Assessment of Enhancement Kinetics Improves the Specificity of Abbreviated Breast MRI: Performance in an Enriched Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Breast MRI Acquisition
2.3. Morphological Analysis
2.4. Kinetic Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient and Lesion Characteristics
3.2. Receiver Operating Characteristics Curve Analysis of Parameters for Differentiating Benign and Malignant Breast Lesions
3.3. Optimal Cutoff Values of the Parameters
3.4. Diagnostic Performance of the Combined Morphology and Kinetic Information Compared to Morphological Analysis Alone
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakker, M.F.; de Lange, S.V.; Pijnappel, R.M.; Mann, R.M.; Peeters, P.H.M.; Monninkhof, E.M.; Emaus, M.J.; Loo, C.E.; Bisschops, R.H.C.; Lobbes, M.B.I.; et al. Supplemental MRI Screening for Women with Extremely Dense Breast Tissue. N. Engl. J. Med. 2019, 381, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.; Han, W.; Han, B.K.; Bae, M.S.; Ko, E.S.; Nam, S.J.; Chae, E.Y.; Lee, J.W.; Kim, S.H.; Kang, B.J.; et al. Breast Cancer Screening with Mammography Plus Ultrasonography or Magnetic Resonance Imaging in Women 50 Years or Younger at Diagnosis and Treated with Breast Conservation Therapy. JAMA Oncol. 2017, 3, 1495–1502. [Google Scholar] [CrossRef]
- Kriege, M.; Brekelmans, C.T.; Boetes, C.; Besnard, P.E.; Zonderland, H.M.; Obdeijn, I.M.; Manoliu, R.A.; Kok, T.; Peterse, H.; Tilanus-Linthorst, M.M.; et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N. Engl. J. Med. 2004, 351, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Cho, N.; Moy, L. Breast MRI: State of the Art. Radiology 2019, 292, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Korthauer, A.; Baum, F.; Luftner-Nagel, S.; Heyden, D.; Marten-Engelke, K. Short first-pass MRI of the breast. Acta Radiol. 2012, 53, 267–269. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Schrading, S.; Strobel, K.; Schild, H.H.; Hilgers, R.D.; Bieling, H.B. Abbreviated breast magnetic resonance imaging (MRI): First postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J. Clin. Oncol. 2014, 32, 2304–2310. [Google Scholar] [CrossRef]
- Park, K.W.; Han, S.B.; Han, B.K.; Ko, E.S.; Choi, J.S.; Rhee, S.J.; Ko, E.Y. MRI surveillance for women with a personal history of breast cancer: Comparison between abbreviated and full diagnostic protocol. Br. J. Radiol. 2020, 93, 20190733. [Google Scholar] [CrossRef]
- Kwon, M.R.; Ko, E.Y.; Han, B.K.; Ko, E.S.; Choi, J.S.; Park, K.W. Diagnostic performance of abbreviated breast MRI for screening of women with previously treated breast cancer. Medicine 2020, 99, e19676. [Google Scholar] [CrossRef]
- Moschetta, M.; Telegrafo, M.; Rella, L.; Stabile Ianora, A.A.; Angelelli, G. Abbreviated Combined MR Protocol: A New Faster Strategy for Characterizing Breast Lesions. Clin. Breast Cancer 2016, 16, 207–211. [Google Scholar] [CrossRef]
- Heacock, L.; Melsaether, A.N.; Heller, S.L.; Gao, Y.; Pysarenko, K.M.; Babb, J.S.; Kim, S.G.; Moy, L. Evaluation of a known breast cancer using an abbreviated breast MRI protocol: Correlation of imaging characteristics and pathology with lesion detection and conspicuity. Eur. J. Radiol. 2016, 85, 815–823. [Google Scholar] [CrossRef]
- Harvey, S.C.; Di Carlo, P.A.; Lee, B.; Obadina, E.; Sippo, D.; Mullen, L. An Abbreviated Protocol for High-Risk Screening Breast MRI Saves Time and Resources. J. Am. Coll. Radiol. 2016, 13, R74–R80. [Google Scholar] [CrossRef]
- Mango, V.L.; Morris, E.A.; David Dershaw, D.; Abramson, A.; Fry, C.; Moskowitz, C.S.; Hughes, M.; Kaplan, J.; Jochelson, M.S. Abbreviated protocol for breast MRI: Are multiple sequences needed for cancer detection? Eur. J. Radiol. 2015, 84, 65–70. [Google Scholar] [CrossRef]
- Grimm, L.J.; Soo, M.S.; Yoon, S.; Kim, C.; Ghate, S.V.; Johnson, K.S. Abbreviated screening protocol for breast MRI: A feasibility study. Acad. Radiol. 2015, 22, 1157–1162. [Google Scholar] [CrossRef]
- Kim, E.S.; Cho, N.; Kim, S.Y.; Kwon, B.R.; Yi, A.; Ha, S.M.; Lee, S.H.; Chang, J.M.; Moon, W.K. Comparison of Abbreviated MRI and Full Diagnostic MRI in Distinguishing between Benign and Malignant Lesions Detected by Breast MRI: A Multireader Study. Korean J. Radiol. 2021, 22, 297–307. [Google Scholar] [CrossRef]
- Baxter, G.C.; Selamoglu, A.; Mackay, J.W.; Bond, S.; Gray, E.; Gilbert, F.J. A meta-analysis comparing the diagnostic performance of abbreviated MRI and a full diagnostic protocol in breast cancer. Clin. Radiol. 2021, 76, 154.e23–154.e32. [Google Scholar] [CrossRef]
- Kim, S.Y.; Cho, N.; Hong, H.; Lee, Y.; Yoen, H.; Kim, Y.S.; Park, A.R.; Ha, S.M.; Lee, S.H.; Chang, J.M.; et al. Abbreviated Screening MRI for Women with a History of Breast Cancer: Comparison with Full-Protocol Breast MRI. Radiology 2022, 305, 36–45. [Google Scholar] [CrossRef]
- Szabó, B.K.; Aspelin, P.; Wiberg, M.K.; Boné, B. Dynamic MR imaging of the breast. Analysis of kinetic and morphologic diagnostic criteria. Acta Radiol. 2003, 44, 379–386. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Mielcareck, P.; Klaschik, S.; Leutner, C.; Wardelmann, E.; Gieseke, J.; Schild, H.H. Dynamic breast MR imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 1999, 211, 101–110. [Google Scholar] [CrossRef]
- Kuhl, C. The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 2007, 244, 356–378. [Google Scholar] [CrossRef]
- Heacock, L.; Lewin, A.A.; Gao, Y.; Babb, J.S.; Heller, S.L.; Melsaether, A.N.; Bagadiya, N.; Kim, S.G.; Moy, L. Feasibility analysis of early temporal kinetics as a surrogate marker for breast tumor type, grade, and aggressiveness. J. Magn. Reson. Imaging 2018, 47, 1692–1700. [Google Scholar] [CrossRef]
- Gao, Y.; Heller, S.L. Abbreviated and Ultrafast Breast MRI in Clinical Practice. Radiographics 2020, 40, 1507–1527. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Cho, N.; Choi, Y.; Shin, S.U.; Kim, E.S.; Lee, S.H.; Chang, J.M.; Moon, W.K. Ultrafast Dynamic Contrast-Enhanced Breast MRI: Lesion Conspicuity and Size Assessment according to Background Parenchymal Enhancement. Korean J. Radiol. 2020, 21, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, T.; Kasami, M.; Watanabe, J. Background enhancement of mammary glandular tissue on breast dynamic MRI: Imaging features and effect on assessment of breast cancer extent. Breast Cancer 2012, 19, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Comstock, C.E.; Kuhl, C. Abbreviated MRI of the Breast: A Practical Guide; Georg Thieme Verlag KG: Stuttgart, Germany, 2018. [Google Scholar]
- Keyzer-Dekker, C.M.; De Vries, J.; van Esch, L.; Ernst, M.F.; Nieuwenhuijzen, G.A.; Roukema, J.A.; van der Steeg, A.F. Anxiety after an abnormal screening mammogram is a serious problem. Breast 2012, 21, 83–88. [Google Scholar] [CrossRef] [PubMed]
- van der Steeg, A.F.; Keyzer-Dekker, C.M.; De Vries, J.; Roukema, J.A. Effect of abnormal screening mammogram on quality of life. Br. J. Surg. 2011, 98, 537–542. [Google Scholar] [CrossRef]
- Tosteson, A.N.; Fryback, D.G.; Hammond, C.S.; Hanna, L.G.; Grove, M.R.; Brown, M.; Wang, Q.; Lindfors, K.; Pisano, E.D. Consequences of false-positive screening mammograms. JAMA Intern. Med. 2014, 174, 954–961. [Google Scholar] [CrossRef]
- Choudhery, S.; Chou, S.S.; Chang, K.; Kalpathy-Cramer, J.; Lehman, C.D. Kinetic Analysis of Lesions Identified on a Rapid Abridged Multiphase (RAMP) Breast MRI Protocol. Acad. Radiol. 2020, 27, 672–681. [Google Scholar] [CrossRef]
- Milon, A.; Vande Perre, S.; Poujol, J.; Trop, I.; Kermarrec, E.; Bekhouche, A.; Thomassin-Naggara, I. Abbreviated breast MRI combining FAST protocol and high temporal resolution (HTR) dynamic contrast enhanced (DCE) sequence. Eur. J. Radiol. 2019, 117, 199–208. [Google Scholar] [CrossRef]
- Goto, M.; Sakai, K.; Yokota, H.; Kiba, M.; Yoshida, M.; Imai, H.; Weiland, E.; Yokota, I.; Yamada, K. Diagnostic performance of initial enhancement analysis using ultra-fast dynamic contrast-enhanced MRI for breast lesions. Eur. Radiol. 2019, 29, 1164–1174. [Google Scholar] [CrossRef]
- Abe, H.; Mori, N.; Tsuchiya, K.; Schacht, D.V.; Pineda, F.D.; Jiang, Y.; Karczmar, G.S. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment. AJR Am. J. Roentgenol. 2016, 207, 1159–1166. [Google Scholar] [CrossRef]
- Schmitz, A.C.; Peters, N.H.; Veldhuis, W.B.; Gallardo, A.M.; van Diest, P.J.; Stapper, G.; van Hillegersberg, R.; Mali, W.P.; van den Bosch, M.A. Contrast-enhanced 3.0-T breast MRI for characterization of breast lesions: Increased specificity by using vascular maps. Eur. Radiol. 2008, 18, 355–364. [Google Scholar] [CrossRef]
- Kuhl, C.K. Breast MR imaging at 3T. Magn. Reson. Imaging Clin. N. Am. 2007, 15, 315–320. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Jost, P.; Morakkabati, N.; Zivanovic, O.; Schild, H.H.; Gieseke, J. Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: Initial experience. Radiology 2006, 239, 666–676. [Google Scholar] [CrossRef]
- Shimauchi, A.; Abe, H.; Schacht, D.V.; Yulei, J.; Pineda, F.D.; Jansen, S.A.; Ganesh, R.; Newstead, G.M. Evaluation of Kinetic Entropy of Breast Masses Initially Found on MRI using Whole-lesion Curve Distribution Data: Comparison with the Standard Kinetic Analysis. Eur. Radiol. 2015, 25, 2470–2478. [Google Scholar] [CrossRef]
Characteristics | Benign (n = 148) | Malignant (n = 59) | p Value |
---|---|---|---|
Age (years) * | 49.1 ± 9.1 | 49.7 ± 7.9 | 0.561 |
Family history of breast cancer | 0.498 | ||
No | 135 (91.2) | 52 (88.1) | |
Yes | 13 (8.8) | 7 (11.9) | |
BRCA1 or BRCA2 mutation | 0.225 | ||
Negative | 130 (87.8) | 48 (81.4) | |
Positive | 18 (12.2) | 11 (18.6) | |
Tumor size (cm) † | 0.7 (0.3-10) | 1.3 (0.3-6.2) | <0.001 |
Lesion type | 0.040 | ||
Mass | 122 (82.4) | 41 (69.5) | |
NME | 26 (17.6) | 18 (30.5) | |
Mass margin | <0.001 | ||
Circumscribed | 64 (52.5) | 5 (12.2) | |
Not circumscribed | 58 (47.5) | 36 (87.8) | |
Mass internal enhancement | 0.012 | ||
Homogeneous | 55 (45.1) | 9 (22.0) | |
Heterogeneous | 67 (54.9) | 32 (78.0) | |
Mass rim enhancement | 0.014 | ||
Yes | 10 (8.2) | 7 (17.1) | |
No | 112 (91.8) | 34 (82.9) | |
NME distribution | 0.400 | ||
Linear/segmental | 14 (53.8) | 12 (66.7) | |
Focal/regional/multiple regions/diffuse | 12 (46.2) | 6 (33.3) | |
NME internal enhancement | 0.790 | ||
Homogeneous | 1 (3.8) | 1 (5.6) | |
Heterogeneous/clumped/clustered ring | 25 (96.2) | 17 (94.4) | |
Enhancement degree (%) * | 141.3 ± 97.8 | 238.0 ± 128.5 | <0.001 |
Enhancement rate | <0.001 | ||
Slow | 24 (16.2) | 0 (0) | |
Intermediate | 35 (23.7) | 5 (8.5) | |
Rapid | 89 (60.1) | 54 (91.5) | |
Enhancement curve type | <0.001 | ||
Persistent | 100 (67.6) | 18 (30.5) | |
Plateau | 31 (21.0) | 14 (23.7) | |
Washout | 17 (11.5) | 27 (45.8) | |
BI-RADS category | <0.001 | ||
3 (Probably benign) | 114 (77.0) | 9 (15.3) | |
4A (Low suspicion for malignancy) | 27 (18.2) | 13 (22.0) | |
4B (Moderate suspicion for malignancy) | 7 (4.7) | 13 (22.0) | |
4C (High suspicion for malignancy) | 0 (0) | 12 (20.3) | |
5 (Highly suggestive of malignancy) | 0 (0) | 12 (20.3) | |
Biopsy recommend by guideline | <0.001 | ||
No | 44 (29.7) | 3 (5.1) | |
Yes | 104 (70.3) | 56 (94.9) | |
MRI magnetic field strength | 0.420 | ||
1.5-T | 46 (31.1) | 15 (25.4) | |
3.0-T | 102 (68.9) | 44 (74.6) | |
Screening round | 0.490 | ||
First | 98 (66.2) | 42 (71.2) | |
Second or more | 50 (33.8) | 17 (28.8) |
Parameter | AUC | 95% CI | p Value | Cutoff |
---|---|---|---|---|
Morphological analysis alone | 0.62 | 0.58–0.67 | ||
Enhancement degree (%) | ||||
All malignancy | 0.74 | 0.67–0.81 | 0.009 | 90% |
Invasive cancer | 0.72 | 0.64–0.81 | 0.029 | 107% |
Enhancement rate | ||||
All malignancy | 0.66 | 0.61–0.72 | 0.265 | |
Invasive cancer | 0.65 | 0.59–0.70 | 0.304 | |
Enhancement curve type | ||||
All malignancy | 0.72 | 0.65–0.80 | 0.036 | Plateau |
Invasive cancer | 0.71 | 0.62–0.80 | 0.066 | |
Tumor size (cm) | ||||
All malignancy | 0.73 | 0.65–0.81 | 0.012 | 0.5 cm |
Invasive cancer | 0.72 | 0.63–0.82 | 0.018 | 0.6 cm |
Parameter | Sensitivity (%) | p Value | Specificity (%) | p Value |
---|---|---|---|---|
For detection of all malignancy | ||||
Morphological analysis alone | 94.9 | 29.7 | ||
Morphological analysis + Enhancement degree ≥ 90% | ||||
All | 89.8 | 0.080 | 52.7 | <0.001 |
1.5-T | 73.3 | 0.083 | 76.1 | <0.001 |
3.0-T | 95.5 | N/A | 42.2 | <0.001 |
Morphological analysis + Enhancement curve type ≥ plateau | 66.1 | <0.001 | 79.1 | <0.001 |
Morphological analysis + Enhancement degree ≥ 90% + Enhancement curve type ≥ plateau | 64.4 | <0.001 | 80.4 | <0.001 |
For detection of invasive cancer | ||||
Morphological analysis alone | 94.6 | 26.5 | ||
Morphological analysis + Enhancement degree ≥ 107% | ||||
All | 86.5 | 0.083 | 57.6 | <0.001 |
1.5-T | 70.0 | 0.083 | 80.4 | <0.001 |
3.0-T | 92.6 | N/A | 47.9 | <0.001 |
Morphological analysis + Size ≥ 0.6 cm | ||||
All | 86.5 | 0.083 | 38.8 | <0.001 |
1.5-T | 90.0 | 0.371 | 41.2 | 0.083 |
3.0-T | 85.2 | 0.157 | 37.8 | <0.001 |
Morphological analysis + Enhancement degree ≥ 107% + Size ≥ 0.6 cm | 78.4 | 0.014 | 63.5 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Ko, E.Y.; Kim, K.E.; Kim, M.K.; Choi, J.S.; Ko, E.S.; Han, B.-K. Assessment of Enhancement Kinetics Improves the Specificity of Abbreviated Breast MRI: Performance in an Enriched Cohort. Diagnostics 2023, 13, 136. https://doi.org/10.3390/diagnostics13010136
Kim H, Ko EY, Kim KE, Kim MK, Choi JS, Ko ES, Han B-K. Assessment of Enhancement Kinetics Improves the Specificity of Abbreviated Breast MRI: Performance in an Enriched Cohort. Diagnostics. 2023; 13(1):136. https://doi.org/10.3390/diagnostics13010136
Chicago/Turabian StyleKim, Haejung, Eun Young Ko, Ka Eun Kim, Myoung Kyoung Kim, Ji Soo Choi, Eun Sook Ko, and Boo-Kyung Han. 2023. "Assessment of Enhancement Kinetics Improves the Specificity of Abbreviated Breast MRI: Performance in an Enriched Cohort" Diagnostics 13, no. 1: 136. https://doi.org/10.3390/diagnostics13010136
APA StyleKim, H., Ko, E. Y., Kim, K. E., Kim, M. K., Choi, J. S., Ko, E. S., & Han, B. -K. (2023). Assessment of Enhancement Kinetics Improves the Specificity of Abbreviated Breast MRI: Performance in an Enriched Cohort. Diagnostics, 13(1), 136. https://doi.org/10.3390/diagnostics13010136