tectonics and the Geodynamic Context of the MCSH System
4.2. Groundwater Contribution to the MCSH System
4.3. Definitions and Categories of Springs and Spring Mounds at the MCSH System
4.3.1. Mode of Genesis
- (1)
- Artesian springs are springs in which subsurface water ascends to the surface by means of internal pressure, generally through some fissure or other opening in the confining bed overlying the aquifer. At the core of the Sidi El Hani depression, hydraulic pressure produces emanation of water after the elimination of an impermeable clayey layer [38]. Accordingly, springs at this depression may be considered as artesian springs (Figure 6a).
- (2)
- Gravity springs are formed under the influence of gravity, rather than internal pressure. The Kairouan aquifer is generated from the “highlands” of the so-called N-S axis draining towards the “lowlands” of Chrita and Sidi El Hani, and therefore springs mounds generated from this aquifer may be considered as gravity springs.
- (3)
- Depression springs flow towards the surface because the surface slopes down to the water table. As the water table is located approximately at the surfaces of Chrita (this work) and Sidi El Hani [38] depressions, spring mounds at these depressions may be considered as depression springs.
- (4)
- (5)
- Fault springs (also known as fault-dam springs) are the result of free-flowing groundwater onto the land surface surging from a previously faulted area that brought a permeable bed into contact with a less-permeable layer. Due to the major role of faulting in enhancing formation and development of spring mounds at the Chrita (this work) and Sidi El Hani [35] depressions, these spring mounds may be considered as fault spring mounds (Figure 6).
- (6)
- Contact springs are formed due to the gravity flow of water from a groundwater source to the land surface, from permeable strata overlying impermeable strata that prevent or delay percolation. Spring mounds at the Chrita playa surface allow water seepage through springs and planar surfaces. They may be considered, hence, as contact springs.
- (7)
- Fracture springs are the result of the natural flow of groundwater surging from joints or other fractures in bedrock, and may be flowing at several different locations along the fracture. Due to the tectonic activity, fracture springs are obvious manifestation on both the Chrita and Sidi El Hani depressions (e.g., [35]) (Figure 7c).
4.3.2. Geochemical Content
- (1)
- Brine springs are salt-water springs. The geochemical analysis of the discharging water from a spring at Sidi El Hani (Figure 11c; W2) shows a salinity of 7.25 g/L. This spring may be considered as a brine spring.
- (2)
- Mineral (gypsum, chloride, magnesium) springs are springs whose water has a definite taste due to the high concentration of a specific mineral. The spring may be named according to the geochemistry of its water. At spring mounds of the Sidi El Hani discharge playa, the weight of chloride represents more than 50% of the total ions. Hence, they are chloride springs.
- (3)
- Carbonate spring is a spring containing dissolved carbon dioxide gas.
- (4)
- Sulfur spring is a spring containing sulfur compounds such as hydrogen sulfide content.
- (5)
- Mud pot (also known as painted pot, sulfur-mud pool) is a type of hot spring, which contains boiling mud, typically sulfurous and often multicolored. They tend to be associated with geysers and other hot springs in volcanic zones. The latest three types were not identified at depressions of the MCSH system.
4.3.3. Activity
- (1)
- Perennial springs flow continuously, because of a hydrogeologic convergence of deep aquifers. At the MCSH system, deep aquifers convergence guarantees the activity of some springs [38].
- (2)
- Intermittent springs cease flowing after a long dry spell and flow again after heavy rains.
- (3)
- Periodic springs flow periodically, apparently due to natural siphon action. Though mentioned in the literature (e.g., [108]), the two last types were not identified in our system.
- (4)
- Seepage springs (also known as weeping springs) are characterized for showing small discharges. The activity of this type is influenced by the hydraulic pressure, the tectonic activity, and the lithology of the playa surface. The vegetation or chemical precipitates can provide clues as to the presence of springs and seeps. Vegetation includes salt-tolerant phreatophytes (e.g., Figure 11) such as willow, cottonwood, mesquite, salt grass, and greasewood. At the mouth of the springs, travertine limestone concretionary deposits may be formed (e.g., sebkhas of Chrita and Sidi El Hani). Highly saline groundwater springs (brine, mineral or carbonate springs) can result in the formation of saline soils, playas, salinas, and salt precipitates (e.g., sebkhas of Sidi El Hani and Chrita).
4.3.4. Stage of Evolution
- (1)
- At the abortive stage (Figure 6a), thousands of abortive spring mounds chaotically form. The majority of these spring mounds are aborted due to a weak hydraulic pressure and/or the absence of tectonic enhancement. The size of this type may be considered less than one meter.
- (2)
- At the embryonic stage (Figure 6b,c), the tectonic activity and hydraulic pressure result in the formation of spring mounds along a preferential orientation. The size of this type may be considered between 1 m and 2 m.
- (3)
- At the mature stage (Figure 11), the spring mound is covered with eolian sediments, acting as an obstacle and collecting more eolian sediments. The size of this type may be considered between 10 m and 80 m.
- (4)
- At the islet stage, eolian deposition dominates the system, and the salty soil is completely buried. The size of this type may be considered more than 80 m.
4.4. Spring Mounds Detected by Satellite Images
4.5. Spring Mounds Identified during Field Campaigns
4.6. Models of Spring Mound Activity and Evolution
4.6.1. Inactive Child Spring Mound (Seep) in the Chrita Saline Lake
4.6.2. Inactive child Spring Mound in the Sidi El Hani Discharge Playa
4.6.3. Active Spring Mound in the Sidi El Hani Discharge Playa
X-ray Diffraction Data
Sample | LF Susceptibility 10−6 (SI) | HF Susceptibility 10−6 (SI) | Frequency-Dependent Susceptibility |
---|---|---|---|
MS11 | 3.9 | 40.1 | −0.90 |
MS12 | 5.2 | 42.6 | −0.87 |
MS13 | 4.45 | 45.2 | −0.88 |
MS14 | 2.34 | 48.91 | −0.95 |
MS21 | 398.16 | 164.03 | 0.78 |
MS22 | 324.25 | 136.45 | 0.58 |
MS23 | 270.3 | 106.2 | 0.61 |
MS24 | 360.5 | 112.6 | 0.69 |
5. Models of Spring Mound Formation: Implications for Mars
5.1. Tectonic Model
5.2. Hydraulic Model
5.3. Hydro-Tectonic Model
5.4. Eolian Sedimentation
5.5. Inferring Past Hydraulic and Geodynamic Conditions on Mars
5.6. Magnetic Properties and Remote Sensing Identification of Spring Mounds on Mars
5.7. Implications for Life
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chapman, M.G. The Geology of Mars: Evidence from Earth-Based Analogs; Cambridge University Press: Cambridge, UK, 2007; p. 460. [Google Scholar]
- Fairén, A.G. A cold and wet Mars. Icarus 2010, 208, 165–175. [Google Scholar] [CrossRef]
- Launius, R.D. Venus-Earth-Mars: Comparative climatology and the search for life in the solar system. Life 2012, 2, 255–273. [Google Scholar] [CrossRef]
- Léveillé, R. Validation of astrobiology technologies and instrument operations in terrestrial analogue environments. Comptes Rendus Palevol 2009, 8, 637–648. [Google Scholar] [CrossRef]
- Cockell, C.S.; Barlow, N.G. Impact excavation and the search for subsurface life on Mars. Icarus 2002, 155, 340–349. [Google Scholar] [CrossRef]
- West, M.D.; Clarke, J.D.A.; Thomas, M.C.; Pain, C.F.; Walter, M.R. The geology of Australian Mars analogue sites. Planet. Space Sci. 2010, 58, 447–458. [Google Scholar] [CrossRef]
- House, C.H.; Beal, E.J.; Orphan, V.J. The apparent involvement of ANMEs in mineral dependent methane oxidation, as an analog for possible Martian Methanotrophy. Life 2011, 1, 19–33. [Google Scholar] [CrossRef]
- Aguilera, A. Eukaryotic organisms in extreme acidic environments, the río tinto case. Life 2013, 3, 363–374. [Google Scholar] [CrossRef]
- Baker, V.R.; Nummedal, D. The Channeled Scabland; NASA Planetary Geology Program: Washington, DC, USA, 1978. [Google Scholar]
- Golombek, M.P.; Edgett, K.S.; Rice, J.W. Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Valles Region and Field Trips in the Channeled Scabland, Washington; LPI Technical Report No. 95-01; Lunar and Planetary Institute: Houston, TX, USA, 1995. [Google Scholar]
- Bourke, M.C.; Zimbelman, J.R. The Australian paleoflood model for unconfined fluvial deposition on Mars. In Proceedings of 32nd Annual Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 2001. no. 1679.
- Schaber, G.; McCauley, J.F.; Breed, C.S.; Olhoeft, G.R. Shuttle Imaging Radar, Physical controls on signal penetration and subsurface scattering in the Eastern Sahara. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 603–623. [Google Scholar] [CrossRef]
- Schaber, G.G.; McCauley, J.F.; Breed, C.S. The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt. Remote Sens. Environ. 1997, 59, 337–363. [Google Scholar] [CrossRef]
- Ori, G.G.; Komatsu, G.; Marinangeli, L. (Eds.) Exploring Mars surface and its terrestrial analogues. Available online: http://irsps.sci.unich.it/education/tunisia/guidebook.pdf (accessed on 6 August 2014).
- Komatsu, G.; Ori, G.G.; Marinangeli, L.; Moersch, J.E. Playa environments on Earth: Possible analogues for Mars. In The Geology of Mars: Evidence from Earth-Based Analogs; Chapman, M.G., Ed.; Cambridge University Press: Cambridge, UK, 2007; pp. 322–348. [Google Scholar]
- Stivaletta, N.; Barbieri, R. Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). J. Arid Environ. 2009, 73, 33–39. [Google Scholar] [CrossRef]
- Essefi, E.; Komatsu, G.; Fairén, A.G.; Rekhiss, F.; Yaich, C. Identification of tephra layers in spring mounds at the terrestrial analog of Boujmal, eastern Tunisia: Repercussions and limits of tephrostratigraphy application on martian stratigraphy and paleoclimatology. In Proceedings of Third Conference on Early Mar: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, Lake Tahoe, NV, USA, 21–25 May 2012. No. 1680, id. 7034.
- Wentworth, S.J.; Morris, P.A. The geology, paleontology, and biology of evaporite and near-evaporite system in both terrestrial and extraterrestrial environments. In Presented at the Geological Society of America 2001 Annual Meeting, Boston, MA, USA, 1–10 November 2001. Topical Session 27, No. 186.
- Levy, J. Hydrological characteristics of recurrent slope lineae on Mars: Evidence for liquid flow through regolith and comparisons with Antarctic terrestrial analogs. Icarus 2012, 219, 1–4. [Google Scholar] [CrossRef]
- Stroble, S.T.; McElhoney, K.M.; Kounaves, S.P. Comparison of the Phoenix Mars Lander WCL soil analyses with Antarctic Dry Valley soils, Mars meteorite EETA79001 sawdust, and a Mars stimulant. Icarus 2013, 225, 933–939. [Google Scholar]
- Grotzinger, J.P.; Arvidson, R.E.; Bell, J.F., III; Calvin, W.; Clark, B.C.; Fike, D.A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K.E.; et al. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 2005, 240, 11–72. [Google Scholar] [CrossRef]
- Jagoutz, E. Salt-Induced rock fragmentation on Mars: The role of salt in the weathering of Martian rocks. Adv. Space Res. 2006, 38, 696–700. [Google Scholar] [CrossRef]
- Tosca, N.J.; McLennan, S.M.; Clark, B.C.; Grotzinger, J.P.; Hurowitz, J.A.; Knoll, A.H.; Schroder, C.; Squyres, S.W. Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett. 2006, 240, 122–148. [Google Scholar]
- Benison, K.C.; Bowen, B.B. Geochemical characteristics of naturally acid and alkaline saline lakes in southern Western Australia. Appl. Geochem. 2009, 24, 268–284. [Google Scholar] [CrossRef]
- Oehler, D.Z.; Allen, C.C. Evidence for pervasive mud volcanism in Acidalia Planitia, Mars. Icarus 2010, 208, 636–657. [Google Scholar] [CrossRef]
- Essefi, E.; Fairén, A.G.; Komatsu, G.; Rekhiss, F.; Yaich, C. Study of cores from a spring mound at the Mars analog of Boujmal, eastern Tunisia: Coring martian spring mounds as potential efficient tool for a geologic exploration of early Mars. In Proceedings of Third Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, Lake Tahoe, NV, USA, 21–25 May 2012. No. 1680, id. 7029.
- Essefi, E.; Komatsu, G.; Fairén, A.G.; Chan, M.A.; Yaich, C. Groundwater influence on the aeolian sequence stratigraphy of the Mechertate-Chrita-Sidi El Hani system, Tunisian Sahel: Analogies to the wet-dry aeolian sequence stratigraphy at Meridiani Planum, Terby crater, and Gale crater, Mars. Planet. Space Sci. 2014, 95, 56–78. [Google Scholar] [CrossRef]
- Fairén, A.G.; Fernández-Remolar, D.; Dohm, J.M.; Baker, V.R.; Amils, R. Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 2004, 431, 423–426. [Google Scholar] [CrossRef]
- Benison, K.C.; Bowen, B.B. Acid saline lake systems give clues about past environments and the search for life on Mars. Icarus 2006, 183, 225–229. [Google Scholar] [CrossRef]
- Dehouck, E.; Mangold, N.; le Mouélic, S.; Ansan, V.; Poulet, F. Ismenius Cavus, Mars: A deep paleolake with phyllosilicate deposits. Planet. Space Sci. 2010, 58, 941–946. [Google Scholar]
- Cabrol, N.A.; Grin, E.A.; Newsom, H.E.; Landheim, R.; McKay, C.P. Hydrogeologic evolution of gale crater and its relevance to the exobiological exploration of mars. Icarus 1999, 139, 235–245. [Google Scholar] [CrossRef]
- Gulick, V.C. Origin of the valley networks on Mars: A hydrological perspective. Geomorphology 2001, 37, 241–268. [Google Scholar] [CrossRef]
- Burr, D.M.; Grier, J.A.; McEwen, A.S.; Keszthelyi, L.P. Repeated aqueous flooding from the cerberus fossae: Evidence for very recently extant, deep groundwater on mars. Icarus 2002, 159, 53–73. [Google Scholar] [CrossRef]
- Fairén, A.G.; Davila, A.F.; Gago-Duport, L.; Haqq-Misra, J.D.; Gil, C.; McKay, C.P.; Kasting, J.F. Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars. Nat. Geosci. 2011, 4, 667–670. [Google Scholar] [CrossRef]
- Essefi, E.; Komatsu, G.; Fairén, A.G.; Ben Jmaa, H.; Rekhiss, F.; Yaich, C. Spring mounds at Sidi El Hani saline environment, eastern Tunisia: Terrestrial analog for Mars. In Proceedings of 43rd Lunar and Planetary Science Conference, Woodlands, TX, USA, 19–23 March 2012. No. 1659, id. 1289.
- Stivaletta, N.; Barbieri, R.; Picard, C.; Bosco, M. Astrobiological significance of the sabkha life and environments of southern Tunisia. Planet. Space Sci. 2009, 57, 597–605. [Google Scholar] [CrossRef]
- Fairén, A.G.; Davila, A.F.; Lim, D.; Bramall, N.; Bonaccorsi, R.; Zavaleta, J.; Uceda, E.R.; Stoker, C.; Wierzchos, J.; Amils, R.; et al. Astrobiology through the ages of Mars. Astrobiology 2010, 10, 821–843. [Google Scholar] [CrossRef]
- Essefi, E. Multidisciplinary study of Sidi El Hani Saline Environment: The History and the Climatic Variability. Master Thesis, University of Sfax, Sfax, Tunisia, 2009. [Google Scholar]
- Essefi, E.; Touir, J.; Tagorti, M.A.; Bouri, S.; Essefi, H.; Ouali, J.; Ben Jmaa, H. Modeling of the chaotic behavior of Sidi El Hani discharge playa, Tunisian Sahel: Which exogenous factor commands this saline environment? The subsurface flow or the climatic variability? In Proceedings of the International Congress Geotunis, Tunis, Tunisia, 16–20 December 2009.
- Essefi, E.; Touir, J.; Tagorti, M.A.; Yaich, C. Effect of the groundwater contribution, the climatic change, and the human induced activities on the hydrological behavior of discharge playas: A case study Sidi El Hani discharge playa, Tunisian Sahel. Arab. J. Geosci. 2013, 6, 3997–4009. [Google Scholar] [CrossRef]
- Allen, C.C.; Oehler, D.Z. A case for ancient springs in Arabia Terra, Mars. Astrobiology 2008, 8, 1093–1112. [Google Scholar]
- Essefi, E. Wet Aeolian Sedimentology and Sequence Stratigraphy within the Terrestrial Analogues in Eastern Tunisia: Implications for Wet Aeolian Sedimentology and Sequence Stratigraphy on Mars. Ph.D. Thesis, National Engineering School of Sfax, Sfax, Tunisia, 2013. [Google Scholar]
- Essefi, E.; Komatsu, G.; Fairén, A.G.; Chan, M.A.; Yaich, C. Alignment of fault spring mounds at El-Guetiate, Southeast Tunisia: Terrestrial analogue implications for martian tectonics. In Proceedings of 44th Lunar and Planetary Science Conference, Woodlands, TX, USA, 18–22 March 2013; No. 1719. p. 1545.
- Komatsu, G.; Cardinale1, M.; Vaz, D.A.; Wray, J.J. Conical features and basin-filling deposits in Isidis Planitia, Mars. In Proceedings of 42nd Lunar and Planetary Science Conference, Woodlands, TX, USA, 7–11 March 2011; No. 1608. p. 1187.
- Komatsu, G.; Ori, G.G.; Cardinale, M.; Dohm, J.M.; Baker, V.R.; Vaz, D.A.; Ishimaru, R.; Namiki, N.; Matsui, T. Roles of methane and carbon dioxide in geological processes on Mars. Planet. Space Sci. 2011, 59, 169–181. [Google Scholar] [CrossRef]
- Fensham, R.J.; Fairfax, F.J.; Pocknee, D.; Kelley, J. Vegetation patterns of permanent spring wetlands of arid Australia. Aust. J. Bot. 2004, 52, 719–728. [Google Scholar] [CrossRef]
- Arp, G.; Hofmann, J.; Reitner, J. Microbial fabric formation in spring mounds (“microbialites”) of alkaline salt lakes in the Badain Jaran Sand Sea, PR China. Palaios 1998, 13, 581–592. [Google Scholar] [CrossRef]
- Mudd, G.M. Mound springs of the Great Artesian Basin in South Australia: A case study from Olympic Dam. Environ. Geol. 2000, 39, 463–476. [Google Scholar] [CrossRef]
- Habermehl, M.A. Chapter 11: Hydrogeology and environmental geology of the Great Artesian Basin, Australia. In Gondwana to Greenhouse: Australian Environmental Geoscience; Gostin, V.A., Ed.; Geological Society of Australia Special Publication: Sydney, Australia, 2001; pp. 127–143. [Google Scholar]
- Tagorti, M.A.; Essefi, E.; Touir, J.; Yaich, C. Geochemical controls of groundwaters upwelling in saline environments: Case study the discharge playa of Sidi El Hani (Sahel, Tunisia). Afr. Earth Sci. J. 2013, 86, 1–9. [Google Scholar] [CrossRef]
- Delattre, P. System, Structure, Function Evolution. Ph.D. Thesis, Maloine-Doin University, Paris, France, 1971. [Google Scholar]
- Raunet, M. Approche Systemique Appliquée à la Cartographie Morphologique des Paysages. Ph.D. Thesis, Université Montpelier, Montpelier, France, 2000. [Google Scholar]
- Ben Jmaa, H. The endorheic system of Sidi El Hani, Chrita and Mechertate: Paleoenvironment and Recent Dynamics. Ph.D. Thesis, University of Tunis, Tunis, Tunisia, 2008. [Google Scholar]
- Essefi, E.; Tagorti, M.A.; Touir, J.; Yaich, C. Past human life in the vicinities of saline systems in Tunisia: The geoarcheological approach to link paleoclimatology, paleoepidemiology, and populations dynamics. Arab. J. Earth Sci. 2014, in press. [Google Scholar]
- Andrews-Hanna, J.; Phillips, R.; Zuber, M. Meridiani Planum and the global hydrology of Mars. Nature 2007, 446, 163–168. [Google Scholar] [CrossRef]
- Amari, A.; Bedir, M. The Quaternary basins of central Sahel of Tunisia. Genesis and evolution of sebkha within a compressive and extensional thrust context. Géodynamqiue 1989, 4, 49–65. [Google Scholar]
- Essefi, E.; Tagorti, M.A.; Touir, J.; Yaich, C. Modeling of the chaotic behaviors at Sidi El Hani discharge playa, eastern Tunisia: Contribution of the philosophy of causality to solve complex chaotic systems in geology and biology. Tunis. J. Med. Plants Nat. Prod. 2012, 7, 116–128. [Google Scholar]
- Boynton, W.V.; Feldman, W.C.; Squyres, S.W.; Prettyman, T.H.; Brückner, J.; Evans, L.G.; Reedy, R.C.; Starr, R.; Arnold, J.R.; Drake, D.M.; et al. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 2002, 297, 81–85. [Google Scholar] [CrossRef]
- Feldman, W.C.; Boynton, W.V.; Tokar, R.L.; Prettyman, T.H.; Gasnault, O.; Squyres, S.W.; Elphic, R.C.; Lawrence, D.J.; Lawson, S.L.; Maurice, S.; et al. Global distribution of neutrons from Mars: Results from Mars Odyssey. Science 2002, 297, 75–78. [Google Scholar] [CrossRef]
- Ben Ayed, N.; Zargouni, F. Carte sismotectonique de la Tunisie à l’échelle 1/1000 000; Fondation Nationale de la Recherche Scientifique: Tunis, Tunisia, 1990. [Google Scholar]
- Zouaghi, T.; Bédir, M.; Melki, F.; Gabtni, H.; Gharsalli, R.; Bessioud, A.; Zargouni, F. Neogene sediment deformations and tectonic features of northeastern Tunisia: evidence for paleoseismicity. Arab. J. Geosci. 2010, 4, 1301–1314. [Google Scholar] [CrossRef]
- Ghribi, R. Morpho-Structural Study and Evolution of Paleo-Fields of Constraints of the Tunisian Sahel: Geodynamic Implcations. Ph.D. Thesis, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia, 2010. [Google Scholar]
- Adelsberger, K.A.; Smith, J.R. Paleolandscape and paleoenvironmental interpretation of spring-deposited sediments in Dakhleh Oasis, Western Desert of Egypt. Catena 2010, 83, 7–22. [Google Scholar] [CrossRef]
- Marquer, L.; Pomel, S.; Abichou, A.; Schulz, E.; Kaniewski, D.; van Campo, E. Late Holocene high resolution palaeoclimatic reconstruction inferred from Sebkha Mhabeul, southeast Tunisia. Quat. Res. 2008, 70, 240–250. [Google Scholar] [CrossRef]
- Sun, D.; Bloemendal, J.; Rea, D.K.; Vandenberghe, J.; Jiang, F.; An, Z.; Su, R. Grain-Size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components. Sediment. Geol. 2002, 152, 263–277. [Google Scholar] [CrossRef]
- Cailleux, A.; Tricart, J. Le modelé des régions périglaciaires. Available online: http://www.persee.fr/web/revues/home/prescript/article/noroi_0029-182x_1968_num_58_1_1630_t1_0296_0000_2 (accessed on 28 August 2014). (In French)
- Bridge, J.S. Hydraulic interpretation of grain-size distributions using a physical model for bedload transport. J. Sediment. Petrol. 1981, 51, 1109–1124. [Google Scholar] [CrossRef]
- Allen, J.R.L.; Haslett, S.K. Granulometric characterization and evaluation of annually banded mid-Holocene estuarine silts, Welsh Severn Estuary (UK): Coastal change, sea level, and climate. Quat. Sci. Rev. 2006, 25, 1418–1446. [Google Scholar] [CrossRef]
- Manté, C.; Yao, A.F.; Degiovanni, C. Principal component analysis of measures, with special emphasis on grain-size curves. Comput. Stat. Data Anal. 2007, 51, 4969–4983. [Google Scholar] [CrossRef]
- Pye, K. Aeolian Dust and Dust Deposits; Academic Press: London, UK, 1987; pp. 29–62. [Google Scholar]
- Tsoar, H.; Pye, K. Dust transport and the question of desert loess formation. Sedimentology 1987, 34, 139–153. [Google Scholar] [CrossRef]
- Flemming, B.W. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Cont. Shelf Res. 2000, 20, 1125–1137. [Google Scholar] [CrossRef]
- Heller, F.; Strzyszcz, Z.; Magiera, T. Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland. J. Geophys. Res. 1998, B103, 17767–17774. [Google Scholar] [CrossRef]
- Kapička, A.; Jordanova, N.; Petrovský, E.; Ustjak, S. Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J. Appl. Geophys. 2001, 48, 93–102. [Google Scholar] [CrossRef]
- Strzyszcz, Z.; Magiera, T. Magnetic susceptibility and heavy metals contamination in soils of southern Poland. Phys. Chem. Earth 1998, 23, 1127–1131. [Google Scholar] [CrossRef]
- Lecoanet, H.; Lévéque, F.; Ambrosi, J.-P. Combination of magnetic parameters: An efficient way to discriminate soil-contamination sources (south France). Environ. Pollut. 2003, 122, 229–234. [Google Scholar] [CrossRef]
- Strzyszcz, Z.; Magiera, T. Record of industrial pollution in Polish ombrotrophic peat bogs. Phys. Chem. Earth Part A 2001, 26, 859–866. [Google Scholar] [CrossRef]
- Hanesch, M.; Scholger, R. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geol. 2002, 42, 857–870. [Google Scholar] [CrossRef]
- Hoffmann, V.; Knab, M.; Appel, E. Magnetic susceptibility mapping of roadside pollution. J. Geochem. Explor. 1999, 66, 313–326. [Google Scholar] [CrossRef]
- Maier, G.; Scholger, R. Demonstration of the connection between pollutant dispersal and atmospheric barrier layers by usage of magnetic susceptibility mapping. In Proceedings of EGS-AGU-EUG Joint Assembly, Nice, France, 6–11 April 2003. Abstract #5781.
- Maier, G.; Scholger, R. Demonstration of connection between pollutant dispersal and atmospheric boundary layers by use of magnetic susceptibility mapping, St. Jacob (Austria). Phys. Chem. Earth 2004, 29, 997–1009. [Google Scholar] [CrossRef]
- Lecoanet, H.; Lévéque, F.; Ambrosi, J.-P. Magnetic properties of salt-marsh soils contaminated by iron industry emissions (southeast France). J. Appl. Geophys. 2001, 48, 67–81. [Google Scholar] [CrossRef]
- Maier, G.; Scholger, R.; Schön, J. The influence of soil moisture on magnetic susceptibility measurements. J. Appl. Geophys. 2006, 59, 162–175. [Google Scholar] [CrossRef]
- Ventura, E., Jr.; Nearing, M.A.; Norton, L.D. Developing a magnetic tracer to study soil erosion. Catena 2001, 43, 277–291. [Google Scholar] [CrossRef]
- Gallala, W.; Gaied, M.E.; Essefi, E.; Montacer, M. Pleistocene calcretes from eastern Tunisia: The stratigraphy, the microstructure and the environmental significance. J. Afr. Earth Sci. 2010, 58, 445–456. [Google Scholar] [CrossRef]
- Gaied, M.E.; Gallala, W.; Essefi, E.; Montacer, M. Microstructural and mechanical properties in traditional ceramics as a function of quartzofeldspathic sand incorporation. Trans. Indian Ceramic Soc. 2011, 70, 207–214. [Google Scholar] [CrossRef]
- Mefteh, S.; Medhioub, M.; Essefi, E.; Jamoussi, F. Effect of the diagenesis on the clay mineralogy and the organic matter in the Tunisian southern subsurface. J. Geol. Soc. India 2014, 83, 198–210. [Google Scholar] [CrossRef]
- Mefteh, S.; Essefi, E.; Medhioub, M.; Chokri, Y.; Jamoussi, F. Correlation between clay minerals, organic matter, and magnetic susceptibility along NWA-1 well (southern Tunisia): Paleo-eNvironmental indications. In Proceedings of 4th Maghrebian Symposium on Clays Minerals.
- Morris, R.V.; Golden, D.C.; Bell, J.F., III; Shelfer, T.D.; Scheinost, A.C.; Hinman, N.W.; Furniss, G.; Mertzman, S.A.; Bishop, J.L.; Ming, D.W.; et al. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. J. Geophys. Res. 2000, 105, 1757–1817. [Google Scholar] [CrossRef]
- Diaz-Michelena, M.; Laughlin, D.; McHenry, M.E. Possible magnetic minerals constituents in the Martian crust and microstructures consistent with large remanent magnetizations. In Proceedings of EGU General Assembly, Vienna, Austria, 22–27 April 2012; p. 2598.
- Essefi, E.; Touir, J.; Tagorti, M.A.; Yaich, C. Geodynamic framework of saline systems in eastern Tunisia: Saline depressions inherited from the Triassic intrusions and/or the Messinian Salinity Crisis. ISRN Geol. 2014, 2014. Article ID 798706. [Google Scholar]
- Bedir, M. Gedynamics of the Sedimentary Basin of the Sahel of Mahdia (eastern Tunisia) from the Aptian to the Present: Sismo-Stratigraphy, Sismo-Tectonic and Structural. Ph.D. Thesis, University of El Manar, Tunis, Tunisia, 1989. [Google Scholar]
- Khomsi, S.; Bédir, M.; Ben Jemia, M.G. Discovering a new front of overlap in Tunisian Eastern Atlas by seismic reflexion: The regional structural context and the role of the salt Trias. Comptes Rendus Geosci. 2004, 336, 1401–1408. [Google Scholar] [CrossRef]
- Khomsi, S.; Bédir, M.; Soussi, M.; Ben Jemia, M.G.; Ben Ismail-Lattrache, K. Discovering of Late to Middle Eocene compressive event in Eastern Tunisia (Sahel): An overall view of the Atlasic phase in North Africa. Comptes Rendus Geosci. 2006, 338, 41–49. [Google Scholar] [CrossRef]
- Gabtni, H. Apport de la gravimétrie à l’étude des structures profondes du Sahel de Tunisie (cas de la région de Kairouan–Sousse–Monastir). Comptes Rendus Geosci. 2005, 337, 1409–1414. (In French) [Google Scholar] [CrossRef]
- Bedir, M. Tectonic and basin structuring of eastern Tunisia seismogenic sites. Available online: http://www.docdatabase.net/more-tectonic-and-basin-structuring-of-eastern-tunisia-seismogenic-sites-796905.html (accessed on 1 December 2011).
- Rekhiss, F. Models of structural and geodynamic evolution of the easternmost of the alpine chain of North Africa. Ph.D. Thesis, University of Tunis-Elmanar, Tunis, Tunisia, 2007. [Google Scholar]
- Kamoun, Y. Neotectonic Study of the Region of Monastir-Mahdia (Eastern Tunisia). Ph.D. Thesis, University of Orsay, Paris, France, 1981; p. 175. [Google Scholar]
- Haller, P. Deep Structure of the Tunisian Sahel: A Geodynamic Interpretation. Ph.D. Thesis, University of Franche-Comté, Besançon, France, 1983. [Google Scholar]
- Hfaiedh, M. Seismotectonic study of northeast Tunisia. Ph.D. Thesis, University of Orsay, Paris, France, 1983; p. 179. [Google Scholar]
- Philip, H.; Andrieux, J.; Dlala, M.; Chihi, L.; Ben Ayed, N. Mio-Plio-Quaternary tectonic evolution of graben of Kasserine (central Tunisia), implications on the recent geodynamic evolution of Tunisia. Bulletin de la Société géologique de France 1986, 8, 559–568. [Google Scholar]
- Dlala, M.; Rebaï, S. Relation compression-extension Miocène supérieur à Quaternaire en Tunisie: Implication sismotectonique. CR Acad. Sci. Paris 1994, 319, 945–950. (in French). [Google Scholar]
- Chihi, L.; Gaaloul, N.; Razgallah, S. Paleoseismic events in Eastern Tunisia (Cap Bon, Sahel): Seismites associated with Miocene–Pliocene and Quaternary sediments. Afr. Geosci. Rev. 2000, 7, 307–314. [Google Scholar]
- Jarraya-Horriche, F. Contribution to the Analysis and the Rationalization of the Piezometric Network. Ph.D. Thesis, University of Tunis, Tunis, Tunisia, 2004. [Google Scholar]
- Nazoumou, Y. Impact of Dams on the Recharge of Aquifers of Arid Zone: A Study with Numerical Modeling on the Case of Kairouan Aquifer (Central Tunisia). Ph.D. Thesis, University of Tunis, Tunis, Tunisia, 2002. [Google Scholar]
- Groeneveld, D.P. Remotely-Sensed groundwater evapotranspiration from alkali scrub affected by declining water table. J. Hydrol. 2008, 358, 294–303. [Google Scholar]
- Essefi, E.; Touir, J.; Tagorti, M.A.; Yaich, C. Record of the climatic variability and the sedimentary dynamics during the last two millennia at sebkha Dkhila, eastern Tunisia. ISRN Geol. 2013, 2013. Article ID 936198. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology, 3rd ed.; Macmillan College Publishing Comp.: New York, NY, USA, 1994. [Google Scholar]
- Essefi, E.; Tagorti, M.A.; Touir, J.; Yaich, C. Hydrocarbons migration through groundwater convergence toward saline depressions: Case study, Sidi El Hani discharge playa, Tunisian Sahel. ISRN Environ. Chem. 2013, 2013. Article ID 709190. [Google Scholar]
- Nahm, A.L.; Schultz, R.A. Magnitude of global contraction on Mars from analysis of surface faults: Implications for martian thermal history. Icarus 2011, 211, 389–400. [Google Scholar]
- Smith, L.; Forster, C.B.; Evans, J.P. Interaction between fault zones, fluid flow and heat transfer at the basin scale. In Hydrogeology of Low Permeability Environments; International Association of Hydrogeologists: Hannover, Germany, 1990; pp. 41–67. [Google Scholar]
- Clifford, S.M. A pore volume estimate of the Martian megaregolith based on a lunar analog. In Presented at Third International Colloquium on Mars, Pasadena, CA, USA, 31 August–2 September 1981; Lunar and Planetary Institute: Houston, TX, USA; pp. 46–48.
- Clifford, S.M.; Hillel, D. The stability of ground ice in the equatorial region of Mars. J. Geophys. Res. 1983, 88, 2456–2474. [Google Scholar] [CrossRef]
- MacKinnon, M.; Tanaka, K.L. The impact of Martian crust: Structure, hydrology, and some geologic implications. J. Geophys. Rev. 1989, 94, 17359–173070. [Google Scholar] [CrossRef]
- Clifford, S.M. A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. 1993, 98, 10973–11016. [Google Scholar] [CrossRef]
- Dohm, J.M.; Maruyama, S.; Baker, V.R.; Anderson, R.C.; Ferris, J.C.; Hare, T.M. Plate tectonism on early Mars: Diverse geological and geophysical evidence. In Proceedings of 33rd Annual Lunar and Planetary Science Conference, Houston, TX, USA, 11–15 March 2002. Abstract no. 1639.
- Hanna, J.C.; Phillips, R.J. Hydrological modeling of the Martian crust with application to the pressurization of aquifers. J. Geophys. Res. 2005, 110, E01004. [Google Scholar] [CrossRef]
- Wilson, L.; Bargery, A.S.; Burr, D.M. Dynamics of fluid flow in Martian outflow channels. In Megaflooding on Earth and Mars; Burr, D.M., Carling, C.A., Baker, V.R., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 290–311. [Google Scholar]
- Pittman, E.D. Effect of fault-related granulation on porosity and permeability of quartz sandstones, Simpson Group (Ordovician), Oklahoma. Bull. Am. Assoc. Petrol. Geol. 1981, 65, 2381–2387. [Google Scholar]
- Lowell, R.P. Modeling continental and submarine hydrothermal system. Rev. Geophys. 1991, 29, 457–476. [Google Scholar] [CrossRef]
- Shaw, P.R. Age variations of oceanic crust Poisson’s ratio: Inversion and porosity evolution model. J. Geophys. Rev. 1994, 99, 3057–3066. [Google Scholar] [CrossRef]
- Kerrich, R. Fluid infiltration into fault zones: Chemical, isotopic, and mechanical effects. Pure Appl. Geophys. 1986, 124, 225–268. [Google Scholar] [CrossRef]
- Davison, C.C.; Kozak, E.T. Hydrogeological characteristics of major fracture zones in a granite batholith of the Canadian Shield. In Proceedings of the Fourth Canadian/American Conference on Hydrogeology: Fluid Flow, Heat Transfer and Mass Transport in Fractured Rocks, Alberta, Canada; National Water Well Association: Dublin, OH, USA, 1988; pp. 52–59. [Google Scholar]
- Forster, C.B.; Evans, J.P. Hydrogeology of thrust faults and crystalline thrust sheets: Results of combined field and modeling studies. Geophys. Res. Lett. 1991, 18, 979–982. [Google Scholar] [CrossRef]
- Okubo, C.H.; Schultz, R.A.; Chan, M.A.; Komatsu, G.; HiRISE Team. Deformation band clusters on Mars and implications for subsurface fluid flow. Geol. Soc. Am. Bull. 2009, 121, 474–482. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Gillespie, A. Formation of Martian outflow channels by catastrophic dewatering of evaporite deposits. Geology 2005, 33, 625–628. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Som, S.M.; Jackson, M.P.A.; Schreiber, B.C.; Gillespie, A.R.; Adams, J.B. Continental-Scale salt tectonics on Mars and the origin of Valles Marineris and associated outflow channels. Bull. Geol. Soc. Am. 2009, 121, 117–133. [Google Scholar]
- Rodriguez, J.A.P.; Sasaki, S.; Miyamoto, H. Nature and hydrological relevance of the Shalbatana complex underground cavernous system. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Rodriguez, J.A.P.; Sasaki, S.; Kuzmin, R.O.; Dohm, J.M.; Tanaka, K.L.; Miyamoto, H.; Kurita, K.; Komatsu, G.; Fairén, A.G.; Ferris, J.C. Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars. Icarus 2005, 175, 36–57. [Google Scholar] [CrossRef]
- Kangi, A. The role of mud volcanoes in the evolution of Hecate Tholus Volcano on the surface of Mars. Acta Astronaut. 2007, 60, 719–722. [Google Scholar] [CrossRef]
- Binder, A.B.; Gunga, H.C. Young thrust-fault scarps in the highlands: Evidence for an initially totally molten Moon. Icarus 1985, 63, 421–441. [Google Scholar] [CrossRef]
- Grott, M.; Hauber, E.; Werner, S.C.; Kronberg, P.; Neukum, G. Mechanical modeling of thrust faults in the Thaumasia region, Mars, and implications for the Noachian heat flux. Icarus 2007, 186, 517–526. [Google Scholar] [CrossRef]
- Melosh, H.J. Impact Cratering: A Geologic Process; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Ormö, J.; Blomqvist, G. Magnetic modeling as a tool in the evaluation of impact structures, with special reference to the Tvaren Bay impact crater, SE Sweden. Tectonophysics 1996, 262, 291–300. [Google Scholar] [CrossRef]
- Rodriguez, J.A.P.; Sasaki, S.; Dohm, J.M.; Tanaka, K.L.; Strom, B.; Kargel, J.; Kuzmin, R.; Miyamoto, H.; Spray, J.G.; Fairén, A.G.; et al. Control of impact crater fracture systems on subsurface hydrology, ground subsidence and collapse, Mars. J. Geophys. Res. 2005, 110, E06003. [Google Scholar] [CrossRef]
- Knauth, L.P.; Burt, D.M. Eutectic brines on Mars: Origin and possible relation to young seepage features. Icarus 2002, 158, 267–271. [Google Scholar] [CrossRef]
- Baker, V.R.; Milton, D.J. Erosion by catastrophic floods on Mars and Earth. Icarus 1974, 23, 27–41. [Google Scholar] [CrossRef]
- Komatsu, G.; Baker, V.R. Paleohydrology and flood geomorphology of a martian outflow channel, Ares Vallis. J. Geophys. Res. 1997, 102, 4151–4160. [Google Scholar] [CrossRef]
- Malin, M.C.; Edgett, K.S. Evidence for persistent flow and aqueous sedimentation on early Mars. Science 2003, 302, 1931–1934. [Google Scholar] [CrossRef]
- Pondrelli, M.; Baliva, A.; Lorenzo, S.; di Marinangeli, L.; Rossi, A.P. Complex evolution of paleolacustrine systems on Mars: An example from the Holden crater. J. Geophys. Res. 2005, 110, E04016. [Google Scholar] [CrossRef]
- Di Achille, G.; Marinangeli, L.; Ori, G.G.; Hauber, E.; Gwinner, K.; Reiss, D.; Neukum, G. Geological evolution of the Tyras Vallis paleolacustrine system, Mars. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Komatsu, G.; di Achille, G.; Popa, C.; di Lorenzo, S.; Rossi, A.P.; Rodriguez, J.A.P. Paleolakes, paleofloods, and depressions on Aurorae and Ophir plana, Mars; Connectivity of surface and subsurface hydrological systems. Icarus 2009, 201, 474–491. [Google Scholar] [CrossRef]
- Roberts, C.R.; Mitchell, C.W. Spring mounds in southern Tunisia. Geol. Soc. Lond. Spec. Publ. 1987, 35, 321–334. [Google Scholar] [CrossRef]
- Sánchez, J.A.; Coloma, P.; Pérez, A. Sedimentary processes related to the groundwater flows from the Mesozoic Carbonate Aquifer of the Iberian Chain in the Tertiary Ebro Basin, northeast Spain. Sediment. Geol. 1999, 129, 201–213. [Google Scholar] [CrossRef]
- Clarke, J.D.A.; Bourke, M.C. Travertine and tufa from Dalhousie Springs (Australia)—Implications for recognizing Martian Springs. Geol. Soc. Am. Spec. Paper 2011, 483, 231–247. [Google Scholar] [CrossRef]
- Keppel, M.N.; Clarke, J.D.A.; Halihan, T.; Love, A.J.; Werner, A.D. Mound springs in the arid Lake Eyre South region of South Australia: A new depositional tufa model and its controls. Sediment. Geol. 2011, 240, 55–70. [Google Scholar] [CrossRef]
- Horgan, B.; Bell, J.F., III; Bourke, M.C. Ice and sulfate induration in the martian north polar sand sea. In Proceedings of Second International Planetary Dunes Workshop: Planetary Analogs —Integrating Models, Remote Sensing, and Field Data, Alamosa, CO, USA, 18–21 May 2010; No. 1552. pp. 31–32.
- Carmichael, R. Handbook of Physical Properties of Rocks; CRC Press Inc.: Boca Raton, FL, USA, 1989. [Google Scholar]
- Rochette, P.; Gattacceca, J.; Chevrier, V.; Hoffmann, V.; LORAND, J.P.; Funaki, M.; Hochleitner, R. Matching Martian crustal magnetization and magnetic properties of Martian meteorites. Meteorit. Planet. Sci. 2005, 40, 529–540. [Google Scholar] [CrossRef]
- Klingelhöfer, G.; Morris, R.V.; Bernhardt, B.; Rodionov, D.; de Souza, P.A.; Squyres, S.W.; Prilutski, O. Athena MIMOS II Mössbauer spectrometer investigation. J. Geophys. Res. Planets 2003, 108. [Google Scholar] [CrossRef]
- Squyres, S.W.; Arvidson, R.E.; Ruff, S.; Gellert, R.; Morris, R.V.; Ming, D.W.; Crumpler, L.; Farmer, J.D.; des Marais, D.J.; Yen, A.; et al. Detection of silica-rich deposits on Mars. Science 2008, 320, 1063–1067. [Google Scholar] [CrossRef]
- Fairén, A.G.; Davila, A.F.; Duport, L.G.; Amils, R.; Mckay, C. Stability against freezing of aqueous solutions on early Mars. Nature 2009, 459, 401–404. [Google Scholar] [CrossRef]
- Clifford, S.M.; Parker, T.J. The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 2001, 154, 40–79. [Google Scholar] [CrossRef]
- Komatsu, G.; Ori, G.G. Exobiological implications of potential sedimentary deposits on Mars. Planet. Space Sci. 2000, 48, 1043–1052. [Google Scholar] [CrossRef]
- Ori, G.G.; Marinangeli, L.; Komatsu, G. Martian paleolacustrine environments and their geological constrains on drilling operations for exobiological research. Planet. Space Sci. 2000, 48, 1027–1034. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Essefi, E.; Komatsu, G.; Fairén, A.G.; Chan, M.A.; Yaich, C. Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars. Life 2014, 4, 386-432. https://doi.org/10.3390/life4030386
Essefi E, Komatsu G, Fairén AG, Chan MA, Yaich C. Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars. Life. 2014; 4(3):386-432. https://doi.org/10.3390/life4030386
Chicago/Turabian StyleEssefi, Elhoucine, Goro Komatsu, Alberto G. Fairén, Marjorie A. Chan, and Chokri Yaich. 2014. "Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars" Life 4, no. 3: 386-432. https://doi.org/10.3390/life4030386
APA StyleEssefi, E., Komatsu, G., Fairén, A. G., Chan, M. A., & Yaich, C. (2014). Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars. Life, 4(3), 386-432. https://doi.org/10.3390/life4030386