Right Ventricular Longitudinal Strain in Patients with Heart Failure
Abstract
:1. Introduction
2. RVFAC and RVEF
3. RV Longitudinal Strain Analysis
3.1. Tissue Doppler Imaging
3.2. Two-Dimensional Speckle Tracking Echocardiography
3.3. Three-Dimensional Speckle Tracking Echocardiography
3.4. Cardiac Magnetic Resonance
4. RV Mechanisms in Patients with HF
5. RV Longitudinal Strain in HFpEF
6. RV Longitudinal Strain in HFrEF
7. RV Longitudinal Strain in HF Patients with Preserved Traditional RV Function Parameters
8. RV Longitudinal Strain in Acute HF
9. RV Longitudinal Strain in Nonischemic Dilated Cardiomyopathy
10. RV Longitudinal Strain and Myocardial Fibrosis in Patients with End-Stage HF
11. RV Failure Following LV Assist Device Implantation
12. RV Contractile Reserve in HF
13. RV Longitudinal Strain in Congenital Heart Diseases
14. RV Longitudinal Strain in Chemotherapy Cardiotoxicity
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.J.; Park, J.B.; Park, J.H.; Cho, G.Y. Global Longitudinal Strain to Predict Mortality in Patients with Acute Heart Failure. J. Am. Col. Cardiol. 2018, 71, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, C.; Bras, D.; Araujo, I.; Ceia, F. Heart failure in numbers: Estimates for the 21st century in Portugal. Rev. Port. Cardiol. 2018, 37, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Modin, D.; Andersen, D.M.; Biering-Sørensen, T. Echo and heart failure: When do people need an echo, and when do they need natriuretic peptides? Echo Res. Pract. 2018, 5, R65–R79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijiiac, A.; Onciul, S.; Guzu, C.; Scarlatescu, A.; Petre, I.; Zamfir, D.; Onut, R.; Deaconu, S.; Dorobantu, M. Forgotten No More-The Role of Right Ventricular Dysfunction in Heart Failure with Reduced Ejection Fraction: An Echocardiographic Perspective. Diagnostics 2021, 11, 548. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.S.; Daimon, M.; Satoh, T. Use of Cardiac Imaging to Evaluate Cardiac Function and Pulmonary Hemodynamics in Patients with Heart Failure. Curr. Cardiol. Rep. 2019, 21, 53. [Google Scholar] [CrossRef]
- Sciaccaluga, C.; D’Ascenzi, F.; Mandoli, G.E.; Rizzo, L.; Sisti, N.; Carrucola, C.; Cameli, P.; Bigio, E.; Mondillo, S.; Cameli, M. Traditional and Novel Imaging of Right Ventricular Function in Patients with Heart Failure and Reduced Ejection Fraction. Curr. Heart Fail. Rep. 2020, 17, 28–33. [Google Scholar] [CrossRef]
- Marwick, T.H. The role of echocardiography in heart failure. J. Nucl. Med. 2015, 56, 31S–38S. [Google Scholar] [CrossRef] [Green Version]
- Rudski, L.G.; Fine, N.M. Right Ventricular Function in Heart Failure the Long and Short of Free Wall Motion Versus Deformation Imaging. Circ. Cardiovasc. Imaging 2018, 11, e007396. [Google Scholar] [CrossRef] [Green Version]
- Leeper, B. Right Ventricular Failure. AACN Adv. Crit. Care 2020, 31, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, B. Jumping down the rabbit hole: Unravelling the right ventricle in heart failure. Eur. J. Heart Fail. 2017, 19, 1672–1674. [Google Scholar] [CrossRef] [Green Version]
- Tadic, M.; Pieske-Kraigher, E.; Cuspidi, C.; Morris, D.A.; Burkhardt, F.; Baudisch, A.; Hassfeld, S.; Tschope, C.; Pieske, B. Right ventricular strain in heart failure: Clinical perspective. Arch. Cardiovasc. Dis. 2017, 110, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Thandavarayan, R.A.; Chitturi, K.R.; Guha, A. Pathophysiology of Acute and Chronic Right Heart Failure. Cardiol. Clin. 2020, 38, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Houard, L.; Benaets, M.B.; de Meester de Ravenstein, C.; Rousseau, M.F.; Ahn, S.A.; Amzulescu, M.S.; Roy, C.; Slimani, A.; Vancraeynest, D.; Pasquet, A.; et al. Additional Prognostic Value of 2D Right Ventricular Speckle-Tracking Strain for Prediction of Survival in Heart Failure and Reduced Ejection Fraction: A Comparative Study with Cardiac Magnetic Resonance. JACC Cardiovasc. Imaging 2019, 12, 2373–2385. [Google Scholar] [CrossRef] [PubMed]
- Iacoviello, M.; Citarelli, G.; Antoncecchi, V.; Romito, R.; Monitillo, F.; Leone, M.; Puzzovivo, A.; Lattarulo, M.S.; Rizzo, C.; Caldarola, P.; et al. Right Ventricular Longitudinal Strain Measures Independently Predict Chronic Heart Failure Mortality. Echocardiography 2016, 33, 992–1000. [Google Scholar] [CrossRef]
- Dufendach, K.A.; Zhu, T.; Castrillon, C.D.; Hong, Y.; Countouris, M.E.; Hickey, G.; Keebler, M.; Thoma, F.W.; Kilic, A. Pre-implant right ventricular free wall strain predicts post-LVAD right heart failure. J. Card. Surg. 2021, 36, 1996–2003. [Google Scholar] [CrossRef] [PubMed]
- Sokalskis, V.; Peluso, D.; Jagodzinski, A.; Sinning, C. Added clinical value of applying myocardial deformation imaging to assess right ventricular function. Echocardiography 2017, 34, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Vizzardi, E.; Bonadei, I.; Sciatti, E.; Pezzali, N.; Farina, D.; D’Aloia, A.; Metra, M. Quantitative Analysis of Right Ventricular (RV) Function with Echocardiography in Chronic Heart Failure with No or Mild RV Dysfunction Comparison with Carciac Magnetic Resonance Imaging. J. Ultrasound Med. 2015, 34, 247–255. [Google Scholar] [CrossRef]
- Han, M.W.; Xing, C.Y.; Chen, Z.H.; Zhao, L.B.; Zhang, Y.X.; Yuan, L.J. Evaluation of right ventricular function by two-dimensional speckle tracking echocardiography. Chin. Heart J. 2019, 31, 483–486. [Google Scholar] [CrossRef]
- Kalogeropoulos, A.P.; Vega, J.D.; Smith, A.L.; Georgiopoulou, V.V. Pulmonary hypertension and right ventricular function in advanced heart failure. Congest. Heart Fail. 2011, 17, 189–198. [Google Scholar] [CrossRef]
- Puwanant, S.; Hamilton, K.K.; Klodell, C.T.; Hill, J.A.; Schofield, R.S.; Cleeton, T.S.; Pauly, D.F.; Aranda Jr, J.M. Tricuspid Annular Motion as a Predictor of Severe Right Ventricular Failure After Left Ventricular Assist Device Implantation. J. Heart Lung Transplant. 2008, 27, 1102–1107. [Google Scholar] [CrossRef]
- Meluzín, J.; Špinarová, L.; Bakala, J.; Toman, J.; Krejčí, J.; Hude, P.; Kára, T.; Souček, M. Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion. A new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur. Heart J. 2001, 22, 340–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadic, M.; Nita, N.; Schneider, L.; Kersten, J.; Buckert, D.; Gonska, B.; Scharnbeck, D.; Reichart, C.; Belyavskiy, E.; Cuspidi, C.; et al. The Predictive Value of Right Ventricular Longitudinal Strain in Pulmonary Hypertension, Heart Failure, and Valvular Diseases. Front. Cardiovasc. Med. 2021, 8, 698158. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Voss, W.B.; Lentz, R.W.; Thomas, J.D.; Akhter, N. The Diagnostic and Prognostic Value of Echocardiographic Strain. JAMA Cardiol. 2019, 4, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, E.; Biagioli, P.; Alunni, G.; Murrone, A.; Zuchi, C.; Coiro, S.; Riccini, C.; Mengoni, A.; D’Antonio, A.; Ambrosio, G. Prognostic Value of Right Ventricular Dysfunction in Heart Failure with Reduced Ejection Fraction: Superiority of Longitudinal Strain Over Tricuspid Annular Plane Systolic Excursion. Circ. Cardiovasc. Imaging 2018, 11, e006894. [Google Scholar] [CrossRef] [Green Version]
- Gorter, T.M.; van Veldhuisen, D.J.; Bauersachs, J.; Borlaug, B.A.; Celutkiene, J.; Coats, A.J.S.; Crespo-Leiro, M.G.; Guazzi, M.; Harjola, V.P.; Heymans, S.; et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: Mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 16–37. [Google Scholar] [CrossRef]
- Tadic, M.; Kersten, J.; Nita, N.; Schneider, L.; Buckert, D.; Gonska, B.; Scharnbeck, D.; Dahme, T.; Imhof, A.; Belyavskiy, E.; et al. The Prognostic Importance of Right Ventricular Longitudinal Strain in Patients with Cardiomyopathies, Connective Tissue Diseases, Coronary Artery Disease, and Congenital Heart Diseases. Diagnostics 2021, 11, 954. [Google Scholar] [CrossRef]
- Edvardsen, T.; Klaeboe, L.G. Imaging and heart failure: Myocardial strain. Curr. Opin. Cardiol. 2019, 34, 490–494. [Google Scholar] [CrossRef]
- Saha, S.K.; Kiotsekoglou, A.; Gopal, A.S.; Lindqvist, P. Biatrial and right ventricular deformation imaging: Implications of the recent EACVI consensus document in the clinics and beyond. Echocardiography 2019, 36, 1910–1918. [Google Scholar] [CrossRef]
- Smith, B.C.F.; Dobson, G.; Dawson, D.; Charalampopoulos, A.; Grapsa, J.; Nihoyannopoulos, P. Three-dimensional speckle tracking of the right ventricle: Toward optimal quantification of right ventricular dysfunction in pulmonary hypertension. J. Am. Coll. Cardiol. 2014, 64, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, M.; Ugander, M.; Heiberg, E.; Arheden, H. The quantitative relationship between longitudinal and radial function in left, right, and total heart pumping in humans. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, 636–644. [Google Scholar] [CrossRef]
- Yin, C.; Su, Y.X. Application Progress of Speckle Tracking Echocardiography in Cardiac Diseases. Med. Recapitul. 2021, 27, 560–565, 570. [Google Scholar] [CrossRef]
- Amsallem, M.; Mercier, O.; Kobayashi, Y.; Moneghetti, K.; Haddad, F. Forgotten No More: A Focused Update on the Right Ventricle in Cardiovascular Disease. JACC Heart Fail. 2018, 6, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Lin, N. Advances in Research in Right Heart Diseases with Echocardiography. Adv. Cardiovasc. Dis. 2013, 34, 702–707. [Google Scholar] [CrossRef]
- Smolarek, D.; Gruchała, M.; Sobiczewski, W. Echocardiographic evaluation of right ventricular systolic function: The traditional and innovative approach. Cardiol. J. 2017, 24, 563–572. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.E14. [Google Scholar] [CrossRef] [Green Version]
- Opdahl, A.; Helle-Valle, T.; Skulstad, H.; Smiseth, O.A. Strain, Strain Rate, Torsion, and Twist: Echocardiographic Evaluation. Curr. Cardiol. Rep. 2015, 17, 15. [Google Scholar] [CrossRef]
- Gao, L.; Zheng, J.R.; Cao, Y.; Cen, Y.N. Research of Quantitative Tissue Doppler Imaging on Assessing Left Ventricular Function in Patients with Early Stage Type2 Diabetes. Chin. J. Ultrasound Med. 2018, 34, 150–152. [Google Scholar] [CrossRef]
- Cheung, Y.F. The role of 3D wall motion tracking in heart failure. Nat. Rev. Cardiol. 2012, 9, 644–657. [Google Scholar] [CrossRef]
- Pokharel, P.; Fujikura, K.; Bella, J.N. Clinical applications and prognostic implications of strain and strain rate imaging. Expert Rev. Cardiovasc. Ther. 2015, 13, 853–866. [Google Scholar] [CrossRef]
- Berglund, F.; Piña, P.; Herrera, C.J. Right ventricle in heart failure with preserved ejection fraction. Heart 2020, 106, 1798–1804. [Google Scholar] [CrossRef]
- Shang, Z.J.; Cong, T.; Sun, Y.H.; Wang, K.; Zhang, S.L. Assessment of right ventricular systolic function in patients with mitral stenosis using tissue Doppler imaging and strain rate imaging. J. Dalian Med. Univ. 2014, 57–61. [Google Scholar] [CrossRef]
- Gursu, H.A.; Cetin, I.I.; Azak, E.; Kibar, A.E.; Surucu, M.; Orgun, A.; Pamuk, U. The assessment of treatment outcomes in patients with acute viral myocarditis by speckle tracking and tissue Doppler methods. Echocardiogr. J. Cardiovasc. Ultrasound Allied Tech. 2019, 36, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Ari, M.E.; Ekici, F.; Cetin, b.l.; Tavil, E.B.; Yaral, N.; Isik, P.; Hazirolan, T.; Tunc, B. Assessment of left ventricular functions and myocardial iron load with tissue Doppler and speckle tracking echocardiography and T2 MRI in patients with [beta]-thalassemia major. Echocardiography 2017, 34, 383. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, S.; Wu, G.; Ahmad, M. Echocardiographic assessment of the right ventricle in the current era: Application in clinical practice. Echocardiography 2017, 34, 1930–1947. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular–arterial coupling in cardiac disease and heart failure: Assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur. J. Heart Fail. 2019, 21, 402–424. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.M.; Chai, S.C.M.; Lee, S.G.S.M.; MacDonald, M.R.F.; Leong, K.T.G.F. Prognostic Factors After Index Hospitalization for Heart Failure with Preserved Ejection Fraction. Am. J. Cardiol. 2017, 119, 2017–2020. [Google Scholar] [CrossRef]
- Xie, M.; Li, Y.; Cheng, T.O.; Wang, X.; Dong, N.; Nie, X.; Lu, Q.; Yang, Y.; He, L.; Li, L.; et al. The effect of right ventricular myocardial remodeling on ventricular function as assessed by two-dimensional speckle tracking echocardiography in patients with tetralogy of Fallot: A single center experience from China. Int. J. Cardiol. 2014, 178, 300–307. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhu, S.; Xie, Y.; Wang, B.; He, L.; Zhang, D.; Zhang, Y.; Yuan, H.; Wu, C.; et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients with COVID-19. JACC Cardiovasc. Imaging 2020, 13, 2287–2299. [Google Scholar] [CrossRef]
- Longobardo, L.; Suma, V.; Jain, R.; Carerj, S.; Zito, C.; Zwicke, D.L.; Khandheria, B.K. Role of Two-Dimensional Speckle-Tracking Echocardiography Strain in the Assessment of Right Ventricular Systolic Function and Comparison with Conventional Parameters. J. Am. Soc. Echocardiogr. 2017, 30, 937–946. [Google Scholar] [CrossRef]
- Keramida, K.; Farmakis, D. Right ventricular involvement in cancer therapy-related cardiotoxicity: The emerging role of strain echocardiography. Heart Fail. Rev. 2020, 26, 1189–1193. [Google Scholar] [CrossRef]
- Mast, T.P.; Taha, K.; Cramer, M.J.; Lumens, J.; van der Heijden, J.F.; Bouma, B.J.; van den Berg, M.P.; Asselbergs, F.W.; Doevendans, P.A.; Teske, A.J. The Prognostic Value of Right Ventricular Deformation Imaging in Early Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Cardiovasc. Imaging 2019, 12, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Dod, H.S.; Nanda, A.; Nanda, N.C.; Klas, B.; Singh, S.; Salama, A.Y.; Akdogan, R.E.; Fadala, H.; Abdelsalam, M.G.A.; Ahmed, M.; et al. Usefulness of right ventricular strain assessment in submassive pulmonary thromboembolism undergoing ultrasound-facilitated thrombolysis. Echocardiogr. J. Cardiovasc. Ultrasound Allied Tech. 2019, 36, 1581–1585. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, M.; Ong, G.; Connelly, K.A. Right Ventricle Longitudinal Strain: A New Tool in Functional Tricuspid Regurgitation Prognostication. Can. J. Cardiol. 2021, 37, 945–948. [Google Scholar] [CrossRef] [PubMed]
- Samarai, D.; Ingemansson, S.L.; Gustafsson, R.; Thilen, U.; Hlebowicz, J. Global longitudinal strain correlates to systemic right ventricular function. Cardiovasc. Ultrasound 2020, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Mondillo, S.; Galderisi, M.; Mele, D.; Cameli, M.; Lomoriello, V.S.; Zacà, V.; Ballo, P.; D’Andrea, A.; Muraru, D.; Losi, M.; et al. Speckle-tracking echocardiography: A new technique for assessing myocardial function. J. Ultrasound Med. 2011, 30, 71–83. [Google Scholar] [CrossRef]
- Sengeløv, M.; Jørgensen, P.G.; Jensen, J.S.; Bruun, N.E.; Olsen, F.J.; Fritz-Hansen, T.; Nochioka, K.; Biering-Sørensen, T. Global Longitudinal Strain Is a Superior Predictor of All-Cause Mortality in Heart Failure with Reduced Ejection Fraction. JACC Cardiovasc. Imaging 2015, 8, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- Cameli, M.; Righini, F.M.; Lisi, M.; Mondillo, S. Right ventricular strain as a novel approach to analyze right ventricular performance in patients with heart failure. Heart Fail. Rev. 2013, 19, 603–610. [Google Scholar] [CrossRef]
- Ayach, B.; Fine, N.M.; Rudski, L.G. Right ventricular strain: Measurement and clinical application. Curr. Opin. Cardiol. 2018, 33, 486–492. [Google Scholar] [CrossRef]
- Lundorff, I.J.; Sengelov, M.; Jorgensen, P.G.; Pedersen, S.; Modin, D.; Bruun, N.E.; Fritz-Hansen, T.; Jensen, J.S.; Biering-Sorensen, T. Echocardiographic Predictors of Mortality in Women with Heart Failure with Reduced Ejection Fraction. Circ. Cardiovasc. Imaging 2018, 11, e008031. [Google Scholar] [CrossRef] [Green Version]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Hoit, B.D. Right Ventricular Strain Comes of Age. Circ. Cardiovasc. Imaging 2018, 11, e008382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.A.; Pan, W.X.; Zhu, J. Assessment on right ventricular longitudinal strain and strain rate in prediabetes with two-dimensional speckle tracking imaging. Chin. J. Med. Ultrasound 2018, 15, 48–52. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Haines, P.; Li, M.; Wu, W.; Liu, M.; Chen, Y.; Jin, Q.; Xie, Y.; Wang, J.; et al. Prognostic Value of Right Ventricular Two-Dimensional and Three-Dimensional Speckle-Tracking Strain in Pulmonary Arterial Hypertension: Superiority of Longitudinal Strain over Circumferential and Radial Strain. J. Am. Soc. Echocardiogr. 2020, 33, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Amzulescu, M.S.; De Craene, M.; Langet, H.; Pasquet, A.; Vancraeynest, D.; Pouleur, A.C.; Vanoverschelde, J.L.; Gerber, B.L. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Atsumi, A.; Seo, Y.; Ishizu, T.; Nakamura, A.; Enomoto, Y.; Harimura, Y.; Okazaki, T.; Abe, Y.; Aonuma, K. Right Ventricular Deformation Analyses Using a Three-Dimensional Speckle-Tracking Echocardiographic System Specialized for the Right Ventricle. J. Am. Soc. Echocardiogr. 2016, 29, 402–411. [Google Scholar] [CrossRef]
- Seo, Y.; Ishizu, T.; Atsumi, A.; Kawamura, R.; Aonuma, K. Three-Dimensional Speckle Tracking Echocardiography: A Promising Tool for Cardiac Functional Analysis. Circ. J. Off. J. Jpn. Circ. Soc. 2014, 78, 1290–1301. [Google Scholar] [CrossRef] [Green Version]
- Lv, Q.; Sun, W.; Wang, J.; Wu, C.; Li, H.; Shen, X.; Liang, B.; Dong, N.; Li, Y.; Zhang, L.; et al. Evaluation of biventricular functions in transplanted hearts using 3-dimensional speckle-tracking echocardiography. J. Am. Heart Assoc. 2020, 9, e015742. [Google Scholar] [CrossRef]
- Vitarelli, A.; Mangieri, E.; Terzano, C.; Gaudio, C.; Salsano, F.; Rosato, E.; Capotosto, L.; D’Orazio, S.; Azzano, A.; Truscelli, G.; et al. Three-dimensional echocardiography and 2D-3D speckle-tracking imaging in chronic pulmonary hypertension: Diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure. J. Am. Heart Assoc. 2015, 4, e001584. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Calderon, R.J.C.; Klas, B.; Pedrizzetti, G.; Banerjee, A. Simultaneous Volumetric and Functional Assessment of the Right Ventricle in Hypoplastic Left Heart Syndrome After Fontan Palliation, Utilizing 3-Dimensional Speckle-Tracking Echocardiography. Circ. J. Off. J. Jpn. Circ. Soc. 2020, 84, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, L.; Gao, Y.; Wan, X.; Xiao, Q.; Zhang, Y.; Sun, W.; Xie, Y.; Zeng, Q.; Chen, Y.; et al. Comprehensive Assessment of Right Ventricular Function by Three-Dimensional Speckle-Tracking Echocardiography: Comparisons with Cardiac Magnetic Resonance Imaging. J. Am. Soc. Echocardiogr. 2021, 34, 472–482. [Google Scholar] [CrossRef]
- Li, Y.; Wan, X.; Xiao, Q.; Zhang, Y.; Sun, W.; Xie, Y.; Zeng, Q.; Sun, Z.; Yang, Y.; Wang, J.; et al. Value of 3D Versus 2D Speckle-Tracking Echocardiography for RV Strain Measurement: Validation with Cardiac Magnetic Resonance. JACC Cardiovasc. Imaging 2020, 13, 2056–2058. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Zhang, L.; Xie, Y.; Zhang, Y.; Zhu, S.; Wu, C.; Sun, W.; Li, M.; Gao, Y.; Wang, B.; et al. 3-Dimensional Versus 2-Dimensional Speckle-Tracking Echocardiography for Right Ventricular Myocardial Fibrosis in Patients with End-Stage Heart Failure. JACC Cardiovasc. Imaging 2021, 14, 1309–1320. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.L.; Hu, P.; Finn, J.P. Cardiac Magnetic Resonance Quantification of Structure-Function Relationships in Heart Failure. Heart Fail Clin. 2021, 17, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzalez-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef]
- Cho, D.H.; Yoo, B.S. Current Prevalence, Incidence, and Outcomes of Heart Failure with Preserved Ejection Fraction. Heart Fail. Clin. 2021, 17, 315–326. [Google Scholar] [CrossRef]
- Puwanant, S.; Priester, T.C.; Mookadam, F.; Bruce, C.J.; Redfield, M.M.; Chandrasekaran, K. Right ventricular function in patients with preserved and reduced ejection fraction heart failure. Eur. J. Echocardiogr. 2009, 10, 733–737. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Sun, Y. Research progresses of echocardiography in evaluation of right heart structure and function in heart failure with preserved ejection fraction patients. Chin. J. Med. Imaging Technol. 2020, 36, 614–617. [Google Scholar] [CrossRef]
- Liu, X.Y.; Sun, Y.; Ran, H.T.; Wang, Z.G. Assessment of right ventricular function by two-dimensional speckle tracking echocardiography in heart failure patients with different left ventricular diastolic dysfunction grade. Chin. J. Ultrason. 2020, 29, 564–570. [Google Scholar] [CrossRef]
- Morris, D.A.; Gailani, M.; Perez, A.V.; Blaschke, F.; Dietz, R.; Haverkamp, W.; Oezcelik, C. Right Ventricular Myocardial Systolic and Diastolic Dysfunction in Heart Failure with Normal Left Ventricular Ejection Fraction. J. Am. Soc. Echocardiogr. 2011, 24, 886–897. [Google Scholar] [CrossRef]
- Lejeune, S.; Roy, C.; Ciocea, V.; Slimani, A.; de Meester, C.; Amzulescu, M.; Pasquet, A.; Vancraeynest, D.; Beauloye, C.; Vanoverschelde, J.L.; et al. Right Ventricular Global Longitudinal Strain and Outcomes in Heart Failure with Preserved Ejection Fraction. J. Am. Soc. Echocardiogr. 2020, 33, 973–984. [Google Scholar] [CrossRef]
- Meng, Y.L.; Zhu, S.S.; Xie, Y.J.; Zhang, Y.T.; Qian, M.Z.; Gao, L.; Li, M.; Lin, Y.X.; Wu, W.Q.; Wang, J.; et al. Prognostic Value of Right Ventricular 3D Speckle-Tracking Strain and Ejection Fraction in Patients with HFpEF. Front. Cardiovasc. Med. 2021, 8, 694365. [Google Scholar] [CrossRef] [PubMed]
- Kucukseymen, S.; Arafati, A.; Al-Otaibi, T.; El-Rewaidy, H.; Fahmy, A.S.; Ngo, L.H.; Nezafat, R. Noncontrast Cardiac Magnetic Resonance Imaging Predictors of Heart Failure Hospitalization in Heart Failure with Preserved Ejection Fraction. J. Magn. Reason. Imaging 2021. [Google Scholar] [CrossRef] [PubMed]
- Kammerlander, A.A.; Donà, C.; Nitsche, C.; Koschutnik, M.; Schönbauer, R.; Duca, F.; Zotter-Tufaro, C.; Binder, C.; Aschauer, S.; Beitzke, D.; et al. Feature Tracking of Global Longitudinal Strain by Using Cardiovascular MRI Improves Risk Stratification in Heart Failure with Preserved Ejection Fraction. Radiology 2020, 296, 290–298. [Google Scholar] [CrossRef]
- Motoki, H.; Borowski, A.G.; Shrestha, K.; Hu, B.; Kusunose, K.; Troughton, R.W.; Tang, W.H.W.; Klein, A.L. Right ventricular global longitudinal strain provides prognostic value incremental to left ventricular ejection fraction in patients with heart failure. J. Am. Soc. Echocardiogr. 2014, 27, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, E.; Biagioli, P.; Lauciello, R.; Zuchi, C.; Mengoni, A.; Bardelli, G.; Alunni, G.; Gronda, E.G.; Ambrosio, G. Superior Prognostic Value of Right Ventricular Free Wall Compared to Global Longitudinal Strain in Patients with Heart Failure. J. Am. Soc. Echocardiogr. 2019, 32, 836–844. [Google Scholar] [CrossRef]
- Cameli, M.; Bernazzali, S.; Lisi, M.; Tsioulpas, C.; Croccia, M.G.; Lisi, G.; Maccherini, M.; Mondillo, S. Right Ventricular Longitudinal Strain and Right Ventricular Stroke Work Index in Patients with Severe Heart Failure: Left Ventricular Assist Device Suitability for Transplant Candidates. Transplant. Proc. 2012, 44, 2013–2015. [Google Scholar] [CrossRef] [PubMed]
- Houard, L.; Militaru, S.; Tanaka, K.; Pasquet, A.; Vancraeynest, D.; Vanoverschelde, J.L.; Pouleur, A.C.; Gerber, B.L. Test-retest reliability of left and right ventricular systolic function by new and conventional echocardiographic and cardiac magnetic resonance parameters. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 1157–1167. [Google Scholar] [CrossRef]
- Mercer-Rosa, L.; Parnell, A.; Forfia, P.R.; Yang, W.; Goldmuntz, E.; Kawut, S.M. Tricuspid annular plane systolic excursion in the assessment of right ventricular function in children and adolescents after repair of tetralogy of Fallot. J. Am. Soc. Echocardiogr. 2013, 26, 1322–1329. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.A.; Krisper, M.; Nakatani, S.; Koehncke, C.; Otsuji, Y.; Belyavskiy, E.; Krishnan, A.K.R.; Kropf, M.; Osmanoglou, E.; Boldt, L.-H.; et al. Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: A multicentre study. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Hamada-Harimura, Y.; Seo, Y.; Ishizu, T.; Nishi, I.; Machino-Ohtsuka, T.; Yamamoto, M.; Sugano, A.; Sato, K.; Sai, S.; Obara, K.; et al. Incremental Prognostic Value of Right Ventricular Strain in Patients with Acute Decompensated Heart Failure. Circ. Cardiovasc. Imaging 2018, 11, e007249. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Zhu, J.J.; Zhu, P.; Hu, B.; Tan, T.T.; Song, H.N.; Zhou, Q.Q. Assessment of the right ventricular systolic function after acute right ventricular myocardial infarction in association with left ventricular inferior myocardial infarction by two-dimensional speckle tracking echocardiography. Chin. J. Ultrason. 2015, 24, 936–941. [Google Scholar] [CrossRef]
- Borovac, J.A.; Glavas, D.; Grabovac, Z.S.; Domic, D.S.; Stanisic, L.; D’Amario, D.; Duplancic, D.; Bozic, J. Right Ventricular Free Wall Strain and Congestive Hepatopathy in Patients with Acute Worsening of Chronic Heart Failure: A CATSTAT-HF Echo Substudy. J. Clin. Med. 2020, 9, 1317. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Park, J.J.; Park, J.B.; Cho, G.Y. Prognostic value of biventricular strain in risk stratifying in patients with acute heart failure. J. Am. Heart Assoc. 2018, 7, e009331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arenja, N.; Riffel, J.H.; Halder, M.; Djiokou, C.N.; Fritz, T.; Andre, F.; Aus dem Siepen, F.; Zelniker, T.; Meder, B.; Kayvanpour, E.; et al. The prognostic value of right ventricular long axis strain in non-ischaemic dilated cardiomyopathies using standard cardiac magnetic resonance imaging. Eur. Radiol. 2017, 27, 3913–3923. [Google Scholar] [CrossRef]
- Venner, C.; Selton-Suty, C.; Huttin, O.; Erpelding, M.L.; Aliot, E.; Juillière, Y. Right ventricular dysfunction in patients with idiopathic dilated cardiomyopathy: Prognostic value and predictive factors. Arch. Cardiovasc. Dis. 2016, 109, 231–241. [Google Scholar] [CrossRef]
- Kawata, T.; Daimon, M.; Kimura, K.; Nakao, T.; Lee, S.L.; Hirokawa, M.; Kato, T.S.; Watanabe, M.; Yatomi, Y.; Komuro, I. Echocardiographic assessment of right ventricular function in routine practice: Which parameters are useful to predict one-year outcome in advanced heart failure patients with dilated cardiomyopathy? J. Cardiol. 2017, 70, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Vîjîiac, A.; Onciul, S.; Guzu, C.; Verinceanu, V.; Bătăilă, V.; Deaconu, S.; Scărlătescu, A.; Zamfir, D.; Petre, I.; Onuţ, R.; et al. The prognostic value of right ventricular longitudinal strain and 3D ejection fraction in patients with dilated cardiomyopathy. Int. J. Cardiovasc. Imaging 2021, 37, 3233–3244. [Google Scholar] [CrossRef]
- Ishiwata, J.; Daimon, M.; Nakanishi, K.; Sugimoto, T.; Kawata, T.; Shinozaki, T.; Nakao, T.; Hirokawa, M.; Sawada, N.; Yoshida, Y.; et al. Combined evaluation of right ventricular function using echocardiography in non-ischaemic dilated cardiomyopathy. ESC Heart Fail. 2021, 8, 3947–3956. [Google Scholar] [CrossRef]
- Liu, T.; Gao, Y.; Wang, H.; Zhou, Z.; Wang, R.; Chang, S.S.; Liu, Y.; Sun, Y.; Rui, H.; Yang, G.; et al. Association between right ventricular strain and outcomes in patients with dilated cardiomyopathy. Heart 2020, 107, 1233–1239. [Google Scholar] [CrossRef]
- Cordero-Reyes, A.M.; Youker, K.; Estep, J.D.; Torre-Amione, G.; Nagueh, S.F. Molecular and Cellular Correlates of Cardiac Function in End-Stage DCM A Study Using Speckle Tracking Echocardiography. JACC Cardiovasc. Imaging 2014, 7, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Lisi, M.; Cameli, M.; Righini, F.M.; Malandrino, A.; Tacchini, D.; Focardi, M.; Tsioulpas, C.; Bemazzali, S.; Tanganelli, P.; Maccherini, M.; et al. RV Longitudinal Deformation Correlates with Myocardial Fibrosis in Patients with End-Stage Heart Failure. JACC Cardiovasc. Imaging 2015, 8, 514–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, F.Y.; Li, Y.M.; Zhang, Y.T.; Gu, Y.; Zhang, B.; Xie, M.X. The relationship between three-dimensional right ventricular longitudinal deformation and myocardial fibrosis in patients with end-stage heart failure. Chin. J. Ultrason. 2021, 30, 376–381. [Google Scholar] [CrossRef]
- Gumus, F.; Saricaoglu, C.; Inan, M.B.; Akar, A.R. Right Ventricular Strain to Assess Early Right Heart Failure in the Left Ventricular Assist Device Candidate. Curr. Heart Fail. Rep. 2019, 16, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Magunia, H.; Dietrich, C.; Langer, H.F.; Schibilsky, D.; Schlensak, C.; Rosenberger, P.; Nowak-Machen, M. 3D echocardiography derived right ventricular function is associated with right ventricular failure and mid-term survival after left ventricular assist device implantation. Int. J. Cardiol. 2018, 272, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, D.; Iacovoni, A.; Agnese, V.; Falletta, C.; Coronnello, C.; Pasta, S.; Novo, G.; di Gesaro, G.; Senni, M.; Maalouf, J.; et al. Usefulness of regional right ventricular and right atrial strain for prediction of early and late right ventricular failure following a left ventricular assist device implant: A machine learning approach. Int. J. Artif. Organs 2020, 43, 297–314. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, B. Echocardiography in evaluating effect of left ventricular assist devices on perioperative right ventricular function. Chin. J. Med. Imaging Technol. 2020, 36, 1571–1574. [Google Scholar] [CrossRef]
- Grant, A.D.; Smedira, N.G.; Starling, R.C.; Marwick, T.H. Independent and Incremental Role of Quantitative Right Ventricular Evaluation for the Prediction of Right Ventricular Failure After Left Ventricular Assist Device Implantation. J. Am. Coll. Cardiol. 2012, 60, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Cameli, M.; Lisi, M.; Righini, F.M.; Focardi, M.; Lunghetti, S.; Bernazzali, S.; Marchetti, L.; Biagioli, B.; Galderisi, M.; Maccherini, M.; et al. Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy. J. Heart Lung Transplant. 2013, 32, 424–430. [Google Scholar] [CrossRef]
- Bellavia, D.; Iacovoni, A.; Scardulla, C.; Moja, L.; Pilato, M.; Kushwaha, S.S.; Senni, M.; Clemenza, F.; Agnese, V.; Falletta, C.; et al. Prediction of right ventricular failure after ventricular assist device implant: Systematic review and meta-analysis of observational studies. Eur. J. Heart Fail. 2017, 19, 926–946. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, C.; Ahmad, S.; Pappachan, J.; Khambekar, S.; Smith, T.; Gardiner, D.; Shambrook, J.; Baskar, S.; Moore, R.; Veldtman, G. Right ventricular contractile reserve in tetralogy of Fallot patients with pulmonary regurgitation. Congenit. Heart Dis. 2018, 13, 288–294. [Google Scholar] [CrossRef]
- Guo, D.C.; Li, Y.D.; Yang, Y.H.; Zhu, W.W.; Sun, L.L.; Jiang, W.; Ye, X.G.; Cai, Q.Z.; Lu, X.Z. Influence of impaired right ventricular contractile reserve on exercise capacity in patients with precapillary pulmonary hypertension: A study with exercise stress echocardiography. Echocardiography 2019, 36, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Grünig, E.; Eichstaedt, C.A.; Seeger, R.; Benjamin, N. Right Heart Size and Right Ventricular Reserve in Pulmonary Hypertension: Impact on Management and Prognosis. Diagnostics 2020, 10, 1110. [Google Scholar] [CrossRef] [PubMed]
- Gorcsan, J., III; Murali, S.; Counihan, P.J.; Mandarino, W.A.; Kormos, R.L. Right ventricular performance and contractile reserve in patients with severe heart failure. Assessment by pressure-area relations and association with outcome. Circulation 1996, 94, 3190–3197. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Inoue, K.; Higashi, H.; Akazawa, Y.; Sasaki, Y.; Fujii, A.; Uetani, T.; Inaba, S.; Aono, J.; Nagai, T.; et al. Impact of right ventricular contractile reserve during low-load exercise on exercise intolerance in heart failure. ESC Heart Fail. 2020, 7, 3810–3820. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Morais, L.; Pereira-da-Silva, T.; Branco, L.; Timóteo, A.T.; Agapito, A.; de Sousa, L.; Oliveira, J.A.; Thomas, B.; Jalles-Tavares, N.; Soares, R.; et al. The value of right ventricular longitudinal strain in the evaluation of adult patients with repaired tetralogy of Fallot: A new tool for a contemporary challenge. Cardiol. Young 2017, 27, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Timóteo, A.T.; Branco, L.M.; Rosa, S.A.; Galrinho, A.; Sousa, L.; Oliveira, J.A.; Pinto, M.F.; Agapito, A.F.; Ferreira, R.C. Longitudinal strain by two-dimensional speckle tracking to assess ventricular function in adults with transposition of the great arteries: Can serial assessment be simplified? Rev. Port. Cardiol. 2018, 37, 739–745. [Google Scholar] [CrossRef]
- Steinmetz, M.; Broder, M.; Hösch, O.; Lamata, P.; Kutty, S.; Kowallick, J.T.; Staab, W.; Ritter, C.O.; Hasenfuß, G.; Paul, T.; et al. Atrio-ventricular deformation and heart failure in Ebstein’s Anomaly—A cardiovascular magnetic resonance study. Int. J. Cardiol. 2018, 257, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Negishi, K.; Negishi, T.; Hare, J.L.; Haluska, B.A.; Plana, J.C.; Marwick, T.H. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J. Am. Soc. Echocardiogr. 2013, 26, 493–498. [Google Scholar] [CrossRef]
- Wang, B.; Yu, Y.; Zhang, Y.; Hao, X.; Yang, S.; Zhao, H.; Sun, Q.; Wang, Y. Right ventricular dysfunction in patients with diffuse large B-cell lymphoma undergoing anthracycline-based chemotherapy: A 2D strain and 3D echocardiography study. Int. J. Cardiovasc. Imaging 2021, 37, 1311–1319. [Google Scholar] [CrossRef]
- Keramida, K.; Farmakis, D.; Bingcang, J.; Sulemane, S.; Sutherland, S.; Bingcang, R.A.; Ramachandran, K.; Tzavara, C.; Charalampopoulos, G.; Filippiadis, D.; et al. Longitudinal changes of right ventricular deformation mechanics during trastuzumab therapy in breast cancer patients. Eur. J. Heart Fail. 2019, 21, 529–535. [Google Scholar] [CrossRef]
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Liu et al. [78] | 86 | Retrospective |
2D-STE-RVLSbas:
2D-STE-RVLmid: 2D-STE-RVLSapi: | Qlab 8.1 | Philips Epiq 7C | |||
Morris et al. [79] | 201 | Retrospective | 59 ± 7.2 |
2D-STE-RVGLS:
| EchoPac 6.1 | Vivid-7 (GE Healthcare, Horten, Norway) | ||
Lejeune et al. [80] | 149 | Prospective |
2D-STE-RVGLS:
|
2D-STE-RVFWLS:
| TomTec Imaging Systems, Unterschleissheim, Germany | Vivid-7 (GE Healthcare, Horten, Norway) | ||
Meng et al. [81] | 81 | 61 ± 12 a 61 ± 13 b | Prospective | 66 ± 5 a 64 ± 4 b | 2D- STE-RVFWLS: −21 ± 3 a −20 ± 4 b 3D- STE-RVFWLS: −25 ± 5 a −23 ± 4 b | 2D Cardiac Performance Analysis 1.2; TOMTEC Imaging Systems GmbH, Unterschleissheim, Germany | Philips iE33; Philips Medical Systems, Andover, MA, USA | |
Kucukseymen et al. [82] | 203 | 64 ± 12 | Retrospective | 61 ± 8 a 59 ± 6 b | CMR-FT--RVFWLS: −19.6 ± 4.4 a −14.6 ± 4.6 b | cvi42; v5.11, Circle Cardiovascular Imaging, Calgary, AB, Canada | 1.5T scanner (Phillips Achieva, Best, The Netherlands) | |
Kammerlander et al. [83] | 206 | 71 ± 8 | 68 ± 10 c 59 ± 10 d | CMR-FT--RVGLS: −11.8 ± 2.2 c −4.6 ± 3.2 d | cmr42; Circle Cardiovascular Imaging, Calgary, AB, Canada | 1.5-T system (Avanto FIT; Siemens Medi-cal Solutions, Erlangen, Germany) |
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Houard et al. [13] | 266 | 60 ± 14 | Retrospective | 23 ± 7 | 2D-STE-RVGLS: −18.0 ± 4.9 CMR-FT-RVGLS: −11.8 ± 4.3 | 2D-STE-RVFWLS: −18.7 ± 6.6 | 4.6 version; TOMTEC Imaging Systems, Unters chleißheim, Germany Segment version 2.2 (Medviso, Lund, Sweden) | Sonus 7500 or iE33 ultrasound systems (Philips Medical Systems, And over, Massachusetts 1.5-T or 3.0-T systems (Intera CV and Achieva, Philips Medical Systems, Best, The Netherlands |
Iacoviello et al. [14] | 332 | 64 ± 14 | Prospective | 33 ± 9 | 2D-STE-RVGLS: −14.6 ± 4.6 | 2D-STE-RVFWLS: −21.5 ± 6.2 | Echo- PAC PC version; GE Vingmed Ultra-sound | Vivid 7 (GE Vingmed Ultrasound, General Electric, Milwaukee, WI, USA) |
Motoki et al. [84] | 171 | 57 ± 14 | Retrospective | 25 ± 6 | 2D-STE-RVGLS: −12.4 ± 5.5 a −10.5 ± 5.1 b | Velocity Vector Imaging [VVI]; Siemens Medical Solutions USA, Inc. | Acuson Sequoia (Siemens Medical Solutions USA, Inc., Malvern, PA, USA) | |
Carluccio et al. [85] | 288 | 66 ± 11 | Prospective | Median [interquartile range]): 30(25−35) | 2D-STE-RVGLS (median [interquartile range]): −15.1[−17.9; −10.8] a −11.3[−15.1; −8.2] b | 2D-STE-RVFWLS (median [interquartile range]): −20.2[−24.3; −15.6] a −15.0[−20.0; −11.0] b | EchoPac 113, General Electric-Vingmed | Vivid 7, Vivid S6, General Electric-Vingmed, Horton, Norway |
Cameli et al. [86] | 47 | 57.4 ± 8.1 c 57.8 ± 7.8 d | Cross-sectional | 25.2 ± 4.5 c 24.9 ± 4.7 d | 2D-STE-RVGLS: −18.1 ± 2.1 c −10.9 ± 1.8 d | 2D-STE-RVFWLS: −20.9 ± 2.8 c −10.6 ± 1.9 d | EchoPac, GE, Milwaukee, WI, USA | |
Houard et al. [87] | 20 | 63 ± 17 | Prospective | 33 ± 8 | 2D-STE-RVGLS: −19 ± 4 CMR-FT-RVGLS: −11 ± 6 | 2D-STE-RVFWLS: −21 ± 6 | Tomtec Software (4.6. Version; Tomtec Imaging Systems, Germany) CVI-42 software (Circle CV, Montreal, QC, Canada). | Philips EPIQ 7 ultrasound system (Philips Medical. Systems, Andover, MA, USA) 3T scanner (Achieva, Philips Medical Systems, Best, The Netherlands). |
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Morris et al. [89] | 218 a 208 b | 72.0 ± 10.5 a 67.4 ± 14.1 b | Prospective | 61.9 ± 6.1 a 35.4 ± 9.6 b | 2D-STE-RVGLS: −20.7 ± 4.0 a −15.3 ± 4.7 b | 2D-STE-RVFWLS: −24.6 ± 5.1 a −19.0 ± 5.8 b | Echo-Pac 113, GE | Vivid 7 or E9 (GE Healthcare) |
Carluccio et al. [24] | 200 | 66 ± 11 | Prospective | 30 ± 7 | 2D-STE-RVFWLS: −20.9 ± 5.9 c −16.7 ± 5.6 d | EchoPac 112.1.5; General Electric-Vingmed | (Vivid 7, Vivid S6; General Electric Vingmed, Horton, Norway |
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Hamada-Harimura et al. [90] | 618 | 72 ± 13 | Prospective | 46 ± 16 | 2D-STE-RVGLS: −11.9 ± 5.1 a −11.0 ± 5.1 b | 2D-STE-RVFWLS: −15.5 ± 5.8 a −13.5 ± 5.9 b | TomTec Imaging System, Munich, Ger-many | GE Healthcare (Milwaukee, WI), Philips (Andover), or Toshiba Medical Systems (Tochigi, Japan). |
Yao et al. [91] | 38 | 61 ± 10 c 58 ± 10 d | Prospective | 44.5 ± 9.7 c 46.7 ± 11.5 d | 2D-STE-RVGLS: −10.5 ± 4.2 c −14.1 ± 5.1 d | RVFWLSapi: −12.0 ± 8.5 c −20.1 ± 5.9 d 2D-STE-RVFWLSmid: −10.8 ± 5.1 c −17.0 ± 5.6 d 2D-STE-RVFWLSbas: −9.7 ± 7.3 c −13.5 ± 5.6 d | GE EchoPac, version 113 | GE Vivid q |
Borovac et al. [92] | 42 | Median [inter-quartile range]): 71.5(62−76) | Cross-sectional | 39.1 ± 16.0 | 2D-STE-RVFWLS: −11.6 ± 2.8 e −21.3 ± 3.7 f | EchoPac PC, version 112; GE Medical Systems, Milwaukee, WI, USA | VividTM 9 ultrasound system (GE Medical Systems, Milwaukee, WI, USA) | |
Park et al. [93] | 1824 | 70.4 ± 13.8 | Retrospective | 39.3 ±15.2 | 2D-STE-RVGLS: Group 1 (LVGLS ≥ 9% and RVGLS ≥ 12%): −17.6 ± 4.7 Group 2 (LVGLS ≥ 9% and RVGLS < 12%): −8.2 ± 2.6 Group 3 (LVGLS < 9% and RVGLS ≥ 12%): −15.8 ± 3.6 Group 4 (LVGLS < 9% and RVGLS < 12%) −6.6 ± 2.9 | TomTec (Image Arena 4.6) | commercial echocardio-graphic machines |
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Vîjîiac et al. [97] | 50 | 61 ± 14 | Prospective | 25 ± 7 | 2D-STE-RVGLS: −14.30 ± 5.20 a −10.50 ± 4.50 b | 2D-STE-RVFWLS: −17.50 ± 7.10 a −12.90 ± 8.70 b | EchoPAC—Q Analysis package | Vivid E9 (GE Vingmed, Horten, Norway) |
Ishiwata et al. [98] | 109 | 44 ± 14 | Retrospective | 23.8 ± 7.3 a 18.9 ± 7.5 b | 2D-STE-RVGLS (median [inter-quartile range]): −13.8[−21.1; −10.8] a −9.9[−14.5; −7.0] b | 2D Strain Analy-sis; TOMTEC Imaging System, Unterschleissheim, Germany | ||
Liu et al. [99] | 192 | 53 ± 14 | Prospective | 22.37 ± 9.75 | CMR-FT-RVpGLS: −10.49 ± 5.16 | CVI42 software (Version 5.6.3 Circle Cardiovascu-lar Imaging, Calgary, AB, Canada) | 3.0T scanner (Magnetom Verio; Siemens AG Healthcare, Erlangen, Germany or MR750W, General Electric Healthcare, Waukesha, WI, USA) |
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Cordero-Reyes et al. [100] | 20 | 53 ± 13 | Cross-sectional | 30.0 ± 3.5 | 2D-STE-RVFWLS (median [inter-quartile range]): −5.6[−7.6; −2.8] | syngo Velocity Vector Imaging, Siemens Healthcare, Malvern, Pennsylvania | ||
Lisi et al. [101] | 27 | 53.7 ± 4.6 | Cross-sectional | 22.3 ± 2.4 | 2D-STE-RVFWLS: −15.3 ± 4.7 | EchoPac, GE, Waukesha, WI, USA | Vivid 7, GE Medical System echo-cardiograph (Horten, Norway) | |
Tian et al. [102] | 102 | 44.41 ± 13.51 a 43.91 ± 17.49 b 44.65 ± 17.02 c | Cross-sectional | 26.24 ± 6.92 a 23.82 ± 6.14 b 23.92 ± 4.72 c | 2D-STE-RVFWLS: −14.32 ± 3.57 a −12.84 ± 3.69 b −9.78 ± 3.03 c 3D-STE-RVFWLS: −13.93 ± 2.67 a −12.33 ± 3.17 b −8.27 ± 3.10 c | TomTec | Philips Epiq 7C |
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Dufendach et al. [15] | 137 | median [inter-quartilerange]: 59.5[52; 56] a 55[45; 63] b | Retrospective | 2D-STE-RVGLS (median [inter-quartilerange]): −7.315[−10.45; −4.51] a −6.200[−8.44; −3.70] b | 2D-STE-RVFWLS (median [inter-quartile range]): −7.835[−11.27; −4.77] a −5.490[−8.60; −4.17] b | TomTec | ||
Grant et al. [107] | 117 | median [inter-quartile range]: 58[47.5; 65] | Retrospective | median [inter-quartile range]: 15[10; 20] a 15[10; 25] b | 2D-STE-RVFWLS: (median [inter-quartile range]): −12.2[−14.9; −9.5] a −9.0[−11.4; −7.3] b | Velocity Vector Imag-ing, Siemens AG, Erlangen, Germany | ||
Cameli et al. [108] | 10 | 66.4 ± 5.1 a 65.8 ± 4.8 b | Retrospective | 25.2 ± 4.5 a 24.9 ± 4.7 b | 2D-STE-RVGLS: −14.1 ± 2.1 a −8.9 ± 1.8 b | 2D-STE-RVFWLS: −15.5 ± 3.6 a −9.2 ± 1.9 b | EchoPac, General Electric Healthcare | Vivid 7, GE Vingmed, Horten, Norway |
Magunia et al. [104] | 26 | 64 ± 13 a 58 ± 30 b | Retrospective | ≤20 (95.2%) a, 21−30(4.8%) a ≤20(100%) b | 3D-STE-RVFWLS: −13.2 ± 4.7 a median [inter-quartile range]): −6[−8.8; −4.3] b | Tomtec Image Arena and Tomtec 2D Cardiac Performance Analysis, Tomtec Imaging Systems GmbH, Unterschleissheim, Germany | Philips iE33-system, X7-2t Matrix probe, Philips Healthcare Inc., Andover, MA, USA |
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Almeida-Morais et al. [115] | 42 | 32 ± 8 | Prospective | 58 ± 8 | 2D-STE-RVGLS: −16.2 ± 3.7 | EchoPAC Program; GE Healthcare | Vivid-E9 (GE HealthcareTechnology, General Electric Vingmed Ultrasound, Horten, Norway) | |
Timóteo et al. [116] | 26 | 30 ± 9 | Retrospective | 2D-STE-RVGLS (median [inter-quartile range]): −13.0[−15.2; −9.4] a −20.9[−23.6; −18.9] b | 2D-STE-RVFWLS (median [inter-quartile range]): −13.2[−14.3; −10.5] a −21.8[−25.3; −17.9] b | EchoPACTM, GE Healthcare | Vivid 7TM and Vivid 9TM, GE Healthcare | |
Steinmetz et al. [117] | 30 | mean: 26.3 | Prospective | CMR-FT-RVGLS: −13.48 ± 6.26 | TomTec Imaging Systems, 2D CPA MR, Cardiac Performance Analysis, Version 1.1.2.36, Unterschleissheim, Germany | 1.5 Tesla MRT-“Symphony“ -scanner (Siemens Medical Systems, Erlangen, Germany |
Reference | Sample Size | Age (Years), Mean ± SD | Study Design | LVEF (%) | RVGLS (%) | RVFWLS (%) | Software | Device |
---|---|---|---|---|---|---|---|---|
Wang et al. [119] | 61 | 50.8 ± 12.1 | Prospective | 61.4 ± 4.8 a 59.3 ± 4.3 b 57.5 ± 5.7 c 55.2 ± 4.2d | 2D-STE-RVGLS: −22.5 ± 3.6 a −20.8 ± 3.2 b −20.2 ± 3.3 c −19.8 ± 3.5 d | 2D-STE-RVFWLS: −25.8 ± 3.8 a −25.1 ± 3.5 b −23.8 ± 3.6 c −23.2 ± 3.4 d | QLAB version8.1; Philips Medical System | iE33 scanner from Philips (Bothell, WA, USA) |
Keramida et al. [120] | 101 | 54.3 ± 11.4 | Retrospective | 61.8 ± 4.1 a 59.6 ± 5.0 e 59.2 ± 6.2 f 58.4±5.7 g 60.0 ± 6.7 h | 2D-STE-RVGLS: −21.3 ± 4.5 a −20.7 ± 4.2 e −19.6 ± 5.2 f −20.1 ± 4.0 g −20.1 ± 3.9 h | 2D-STE-RVFWLS: −21.4 ± 4.4 a −20.9 ± 4.6 e −19.7 ± 5.6 f −20.6 ± 4.3 g −20.5 ± 4.5 h | TomTec Imaging Systems, Unterschleissheim, Germany | GE Vivid E9; and Philips iE33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, M.; Wu, W.; He, L.; Gao, L.; Zhang, Y.; Lin, Y.; Qian, M.; Wang, J.; Zhang, L.; Xie, M.; et al. Right Ventricular Longitudinal Strain in Patients with Heart Failure. Diagnostics 2022, 12, 445. https://doi.org/10.3390/diagnostics12020445
Ji M, Wu W, He L, Gao L, Zhang Y, Lin Y, Qian M, Wang J, Zhang L, Xie M, et al. Right Ventricular Longitudinal Strain in Patients with Heart Failure. Diagnostics. 2022; 12(2):445. https://doi.org/10.3390/diagnostics12020445
Chicago/Turabian StyleJi, Mengmeng, Wenqian Wu, Lin He, Lang Gao, Yanting Zhang, Yixia Lin, Mingzhu Qian, Jing Wang, Li Zhang, Mingxing Xie, and et al. 2022. "Right Ventricular Longitudinal Strain in Patients with Heart Failure" Diagnostics 12, no. 2: 445. https://doi.org/10.3390/diagnostics12020445
APA StyleJi, M., Wu, W., He, L., Gao, L., Zhang, Y., Lin, Y., Qian, M., Wang, J., Zhang, L., Xie, M., & Li, Y. (2022). Right Ventricular Longitudinal Strain in Patients with Heart Failure. Diagnostics, 12(2), 445. https://doi.org/10.3390/diagnostics12020445