Diagnosing Cystic Fibrosis in the 21st Century—A Complex and Challenging Task
Abstract
:1. Introduction
2. Literature Search
3. Results
3.1. Diagnostic Approaches in CF
3.1.1. Prenatal Diagnostic Techniques
3.1.2. Neonatal Screening
3.1.3. Sweat Test (ST)
- A.
- Background Information
- B.
- Criteria for Sweat Test Utilization
- Positive screening outcomes for CF.
- Clinical manifestations suggestive of CF, including the following:
- In infants: meconium ileus, recurrent respiratory infections, steatorrhea, and failure to thrive;
- In older children: chronic sinus-pulmonary infections;
- In adults: azoospermia (Figure 2).
- C.
- Requirements for Conducting the Sweat Test
- The minimum gestational age must be 36 weeks, with testing ideally performed between 48 and 72 h postpartum to mitigate transiently elevated values observed within the initial 24 h. Testing beyond 4 to 6 weeks of age is optimal.
- Minimum weight at the time of testing should be 3 kg.
- The chosen testing site (typically the volar aspect of the forearm, occasionally the upper arm, thigh, or leg) must be devoid of inflammation, rash, or wounds to prevent contamination with other fluids or blood.
- Hydration with a minimum of 120 mL/kg body weight/day in the 24 h preceding the test is essential.
- A minimum sweat collection amount of 75 mg or 15 μL or 1 g/m2/minute is required to avert false positive or false negative outcomes attributable to insufficient sweat rates. In cases utilizing the Nanoduct system, 3 μL of sweat suffices, offering an advantage, particularly in neonates.
- Test duration should range from a minimum of 20 min to a maximum of 30 min.
- Application of a current with voltage below 15 V and intensity of 0.5 mA, gradually escalating to a maximum of 4 mA over a maximum duration of 5 min.
- Use of pilocarpine discs at concentrations of 2–5 g/L, a cholinergic agent stimulating the muscarinic receptors of sweat glands to activate secretion.
- D.
- Advantages, Limitations, and Challenges in Conducting the Sweat Test
- Inadequate sweat volume;
- Challenges in immobilizing pediatric patients;
- Difficulties in inducing sweating, particularly in infants;
- Incidence of skin burns, hives, irritation, and redness, accompanied by discomfort when electric current density surpasses 0.5 mA/cm2;
- Risk of electric shock and skin damage if the electrode metal makes direct contact with the skin;
- Potential issues related to contamination, evaporation, and inadequate collection duration [63].
- Prematurity (2.4 times higher risk);
- Gestational age under 39 weeks (7.4 times higher risk);
- Low birth weight;
- Age and sex;
- African-American race;
- Skin condition and hydration status;
- Collection methodology;
- Testing conducted on different days;
- Environmental factors such as climate and family diet;
- E.
- Interpretation of Sweat Test Results
3.1.4. Sweat Conductivity
3.1.5. Genetic Mutation Analysis
- A.
- Mutation Types and Their Association with Disease Severity
- CF-causing mutations;
- mutations with clinically variable consequences;
- non-CF-causing mutations;
- class I: defective protein synthesis (e.g., G542X);
- class II: deficient protein processing, encompassing the most common mutation (F508 del—the initial mutation identified);
- class III: deficient regulation (e.g., G551D, S1255P);
- class IV: impaired function (e.g., 7117H, R334W, R347P);
- class V: reduced abundance (e.g., A455E);
- class VI: diminished protein stability (e.g., Q1412X).
- B.
- Recommendations for Genetic Mutation Determination
- C.
- Limits and Disadvantages of Genetic Testing
- Large number of mutations (over 2000).
- Low cost-effectiveness ratio.
- Absence of common mutations in some populations [83]. A drawback is the time required to provide results, typically taking at least 1–2 weeks.
- D.
- Interpretation of Genetic Testing
3.1.6. DNA Sequencing Analysis of CFTR Gene
3.1.7. Nasal Potential Difference (NPD)
3.1.8. Intestinal Current Measurement (ICM)
- Easy accessibility to intestinal tissue at any age.
- Minimal to no tissue damage or remodeling due to bacterial or viral infections.
- Potential for testing novel CFTR therapeutics in human epithelium ex vivo without risking patient safety.
- Capability to detect very low levels of functionally active CFTR.
- The feasibility of performing the test without sedation across all age groups.
- Painless procedure completed in under 5 min [118].
3.1.9. New Non-Invasive Diagnostic Methods
3.2. Diagnosing CF
- The presence of clinical symptoms;
- A family history of CF;
- The identification of two CF gene alleles indicating dysfunctional CFTR;
- Elevated electrolyte concentration in ST;
3.3. Phenotype–Genotype Correlations
3.3.1. Relationship between Phenotype, Genotype, and Pancreatic Function
3.3.2. Relationship between Phenotype, Genotype, and Pulmonary Function
3.3.3. Liver Damage in the Context of Phenotype–Genotype Relationship
3.3.4. Relationship between Phenotype, Genotype, and Reproductive Function
4. Discussion
5. Conclusions
6. Future Directions
- Sustained exploration of CF’s genetic and molecular underpinnings remains crucial for pinpointing novel mutations, deciphering genotype–phenotype correlations, and unveiling fresh biomarkers linked to CF pathophysiology. This encompasses delving into the involvement of non-CFTR genetic modifiers and epigenetic elements in disease manifestation and progression.
- Progressions in functional assays to gauge CFTR functionality and the identification of innovative biomarkers stand as linchpins for augmenting diagnostic precision and monitoring disease evolution. Prospective inquiries might center on crafting more refined biomarker arrays, reflecting diverse facets of CF pathophysiology like inflammation, infection, and organ malfunction.
- Research endeavors could persist in honing newborn screening methodologies and algorithms to enhance the sensitivity, specificity, and cost-effectiveness of CF screening initiatives. This might entail assessing the efficacy of emerging screening technologies, fine-tuning screening thresholds, and probing the feasibility of expanded screening protocols covering additional CF-linked conditions.
- The development and validation of point-of-care diagnostic apparatuses for CF-associated biomarkers represent a focal point for forthcoming research. These compact and swift testing platforms hold promise for streamlining diagnostic workflows, enabling early detection in remote or resource-constrained settings, and facilitating personalized treatment decisions at the bedside.
- The amalgamation of cutting-edge imaging modalities with artificial intelligence algorithms holds potential for refining the precision and efficacy of CF diagnosis and monitoring. Prospective investigations could explore the utility of AI-driven image analysis for quantifying lung involvement, the early identification of structural alterations, and forecasting disease trajectory.
- An integrative scrutiny of multi-omics datasets, encompassing genomics, transcriptomics, proteomics, metabolomics, and microbiomics, is indispensable for unraveling the intricate molecular mechanisms underlying CF and identifying fresh diagnostic and therapeutic targets. Advanced bioinformatics methodologies and machine learning algorithms are poised to play pivotal roles in deciphering expansive omics datasets and extracting actionable insights.
- Subsequent studies may concentrate on implementing personalized medicine paradigms in CF diagnosis and treatment. This entails stratifying patients into molecularly defined subgroups predicated on their genetic and molecular profiles, prognosticating individual treatment responses, and customizing therapeutic interventions to target precise disease mechanisms.
- Longitudinal cohort investigations and analyses of real-world data are primed to furnish invaluable insights into the natural progression of CF, the trajectories of disease evolution, and the ramifications of interventions on clinical outcomes. These endeavors will aid in fine-tuning diagnostic criteria, optimizing treatment algorithms, and shaping clinical practice guidelines.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dana-Teodora, A.-P.; Mihaela, T.L. Fibroza chistică. In Pediatrie; Miron, I., Ed.; Publisher Editura “Gr.T.Popa”, U.M.F.: Iaṣi, Romania, 2016; pp. 300–308. [Google Scholar]
- Bienvenu, T.; Lopez, M.; Girodon, E. Molecular Diagnosis and Genetic Counseling of Cystic Fibrosis and Related Disorders: New Challenges. Genes 2020, 11, 619. [Google Scholar] [CrossRef]
- Ooi, C.Y.; Durie, P.R. CFTR gene mutations in pancreatitis. J. Cyst. Fibros. 2012, 11, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Radivojević, D.; Guć-Sćekić, M.; Djurisić, M.; Lalić, T.; Minić, P.; Kanavakis, E. Relation between Gene Mutations and Pancreatic Exocrine Function in Patients with Cystic Fibrosis. Srp. Arh. Celok. Lek. 2001, 129 (Suppl. S1), 6–9. Available online: https://pubmed.ncbi.nlm.nih.gov/15637983/ (accessed on 4 January 2024). [PubMed]
- Raina, M.A.; Khan, M.S.; Malik, S.A.; Raina, A.H.; Makhdoomi, M.J.; Bhat, J.I.; Mudassar, S. Assessment of Correlation between Sweat Chloride Levels and Clinical Features of Cystic Fibrosis Patients. J. Clin. Diagn. Res. JCDR 2016, 10, BC01–BC06. [Google Scholar] [CrossRef] [PubMed]
- Laguna, T. To Sweat or not to Sweat. Is that Enough to Diagnose Cystic Fibrosis? Am. J. Resp. Crit. Care Med. 2012, 186, 700–701. [Google Scholar] [CrossRef] [PubMed]
- Willems, P.; Weeks, S.; Meskal, A.; Schouwers, S. Biological Variation of Chloride and Sodium in Sweat Obtained by Pilocarpine Iontophoresis in Adults: How Sure are You About Sweat Test Results? Lung 2017, 195, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Mickle, J.E.; Cutting, G.R. Genotype-Phenotype relationships in Cystic Fibrosis. Med. Clin. N. Am. 2000, 84, 597–607. [Google Scholar] [CrossRef]
- Wallis, C. Diagnosing Cystic Fibrosis: Blood, sweat, and tears. Arch. Dis. Child. 1997, 76, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Hauke, A.; Oertel, S.; Knoke, L.; Fein, V.; Maier, C.; Brinkmann, F.; Jank, M. Screen-Printed Sensor for Low-Cost Chloride Analysis in Sweat for Rapid Diagnosis and Monitoring of Cystic Fibrosis. Biosensors 2020, 10, 123. [Google Scholar] [CrossRef]
- Ozgenc, A.; Yasar, N.E.; Kucur, M.; Bolayirli, I.M.; Konukoglu, D. The most common preanalytic problem of sweat testing: Insufficient sweat volume. Int. J. Med. Biochem. 2020, 3, 62–66. [Google Scholar] [CrossRef]
- Mishra, A.; Greaves, R.; Massie, J. The Relevance of Sweat testing for the Diagnosis of Cystic Fibrosis in the Genomic Era. Clin. Biochem. Rev. 2005, 26, 135–153. [Google Scholar] [PubMed]
- Hill, M.; Suri, R.; Nash, E.; Morris, S.; Chitty, L. Preferences for prenatal tests for cystic fibrosis: A discrete choice experiment to compare the views of adult patients, carriers of cystic fibrosis and health professionals. J. Clin. Med. 2014, 3, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Mouawia, H.; Saker, A.; Jais, J.P.; Benachi, A.; Bussières, L.; Lacour, B.; Bonnefont, J.P.; Frydman, R.; Simpson, J.L.; Paterlini-Brechot, P. Circulating trophoblastic cells provide genetic diagnosis in 63 fetuses at risk for cystic fibrosis or spinal muscular atrophy. Reprod. Biomed. Online 2012, 25, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Chandler, N.J.; Ahlfors, H.; Drury, S.; Mellis, R.; Hill, M.; McKay, F.J.; Collinson, C.; Hayward, J.; Jenkins, L.; Chitty, L.S. Noninvasive prenatal diagnosis for cystic fibrosis: Implementation, uptake, outcome, and implications. Clin. Chem. 2020, 66, 207–216. [Google Scholar] [CrossRef]
- Jeppesen, L.D.; Hatt, L.; Singh, R.; Ravn, K.; Kølvraa, M.; Schelde, P.; Uldbjerg, N.; Vogel, I.; Lildballe, D.L. Cell-based non-invasive prenatal diagnosis in a pregnancy at risk of cystic fibrosis. Prenat. Diagn. 2021, 41, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.; Twiss, P.; Verhoef, T.I.; Drury, S.; McKay, F.; Mason, S.; Jenkins, L.; Morris, S.; Chitty, L.S. Non-invasive prenatal diagnosis for cystic fibrosis: Detection of paternal mutations, exploration of patient preferences and cost analysis. Prenat. Diagn. 2015, 35, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Ravn, K.; Singh, R.; Hatt, L.; Kølvraa, M.; Schelde, P.; Vogel, I.; Uldbjerg, N.; Hindkjær, J. The number of circulating fetal extravillous trophoblasts varies from gestational week 6 to 20. Reprod. Sci. 2020, 27, 2170–2174. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhu, X.; Li, R.; Wu, H.; Chen, W.; Chen, J.; Liu, H.; Li, S.; Liu, P. A novel method for noninvasive diagnosis of monogenic diseases from circulating fetal cells. Prenat Diagn. 2021, 41, 400–408. [Google Scholar] [CrossRef]
- Zhuo, X.; Wang, Q.; Vossaert, L.; Salman, R.; Kim, A.; Van den Veyver, I.; Breman, A.; Beaudet, A. Use of amplicon-based sequencing for testing fetal identity and monogenic traits with Single Circulating Trophoblast (SCT) as one form of cell-based NIPT. PLoS ONE 2021, 16, e0249695. [Google Scholar] [CrossRef]
- Castellani, C.; Southern, K.W.; Brownlee, K.; Dankert Roelse, J.; Duff, A.; Farrell, M.; Mehta, A.; Munck, A.; Pollitt, R.; Sermet-Gaudelus, I.; et al. European best practice guidelines for cystic fibrosis neonatal screening. J. Cyst. Fibros. 2009, 8, 153–173. [Google Scholar] [CrossRef]
- Faria, A.G.; Lima Marson, F.A.; deSouza Gomez, C.C.; deFatima Servidoni, M.; Ribeiro, A.F.; Ribeiro, J.D. Thirty Years of Sweat Chloride Testing at One Referral Center. Front. Pediatr. 2017, 5, 222. [Google Scholar] [CrossRef] [PubMed]
- Macedo, A.; Mathiaparanam, S.; Brick, L.; Keenan, K.; Gonska, T.; Pedder, L.; Hill, S.; Britz-McKibbin, P. The Sweat Metabolome of Screen-Positive Cystic Fibrosis Infants: Revealing Mechanisms beyond Impaired Chloride Transport. ACS Cent. Sci. 2017, 3, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Newborn Screening and Diagnostic Protocol for Cystic Fibrosis in New Zealand 2016. Available online: https://www.nsu.govt.nz/system/files/page/cf_protocol_april_2016.pdf (accessed on 4 January 2024).
- Guglani, L.; Stabel, D.; Weiner, D. False-Positive and False -Negative Sweat tests: Systematic Review of the Evidence. Pediatr. Allergy Immunol. Pulmonol. 2015, 28, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.; White, T.; Howenstine, M.; Munck, A.; Parad, R.; Rosenfeld, M.; Sommerburg, O.; Accurso, F.J.; Davies, J.C.; Rock, M.J.; et al. Diagnosis of Cystic Fibrosis in Screened Populations. J. Pediatr. 2017, 181S, S33–S44. [Google Scholar] [CrossRef] [PubMed]
- Munck, A.; Mayell, S.J.; Winters, V.; Shawcross, A.; Derichs, N.; Parad, R.; Barben, J.; Southern, K.W. ECFS Neonatal Screening Working Group. Cystic Fibrosis Screen Positive, Inconclusive Diagnosis (CFSPID): A new designation and management recommendations for infants with an inconclusive diagnosis following newborn screening. J. Cyst. Fibros. 2015, 14, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Munck, A. Inconclusive Diagnosis after Newborn Screening for Cystic Fibrosis. Int. J. Neonatal Screen. 2020, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.; White, T.; Ren, C.; Hempstead, S.; Accurso, F.; Derichs, N.; Howenstine, M.; McColley, S.A.; Rock, M.; Rosenfeld, M.; et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J. Pediatr. 2017, 181S, S4–S15. [Google Scholar] [CrossRef] [PubMed]
- Arrudi-Moreno, M.; García-Romero, R.; Samper-Villagrasa, P.; Sánchez-Malo, M.J.; Martin-de-Vicente, C. Neonatal cystic fibrosis screening: Analysis and differences in immunoreactive trypsin levels in newborns with a positive screen. An. Pediatr. 2021, 95, 11–17. [Google Scholar] [CrossRef]
- Ooi, C.Y.; Sutherland, R.; Castellani, C.; Keenan, K.; Boland, M.; Reisman, J.; Bjornson, C.; Chilvers, M.A.; van Wylick, R.; Kent, S.; et al. Immunoreactive trypsinogen levels in newborn screened infants with an inconclusive diagnosis of cystic fibrosis. BMC Pediatr. 2019, 19, 369. [Google Scholar] [CrossRef]
- Castaldo, A.; Cimbalo, C.; Castaldo, R.J.; D’Antonio, M.; Scorza, M.; Salvadori, L.; Sepe, A.; Raia, V.; Tosco, A. Cystic Fibrosis-Screening Positive Inconclusive Diagnosis: Newborn Screening and Long-Term Follow-Up Permits to Early Identify Patients with CFTR-Related Disorders. Diagnostics 2020, 10, 570. [Google Scholar] [CrossRef]
- Gunnett, M.A.; Baker, E.; Mims, C.; Self, S.T.; Gutierrez, H.H.; Guimbellot, J.S. Outcomes of children with cystic fibrosis screen positive, inconclusive diagnosis/CFTR related metabolic syndrome. Front. Pediatr. 2023, 11, 1127659. [Google Scholar] [CrossRef] [PubMed]
- Terlizzi, V.; Dolce, D. Variability of the sweat test in children with Cystic Fibrosis previously CRMS/CFSPID: A retrospective monocenter experience. J. Cyst. Fibros. 2023, 22, 496–498. [Google Scholar] [CrossRef] [PubMed]
- di Sant Agnese, A. Cystic fibrosis of the pancreas. Conn. State Med. J. 1958, 6, 445. [Google Scholar]
- Schwachman, R.; Dunham, R.; Phillips, W.R. Electrical Conductivity of Sweat. Pediatrics 1963, 32, 85–88. [Google Scholar] [CrossRef]
- Castellani, C.; Cuppens, H.; Macek, M., Jr.; Cassiman, J.J.; Kerem, E.; Durie, P.; Tullis, E.; Assael, B.M.; Bombieri, C.; Brown, A.; et al. Consensus on the use and interpretation of Cystic Fibrosis mutation analysis in clinical practice. J. Cyst. Fibros. 2008, 7, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Ruwan, I.N.L.; Vidanapathirana, D.M.; Warawitage, D.H.; Malrnangai Kularatnam, G.A.; Priyani, D.C.N.D.; Jasinge, E. Phenotypic spectrum and genetic heterogeneity of cystic fibrosis in Sri Lanka. BMC Med. Genet. 2019, 20, 89. [Google Scholar] [CrossRef]
- Quinton, P. Cystic Fibrosis: Lessons from the Sweat Gland. Physiology 2007, 22, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.E.; Cooke, R.E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 1959, 23, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Cirilli, N.; Padoan, R.; Raia, V. Audit of sweat testing: A first report from Italian Cystic Fibrosis Centres. J. Cyst. Fibros. 2008, 7, 415–422. [Google Scholar] [CrossRef]
- Constantinescu, M.; Hilman, B. The Sweat Test for Quantitation of Electrolytes. A Challenge in Precision. Lab. Med. 1996, 27, 472–477. [Google Scholar] [CrossRef]
- Cystic Fibrosis: State of the Art and Directions for Future Research Efforts; US Department of Health, Education and Welfare: Washington, DC, USA, 1978.
- LeGrys, V.; Yankaskas, J.; Quittel, L.; Marshall, B.; Mogazyel, P. Diagnostic Sweat Testing: The CF Foundation Guidelines. J. Pediatr. 2007, 151, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Massie, J. Sweat testing for CF: How good is your laboratory? J. Paediatr. Child Health 2006, 42, 153–154. [Google Scholar] [CrossRef] [PubMed]
- Naerlich, L. The Changing Face of Cystic Fibrosis and Its Implications for Screening. Int. J. Neonatal. Screen. 2020, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Mattar, A.C.V.; Leone, C.; Rodrigues, J.C.; Villac, A.F. Sweat conductivity: An accurate diagnostic test for Cystic Fibrosis? J. Cyst. Fibros. 2014, 13, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Rueegg, C.; Kuehni, C.; Gallati, S.; Jurca, M.; Jung, A.; Casaulta, C.; Barben, J. Comparison of two sweat test systems for the diagnosis of Cystic Fibrosis in newborns. Pediatr. Pulmonol. 2019, 54, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Vernooij-van Langen, A.; Dompeling, E.; Yntema, J.B.; Arets, B.; Tiddens, H.; Loeber, G.; Dankert-Roelse, J. Clinical evaluation of the Nanoduct sweat test system in the diagnosis of cystic fibrosis after newborn screening. Eur. J. Pediatr. 2015, 174, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Seyrekel, T.; Gokdemir, Y.; Ozdemir, P.; Karakoc, F.; Ersu, R.; Karadag, B.; Goncagul, B.H. Diagnostic efficiency of sweat conductivity testing in Cystic Fibrosis. Eur. Respir. Soc. 2015, 46, 2063. [Google Scholar] [CrossRef]
- Treggiari, D.; Kleinfelder, K.; Bertini, M.; Tridello, G.; Fedrigo, A.; Pintani, E.; Iansa, P.; Casiraghi, A.; Minghetti, P.; Cipolli, M.; et al. Optical Measurements of Sweat for in Vivo Quantification of CFTR Function in Individual Sweat Glands. J. Cyst. Fibros. 2021, 20, 824–827. [Google Scholar] [CrossRef]
- Ren, C.L. Diagnosis of CF: An evolving and enduring challenge. J. Cyst. Fibros. 2021, 20, 727–728. [Google Scholar] [CrossRef] [PubMed]
- Coakley, J.; Scott, S.; Doery, J.; Greaves, R.; Talsma, P.; Whithmam, E.; Winship, J. Australian Guidelines for the Performance of the Sweat Test for the Diagnosis of Cystic Fibrosis. Clin. Biochem. Rev. 2006, 27, S1–S10. [Google Scholar]
- Pop, L.; Popa, Z. Managementul la copil. In Ghid de Management în Mucoviscidoză (Fibroză Chistică); Popa, I., Pop, L., Popa, Z., Cîlț, C., Eds.; Editura Brumar: Timiṣoara, Romania, 2006; pp. 12–18. [Google Scholar]
- Green, A.; Kirk, J. Guidelines for the performance of the sweat test for the diagnosis of cystic fibrosis. Ann. Clin. Biochem. 2007, 44 Pt 1, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Baumer, J.H. Evidence based guidelines for the performance of the sweat test for the investigation of cystic fibrosis in the UK. Arch. Dis. Child. 2003, 88, 1126–1127. [Google Scholar] [CrossRef] [PubMed]
- Farahmand, F.; Sadjadei, N.; Haghi-Ashtiani, M.-T.; Modaresi, V.; Rezaei, N.; Pakseresht, B. Comparison of Classic Sweat Test and Crystallization Test in Diagnosis of Cystic Fibrosis. Iran. J. Pediatr. 2012, 22, 102–106. [Google Scholar] [PubMed]
- Kabra, S.K.; Kabra, M.; Gera, S.; Lodha, R.; Sreedevi, K.N.; Chacko, S.; Mathew, J.; Shastri, S.; Ghosh, M. An Indigenously Developed Method for Sweat Collection and Estimation of Chloride for Diagnosis of Cystic Fibrosis. Indian Pediatr. 2002, 39, 1039–1043. [Google Scholar] [PubMed]
- Manowong, S.; Boriuthipandit, T.; Inthapaen, S. In-House Development of Automatic Iontophoresis Current Source for Sweat Chloride Test. JAMS 2020, 53, 8–14. Available online: https://he01.tci-thaijo.org/index.php/bulletinAMS/article/view/221761 (accessed on 6 January 2024).
- Marvelli, A.; Campi, B.; Mergui, G.; Di Cicco, M.E.; Turini, P.; Scardina, P.; Zucchi, R.; Pifferi, M.; Taccetti, G.; Paolicchi, A.; et al. Sweat Chloride assay by inductively coupled plasma mass spectrometry: A confirmation test for Cystic Fibrosis diagnosis. Anal. Bioanal. Chem. 2020, 412, 6909–6916. [Google Scholar] [CrossRef] [PubMed]
- DeBoeck, K.; Wilschanski, M.; Castellani, C.; Taylor, C.; Cuppens, H.; Dodge, J.; Sinaasappel, M. Cystic Fibrosis: Terminology and diagnostic algorithms. Thorax 2006, 61, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Kleyn, M.; Korzeniewski, S.; Grigorescu, V.; Young, W.; Homnick, D.; Goldstein-Filbrun, A.; Schuen, J.; Nasr, S. Predictors of sufficient sweat production during confirmatory testing for Cystic Fibrosis. Pediatr. Pulmonol. 2011, 46, 23–30. [Google Scholar] [CrossRef]
- Bray, P.T.; Clark, G.C.F.; Moody, G.J.; Thomas, G.; Thomas, J.D.R. Sweat testing for cystic fibrosis. Arch. Dis. Child. 1978, 53, 483–486. [Google Scholar] [CrossRef]
- Collins, M.; Brawley, C.; McCracken, C.; Shankar, P.; Schechter, M.; Barton, R.B. Risk factors for quantity not sufficient sweat collection in infants 3 months or younger. Am. J. Clin. Pathol. 2014, 142, 72–75. [Google Scholar] [CrossRef]
- Horsley, A. Genetics and pathophysiology. In Cystic Fibrosis, 2nd ed.; Horsley, A., Cunningham, S., Alistar, I.J., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 1–13. [Google Scholar]
- Collaco, J.; Blackman, S.; Raraigh, K.; Corvol, H.; Rommens, J.; Pace, R.; Boelle, P.Y.; McGready, J.; Sosnay, P.R.; Strug, L.J.; et al. Sources of Variation in Sweat Chloride Measurements in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2016, 194, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.G.; Lima Marson, F.A.; Souza Gomez, C.C.; Gonçalves de Oliveira Ribeiro, M.A.; Brioschi Morais, L.; de Fatima Servidoni, M.; Bertuzzo, C.S.; Sakano, E.; Goto, M.; Paschoal, I.A.; et al. Quality of Sweat Test (ST) based on the proportion of Sweat Sodium (Na) and Sweat Chloride (Cl) as a diagnostic parameter of Cystic Fibrosis: Are we on the right way? Diagn. Pathol. 2016, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- McColley, S.; Elbert, A.; Wu, R.; Ren, C.; Sontag, M.; Le Grys, V. Quantity not sufficient rates and delays in sweat testing in US infants with Cystic Fibrosis. Pediatr. Pulmonol. 2020, 55, 3053–3056. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, S.; Chmiel, J.; Sternen, D.; Cheng, E.; Gibson, R.; Marshall, S.; Cutting, G.R. Clinical practice and genetic counselling for Cystic Fibrosis and CFTR-related disorders. Genet. Med. 2008, 10, 851–868. [Google Scholar] [CrossRef] [PubMed]
- Traeger, N.; Shi, Q.; Dozor, A.J. Relationship between sweat chloride, sodium, and age in clinically obtained samples. J. Cyst. Fibros. 2014, 13, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Alistair, J.A.; Duff, A.J.A.; Bell, S.C.; Heijerman, H.G.M.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; et al. ECFS best practice guidelines: The 2018 revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef] [PubMed]
- Sands, D.; Oltarzewski, M.; Nowakowska, A.; Zybert, K. Bilateral sweat tests with two different methods as a part of Cystic Fibrosis newborn screening (CFNBS) protocol and additional quality control. Folia Histochem. Cytobiol. 2010, 48, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Pagaduan, J.; Ali, M.; Dowlin, M.; Suo, L.; Ward, T.; Ruiz, F.; Devaraj, S. Revisiting sweat chloride test results based on recent guidelines for diagnosis of cystic fibrosis. Pract. Lab. Med. 2018, 10, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Bell, S.; Bojian, S.; Bryon, M.; Duff, A.L.; Flume, P.; Kashirskaya, N.; Munck, A.; Ratjen, F.; Schwarzenberg, S.J.; et al. ECFS Standards of Care: Best Practice guidelines. J. Cyst. Fibros. 2014, 13 (Suppl. S1), S23–S42. [Google Scholar] [CrossRef]
- Vermeulen, F.; Lebecque, P.; De Boeck, K.; Leal, T. Biological variability of the sweat test chloride in diagnostic sweat tests A retrospective analysis. J. Cyst. Fibros. 2017, 16, 30–35. [Google Scholar] [CrossRef]
- Servidoni, M.F.; Souza Gomez, C.C.; Lima Marson, F.A.; Dalbo Contrera Toro, A.A.; Goncalves deOliveiro Ribeiro, M.A.; Ribeiro, J.D.; Ribeiro, A.F. Sweat test and Cystic Fbrosis: Overview of test performance at public and private centers in the state of Sao Paulo, Brazil. J. Bras. Pneumol. 2017, 43, 121–128. [Google Scholar] [CrossRef]
- Choi, D.H.; Kitchen, G.; Jennings, M.; Cutting, G.R.; Searson, P.C. Out-of-clinic measurement of sweat chloride using a wearable sensor during low-intensity exercise. npj Digit. Med. 2020, 3, 49. [Google Scholar] [CrossRef]
- Guglani, L.; Sitwat, B.; Lower, D.; Kurland, G.; Weiner, D. Elevated sweat chloride concentration in children without Cystic Fibrosis who are receiving topiramate therapy. Pediatr. Pulmonol. 2012, 47, 429–433. [Google Scholar] [CrossRef] [PubMed]
- D’Archangelo, M. CLSI Announces New Sweat Testing Guideline for the Diagnosis of Cystic Fibrosis. Lab Med. 2010, 41, 308–309. [Google Scholar] [CrossRef]
- Gűműṣ, E. Examination of CFTR Gene Mutations in Patient Groups with Borderline Sweat Test ans Clinical Preliminary Diagnosis of Cystic Fibrosis by Next-Generation Sequecing Method in Ṣanliurfa Province. JAREM 2019, 9, 86–90. [Google Scholar] [CrossRef]
- Massie, J.; Greaves, R.; Metz, M.; Wiley, V.; Graham, P.; Sheperd, S.; Mackay, R. Australasian Guideline (2nd Edition): An Annex to the CLSI and UK Guidelines for the Performance of the Sweat Test for the Diagnosis of Cystic Fibrosis. Clin. Biochem. 2017, 38, 115–130. [Google Scholar]
- DaSilva Filho, L.V.F.; deCarvalho Ferreira, B.M.H.; Nakaie Cleyde, M.A.; Villac, A.F.; Rodrigues, J.C.; Raskin, S.; Rozov, T. Cystic Fibrosis with normal sweat chloride concentration—Case report. Rev. Hosp. Clínicas 2003, 58, 260–262. [Google Scholar]
- Ahn, K.M.; Park, H.Y.; Lee, J.H.; Lee, M.G.; Kim, J.H.; Kang, I.J.; Lee, S.I. Cystic Fibrosis in Korean Children: A Case Report Identified by a Quantitative Pilocarpine Iontophoresis Sweat Test and Genetic Analysis. J. Korean Med. Sci. 2005, 20, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Massie, J.; Curnow, L.; Burge, A.; Oliver, M.; Deidun, D.; Robinson, A.; McAleer, R.; Robinson, P. Melbourne Handbook for the Management of Children with Cystic Fibrosis; The Rolay Children’s Hospital: Parkville, Australia, 2006; Available online: https://www.rch.org.au/uploadedFiles/Main/Content/RESPMED/handbook.pdf (accessed on 7 January 2024).
- Vermeulen, F.; Le Camus, C.; Davies, J.C.; Bilton, D.; Milanković, D.; De Boeck, K. Variability of sweat chloride concentration in subjects with cystic fibrosis and G551D mutations. J. Cyst. Fibros. 2017, 16, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Zemanick, E.T.; Konstan, M.W.; VanDevanter, D.R.; Rowe, S.M.; Clancy, J.P.; Odem-Davis, K.; Skalland, M.; Mayer-Hamblett, N. Measuring the impact of CFTR modulation on sweat chloride in cystic fibrosis: Rationale and design of the CHEC-SC study. J. Cyst. Fibros. 2021, 20, 965–971. [Google Scholar] [CrossRef]
- Zemanick, E.T.; Taylor-Cousar, J.L.; Davies, J.; Gibson, R.L.; Mall, M.A.; McKone, E.F.; McNally, P.; Ramsey, B.W.; Rayment, J.H.; Rowe, S.M.; et al. A Phase 3 Open-Label Study of Elexacaftor/Tezacaftor/Ivacaftor in Children 6 through 11 Years of Age with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 2021, 203, 1522–1532. [Google Scholar] [CrossRef]
- Rosenfeld, M.; Wainwright, C.E.; Higgins, M.; Wang, L.T.; McKee, C.; Campbell, D.; Tian, S.; Schneider, J.; Cunningham, S.; Davies, J.C.; et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): A phase 3 single-arm study. Lancet Respir. Med. 2018, 6, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Olivier, M.; Kavvalou, A.; Welsner, M.; Hirtz, R.; Straßburg, S.; Sutharsan, S.; Stehling, F.; Steindor, M. Real-life impact of highly effective CFTR modulator therapy in children with cystic fibrosis. Front. Pharmacol. 2023, 14, 1176815. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. VX17-445-102 Study Group. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- Lezana, H.L.; Vargas, M.; Karam-Bechara, J.; Aldana, R.; Furuya, M. Sweat conductivity and chloride titration for cystic fibrosis diagnosis in 3834 subjects. J. Cyst. Fibros. 2003, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Meyer, W.P. More about Chemical Pathology. Laboratory Tests in the Diagnosis of Cystic Fibrosis. CME 2012, 30, 7. Available online: https://www.cmej.org.za/index.php/cmej/article/view/2520/2445 (accessed on 8 January 2024).
- Mattar, A.; Gomes, E.; Adde, F.; Leone, C.; Rodrigues, J. Comparison between classic conductivity test in patients with or without Cystic Fibrosis. J. Pediatr. 2010, 86, 109–114. [Google Scholar] [CrossRef]
- Choi, J.; Muallem, D.; Kiselyov, K.; Lee, M.G.; Thomas, P.J.; Muallem, S. Aberrant CFTR-dependent HCO−3 transport in mutations associated with cystic fibrosis. Nature 2001, 410, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.L.; Schrijver, I. A Review of Associated Phenotypes, Use of Molecular Diagnosis Approaches, Genetic Characteristics Progress and Dilemmas. J. Mol. Diagn. 2016, 18, 3–14. [Google Scholar] [CrossRef]
- Miller, A.; Comellas, A.; Hornick, D.; Stoltz, D.; Cavanaugh, J.; Gerke, A.; Welsh, M.J.; Zabner, J.; Polgreen, P. Cystic Fibrosis carriers are at increased risk for a wide range of CF-related conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 1621–1627. [Google Scholar] [CrossRef]
- Bergougnoux, A.; Taulan-Cadars, M.; Claustres, M.; Raynal, C. New Molecular Diagnosis Approaches from the Identification of Mutations to Their Characterization. 2015. Available online: https://www.intechopen.com/books/cystic-fibrosis-in-the-light-of-new-research/new-molecular-diagnosis-approaches-from-the-identification-of-mutations-to-their-characterization (accessed on 8 January 2024).
- Zielenski, J.; Tsui, L.C. Cystic Fibrosis: Genotypic and phenotypic variations. Annu. Rev. Genet. 1995, 29, 777–807. [Google Scholar] [CrossRef]
- Semedo, D. International Experts Update Guidelines for Cystic Fibrosis Diagnosis. Available online: https://www.lungdiseasenews.com/2017/02/06/international-experts-update-cystic-fibrosis-cf-diagnostic-guidelines (accessed on 8 January 2024).
- Mall, M.; Hartl, D. CFTR: Cystic fibrosis and beyond. Eur. Respir. J. 2014, 44, 1042–1054. [Google Scholar] [CrossRef] [PubMed]
- Southern, K.W.; Peckham, D. Establishing a diagnosis of cystic fibrosis. Chronic Respir. Dis. 2004, 1, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Elborn, J.S.; Bradley, J.M. Diagnosing Cystic Fibrosis: Sweat, blood and years. Thorax 2006, 61, 556–557. [Google Scholar] [CrossRef] [PubMed]
- Vallières, E.; Elborn, J.S. Cystic Fibrosis gene mutations: Evaluation and assessment of disease severity. Adv. Genom. Gene 2014, 4, 161–172. [Google Scholar] [CrossRef]
- Augarten, A.; Tov, A.B.; Madgar, I.; Barak, A.; Akons, H.; Laufer, J.; Efrati, O.; Aviram, M.; Bentur, L.; Blau, H.; et al. The changing face of the exocrine pancreas in cystic fibrosis: The correlation between pancreatic status, pancreatitis and Cystic Fibrosis genotype. Eur. J. Gastroenterol. Hepatol. 2008, 20, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Kerem, B.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.; Buchwald, M.; Tsui, L.C. Identification of the cystic fibrosis gene: Genetic analysis. Science 1989, 245, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Espel, J.C.; Palac, H.L.; Bharat, A.; Cullina, J.; Prickett, M.; Sala, M.; McColley, S.A.; Jain, M. The relationship between sweat chloride levels and mortality in Cystic Fibrosis varies by individual genotype. J. Cyst. Fibros. 2018, 17, 34–42. [Google Scholar] [CrossRef]
- Sarsfield, J.K.; Davies, J.M. Negative sweat tests and Cystic Fibrosis. Arch. Dis. Child. 1975, 50, 463–466. [Google Scholar] [CrossRef] [PubMed]
- de Nooijer, R.A.; Nobel, J.M.; Arets, H.G.; Bot, A.G.; van Berkhout, F.T.; de Rijke, Y.B.; de Jonge, H.R.; Bronsveld, I. Assessment of CFTR function in homozygous R117H-7T subjects. J. Cyst. Fibros. 2011, 10, 326–332. [Google Scholar] [CrossRef]
- Lebecque, P.; Leal, T.; De Boeck, C.; Jaspers, M.; Cuppens, H.; Cassiman, J.J. Mutations of the Cystic Fibrosis Gene and Intermediate Sweat Chloride Levels in Children. Am. J. Respir. Crit. Care Med. 2002, 165, 757–761. [Google Scholar] [CrossRef]
- Blue Cross Blue Shield of North Carolina. Genetic Testing for Cystic Fibrosis AHS-M2017. 2020. Available online: https://www.nchealthplans.com/?gclid=EAIaIQobChMIpKmj9c7d7wIVwaOyCh1MegMZEAAYASAAEgIBdvD_BwE (accessed on 9 January 2024).
- Hilman, B. Sweat Test versus Genetic Testing for Cystic Fibrosis. Lab. Med. 1997, 28, 433–434. [Google Scholar] [CrossRef]
- Terlizzi, V.; Castaldo, G.; Salvatore, D.; Lucarelli, M.; Raia, V.; Angioni, A.; Carnovale, V.; Cirilli, N.; Casciaro, R.; Colombo, C.; et al. Genotype-Phenotype correlation and functional studies in patients with Cystic Fibrosis bearing CFTR complex alleles. J. Med. Genet. 2017, 54, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.V.; Aveta, A.; Comegna, M.; Cernera, G.; Iacotucci, V.; Carnovale, V.; Taccetti, G.; Terlizzi, V.; Castaldo, G. Extensive CFTR Gene Analysis Revealed a Higher Occurrence of CFTR-Related Disorders among Cystic Fibrosis Carriers. J. Clin. Med. 2020, 9, 3583. [Google Scholar] [CrossRef] [PubMed]
- Naerlich, L. Have courage in using nasal potential difference for diagnostic decisions and clinical. J. Cyst. Fibros. 2020, 19, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Kyrilli, S.; Henry, T.; Wilschanski, M.; Fajac, I.; Davies, J.C.; Jais, J.P.; Sermet-Gaudelus, I. Insights into the variability of nasal potential difference, a biomarker of CFTR activity. J. Cyst. Fibros. 2020, 19, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.R.; Paradiso, A.M.; Boucher, R.C. In vivo nasal potential difference: Techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis. Hum. Gene Ther. 1995, 6, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.G.; Geddes, D.M.; Alton, E.W.F.W. Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium. Eur. Respir. J. 1994, 7, 2050–2056. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, K.; Derichs, N.; Fajac, I.; de Jonge, H.R.; Bronsveld, I.; Sermet, I.; Vermeulen, F.; Sheppard, D.N.; Cuppens, H.; Hug, M.; et al. New clinical diagnostic procedures for cystic fibrosis in Europe. J. Cyst. Fibros. 2011, 10 (Suppl. S2), S53–S66. [Google Scholar] [CrossRef] [PubMed]
- Rock, M.; Makholm, L.; Eickholf, J. A new method of sweat testing: The CF Quantum sweat test. J. Cyst. Fibros. 2014, 13, 520–527. [Google Scholar] [CrossRef]
- McCaul, M.; Porter, A.; Barrett, R.; White, P.; Stroiescu, F.; Wallace, G.; Diamond, D. Wearable platform for real-time monitoring of sodium in sweat. Chemphyschem 2018, 19, 1531–1536. [Google Scholar] [CrossRef]
- Dubot, P.; Liang, J.; Dubs, J.; Missiak, Y.; Sarazin, C.; Couderc, F.; Caussé, E. Sweat chloride quantification using capillary electrophoresis. Pract. Lab. Med. 2019, 7, e00114. [Google Scholar] [CrossRef] [PubMed]
- Ďurč, P.; Foret, F.; Homola, L.; Malá, M.; Pokojová, E.; Vinohradská, H.; Dastych, M.; Krausová, D.; Nagy, D.; Bede, O.; et al. Skin wipe test: A simple, inexpensive, and fast approach in the diagnosis of cystic fibrosis. Pediatr. Pulmonol. 2020, 55, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Ray, T.R.; Ivanovic, M.; Curtis, P.M.; Franklin, D.; Guventurk, K.; Jeang, W.J.; Chafetz, J.; Gaertner, H.; Young, G.; Rebollo, S.; et al. Soft, skin-interfaced sweat stickers for cystic fibrosis diagnosis and management. Sci. Transl. Med. 2021, 13, eabd8109. [Google Scholar] [CrossRef] [PubMed]
- Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z.A.; Nyein, H.Y.Y.; Challa, S.; Ryan, S.P.; Fahad, H.M.; Chen, K.; Shahpar, Z.; et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625–4630. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Kim, J.S.; Cutting, G.R.; Searson, P.C. Wearable potentiometric chloride sweat sensor: The critical role of the salt bridge. Anal. Chem. 2016, 88, 12241–12247. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.H.; Thaxton, A.; Jeong, I.C.; Kim, K.; Sosnay, P.R.; Cutting, G.R.; Searson, P.C. Sweat test for cystic fibrosis: Wearable sweat sensor vs. standard laboratory test. J. Cyst. Fibros. 2018, 17, e35–e38. [Google Scholar] [CrossRef] [PubMed]
- Kassal, P.; Steinberg, M.D.; Horak, E.; Steinberg, I.M. Wireless fluorimeter for mobile and low cost chemical sensing: A paper based chloride assay. Sens. Actuators B 2018, 275, 230–236. [Google Scholar] [CrossRef]
- Creer, M.; Zhang, C.; Kim, J.; Yang, J.; Liu, Z. Ultrafast Nonlinear Imaging and Spectroscopy V; Liu, Z., Ed.; SPIE: Bellingham, WA, USA, 2017; p. 17. [Google Scholar]
- Koh, D.; Kang, Y.; Xue, S.; Lee, R.M.; Pielak, J.; Kim, T.; Hwang, S.; Min, A.; Banks, P.; Bastien, M.C.; et al. Soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 2016, 8, 366ra165. [Google Scholar] [CrossRef]
- Choi, J.; Kang, D.; Han, S.; Kim, S.B.; Rogers, J.A. Thin, Soft, Skin-Mounted Microfluidic Networks with Capillary Bursting Valves for Chrono-Sampling of Sweat. Adv. Healthc. Mater. 2017, 6, 5. [Google Scholar] [CrossRef]
- Choi, J.; Ghaffari, R.; Baker, L.B.; Rogers, J.A. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 2018, 16, eaar3921. [Google Scholar] [CrossRef]
- Choi, J.; Xue, Y.; Xia, W.; Ray, T.R.; Reeder, J.T.; Bandodkar, A.J.; Kang, D.; Xu, S.; Huang, Y.; Rogers, J.A. Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands. Lab Chip 2017, 17, 2572–2580. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Choi, J.; Lee, S.P.; Jeang, W.J.; Agyare, P.; Gutruf, P.; Wang, S.; Sponenburg, R.A.; Reeder, J.T.; Schon, S.; et al. Soft, skin-interfaced microfluidic systems with passive galvanic stopwatches for precise chronometric sampling of sweat. Adv. Mater. 2019, 31, 1902109. [Google Scholar] [CrossRef]
- Reeder, J.T.; Xue, Y.; Franklin, D.; Deng, Y.; Choi, J.; Prado, O.; Kim, R.; Liu, C.; Hanson, J.; Ciraldo, J.; et al. Resettable skin interfaced microfluidic sweat collection devices with chemesthetic hydration feedback. Nat. Commun. 2019, 10, 5513. [Google Scholar] [CrossRef]
- Reeder, J.T.; Choi, J.; Xue, Y.; Gutruf, P.; Hanson, J.; Liu, M.; Ray, T.; Bandodkar, A.J.; Avila, R.; Xia, W.; et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv. 2019, 5, eaau6356. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, H.; Kim, S.B.; Wu, Y.; Ostojich, D.; Park, S.H.; Wang, X.; Weng, Z.; Li, R.; Bandodkar, A.J.; et al. Passive sweat collection and colorimetric analysis of biomarkers relevant to kidney disorders using a soft microfluidic system. Lab Chip 2019, 19, 1545–1555. [Google Scholar] [CrossRef]
- Choi, J.; Chen, S.; Deng, Y.; Xue, Y.; Reeder, J.T.; Franklin, D.; Oh, Y.S.; Model, J.; Aranyosi, A.J.; Lee, S.P.; et al. Skin-interfaced microfluidic systems that combine hard and soft materials for demanding applications in sweat capture and analysis. Adv. Healthc. Mater. 2021, 10, 2000722. [Google Scholar] [CrossRef] [PubMed]
- Philips, J. Sweat Chloride Should Be the First-Line Cystic Fibrosis Test, But Often Isn’t. Available online: https://pediatricnationwide.org/2017/06/27/sweat-chloride-should-be-the-first-line-cf-test-but-often-isnt/ (accessed on 11 January 2024).
- Ratkiewicz, M.; Pastore, M.; Sharrock, M.C.; Coy, K.; Thompson, R.; Hayes, D., Jr.; Sheikh, S.I. Role of CFTR mutation analysis in the diagnostic algorithm for cystic fibrosis. World J. Pediatr. 2017, 13, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Goubau, C.; Wilschanski, M.; Skalicka, V.; Lebeque, P.; Southern, K.W.; Sermet, I.; Munck, A.; Derichs, N.; Middleton, P.G.; Hjelte, L.; et al. Phenotypic characterisation of patients with intermediate sweat chloride values: Towards validation of the European diagnostic algorithm for Cystic Fibrosis. Thorax 2009, 64, 683–691. [Google Scholar] [CrossRef]
- De Boeck, K. Diagnostic Procedures, Clinical Caracteristics and Counseling in Cystic Fibrosis. Ann. Nestlé 2006, 64, 119–129. [Google Scholar] [CrossRef]
- Standards for the Clinical Care of Children and Adults with Cystic Fibrosis in the UK Second Edition. December 2011. Available online: https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/Cystic%20Fibrosis%20Trust%20Standards%20of%20care.pdf (accessed on 14 January 2024).
- Southern, K.W. Cystic Fibrosis and Formes Frustes of CFTR–Related Disease. Respiration 2007, 74, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Karczeski, B.; Cutting, G. Diagnosis of Cystic Fibrosis, CFTR-Related Disease and Screening. In Cystic Fibrosis in the 21st Century; Bush, A., Alton, E.W.F.W., Griesenbach, U., Jaffe, A., Eds.; Karger Publishers: Basel, Switzerland, 2006; Volume 34, pp. 69–76. [Google Scholar]
- Pagin, A.; Sermet-Gaudelus, I.; Burgel, P.R. Genetic diagnosis in practice: From Cystic Fibrosis to CFTR—Related disorders. Arch. Pediatr. 2020, 27 (Suppl. S1), eS25–eS29. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.P.; Samways, J.M.; Porteous, D.J.; Carothers, A.; Greening, A.P.; Innes, J.A. Correlation between nasal potential difference measurements, genotype and clinical condition in patients with cystic fibrosis. Eur. Respir. J. 1997, 10, 2018–2022. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.; Drumm, M. The Influence of Genetics on Cystic Fibrosis Phenotypes. Cold Spring Harb. Perspect. Med. 2012, 2, a009548. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, W.; Knowles, M.R. Cystic Fibrosis Disease Modifiers: Complex Genetics Defines the Phenotypic Diversity in a Monogenic Disease. Annu. Rev. Genom. Hum. Genet. 2018, 19, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Decaestecker, K.; Decaestecker, E.; Castellani, C.; Jaspers, M.; Cuppens, H.; DeBoeck, K. Genotype/Phenotype correlation of the G85E mutation in a large cohort of Cystic Fibrosis patients. Eur. Respir. J. 2004, 23, 679–684. [Google Scholar] [CrossRef] [PubMed]
- DeGracia, J.; Mata, F.; Alvarez, A.; Casals, T.; Gatner, S.; Vendrell, M.; de la Rosa, D.; Guarner, L.; Hermosilla, E. Genotype-Phenotype Correlation for pulmonary function in Cystic Fibrosis. Thorax 2005, 60, 558–563. [Google Scholar] [CrossRef]
- Cutting, G. Cystic Fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015, 16, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Paranjape, S.; Zeitlin, P. Atypical Cystic Fibrosis and CFTR-related diseases. Clin. Rev. Allergy Immunol. 2008, 35, 116–123. [Google Scholar] [CrossRef]
- Kiesewetter, S.; Macek Jr, M.; Davis, C.; Curristin, S.M.; Chu, C.S.; Graham, C.; Shrimpton, A.E.; Cashman, S.M.; Tsui, L.C.; Mickle, J. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat. Genet. 1993, 5, 274–278. [Google Scholar] [CrossRef]
- Ahmed, N.; Corey, M.; Forstner, G.; Zielenski, J.; Tsui, L.C.; Ellis, L.; Tullis, E.; Durie, P. Molecular consequences of CFTR mutations in the exocrine pancreas. Gut 2003, 52, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Noone, P.; Zhou, Z.; Silverman, L.; Jowell, S.; Knowles, M.; Cohn, A. Cystic Fibrosis Gene Mutations and Pancreatitis Risk: Relation to Epitelial Ion Transport and Trypsin Inhibitor Gene Mutations. Gastroenterology 2001, 121, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Cutting, G. Causes of Variation in the Cystic Fibrosis Phenotype. Ann. Nestlé 2006, 64, 111–117. [Google Scholar] [CrossRef]
- Durno, C.; Corey, M.; Zielenski, J.; Tullis, E.; Tsui, L.C.; Durie, P. Genotype and Phenotype Correlations in Patients with Cystic Fibrosis and Pancreatitis. Gastroenterology 2002, 123, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, C.; Zerofsky, M.; Sathem, M.; Troendle, D.; Perito, E. Accute Recurrent and Chronic Pancreatitis as Initial Manifestations of Cystic Fibrosis and CFTR-Related Disorders. Pancreas 2019, 48, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Mark, V.; Zielenski, J.; Tsui, L.C.; Durie, P.; Zini, A.; Martin, S.; Longley, T.B.; Jarvi, K.A. Proportion of Cystic Fibrosis Gene Mutations Not Detected by Routine Testing in Men with Obstructive Azoospermia. JAMA 1999, 281, 2217–2224. [Google Scholar] [CrossRef]
- Le, C.; McCrary, H.C.; Chang, E. Cystic Fibrosis Sinusitis. In Rhinosinusitis with Nasal Polyposis; Woodworth, B.A., Poetker, D.M., Reh, D.D., Eds.; Karger: Basel, Switzerland, 2016; Volume 79, pp. 29–37. [Google Scholar] [CrossRef]
- Noone, P.; Knowles, M. “CFTR-opathies”: Disease phenotypes associated with CFTR gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
- Highsmith, W.E.; Burch, L.H.; Zhou, Z.; Olsen, J.C.; Boat, T.E.; Spock, A.; Gorvoy, J.D.; Quittel, L.; Friedman, K.J.; Silverman, L.M.; et al. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N. Engl. J. Med. 1994, 331, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Kawoosa Masarat, S.; Bhat, M.A.; Ali, S.W.; Hafeezi, I.; Shastri, S. Clinical and Mutation Profile of Children with Cystic Fibrosis in Jammu and Kashmir. Indian Pediatr. 2014, 51, 185–189. [Google Scholar] [CrossRef]
- Ferrari, M.; Cremonesi, L. Genotype-phenotype correlation in Cystic Fibrosis patients. Ann. Biol. Clin. 1996, 54, 235–241. [Google Scholar]
- Zemanick, E.; Polineni, D. Unraveling the CFTR Function–Phenotype Connection for Precision Treatment in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 199, 1053–1054. [Google Scholar] [CrossRef]
- Zielenski, J. Genotype and Phenotype in Cystic Fibrosis. Respiration 2000, 67, 117–133. [Google Scholar] [CrossRef]
- Braun, A.; Farrell, P.; Ferec, C.; Audrezet, M.P.; Laxova, A.; Li, Z.; Kosorok, M.R.; Rosenberg, M.A.; Gershan, W.M. Cystic Fibrosis mutations and genotype-pulmonary phenotype analysis. J. Cyst. Fibros. 2006, 5, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Abuzeid, W.M.; Song, C.; Fastenberg, J.H.; Fang, C.H.; Ayoub, N.; Jerschow, E.; Mohabir, P.K.; Hwang, P.H. Correlations between Cystic Fibrosis genotype and sinus disease severity in chronic rhinosinusitis. Laringoscope 2018, 128, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Polizi, A.; Tesse, R.; Santostasi, T.D.A.; Manca, A.; Logrillo, V.P.; Cazzato, M.D.; Pantaleo, M.G.; Armenio, L. Genotype-phenotype correlation in Cystic Fibrosis patients bearing a novel complex allele. Eur. Respir. J. 2011, 34, 4297. [Google Scholar] [CrossRef]
- Salvatore, F.; Scudiero, O.; Castaldo, G. Genotype-phenotype correlation in Cystic Fibrosis: The role of modifiers genes. Am. J. Med. Genet. 2002, 111, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Colombo, C.; Battezzati, P.M.; Crosignani, A.; Morabito, A.; Costantini, D.; Padoan, R.; Giunta, A. Liver disease in cystic fibrosis: A prospective study on incidence, risk factors, and outcome. J. Hepatol. 2002, 36, 1374–1382. [Google Scholar] [CrossRef]
- Narkewicz, M.R. Markers of cystic fibrosis-associated liver disease. J. Pediatr. Gastroenterol. Nutr. 2001, 32, 421–422. [Google Scholar] [CrossRef] [PubMed]
- Debray, D.; Kelly, D.; Houwen, R.; Strandvik, B.; Colombo, C. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J. Cyst. Fibros. 2011, 10 (Suppl. S2), S29–S36. [Google Scholar] [CrossRef]
- Tamburino, L.; Guglielmino, A.; Venti, E.; Chamayou, S. Molecular analysis of mutations and polymorpohisms in the CFTR gene in male infertility. RBM Online 2008, 17, 27–35. [Google Scholar] [CrossRef]
- Levy, E.; Granados, P.; Rawe, V.; Olmedo, S.B.; Luna, M.; Cafferata, E.; Pivetta, O.H. Mutations in CFTR gene and clinical correlation in Argentine patients with congenital bilateral absence of the vas deferens. Medicina 2004, 64, 213–218. [Google Scholar] [PubMed]
- Mussaffi, H.; Prais, D.; Mei-Zahav, M.; Blau, H. Cystic Fibrosis mutations with widely variable phenotype: The D1152H example. Pediatr. Pulmonol. 2006, 41, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Sosnay, P.R.; Siklosi, K.R.; Van Goor, F.; Kaniecki, K.; Yu, H.; Sharma, N.; Ramalho, A.S.; Amaral, M.D.; Dorfman, R.; Zielenski, J.; et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 2013, 45, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Ronan, N.J.; Elborn, J.S.; Plant, B.J. Current and emerging comorbidities in cystic fibrosis. Presse Med. 2017, 46 Pt 2, e125–e138. [Google Scholar] [CrossRef] [PubMed]
- Pique, L.; Graham, S.; Pearl, M.; Kharrazi, M.; Schrijver, I. Cystic fibrosis newborn screening programs: Implications of the CFTR variant spectrum in nonwhite patients. Genet. Med. 2017, 19, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Fajac, I.; Wainwright, C.E. New treatments targeting the basic defects in cystic fibrosis. Presse Med. 2017, 46 Pt 2, e165–e175. [Google Scholar] [CrossRef]
- Ringshausen, F.C.; Hellmuth, T.; Dittrich, A.M. Was ist gesichert in der Therapie der Mukoviszidose? [Evidence-based treatment of cystic fibrosis]. Internist 2020, 61, 1212–1229. [Google Scholar] [CrossRef]
Interpretation | ECFS Guidelines [71] | Australian Guidelines [44,53] | The Manufacturer of the Nanoduct [72] |
---|---|---|---|
Normal (mmol/L) | <30 | <40 | <60 |
Positive (mmol/L) | ≥60 | >60 | >80 |
Equivocal (mmol/L) | 30–59 | 40–59 (infants 30–59) | 60–80 |
Study | Criteria | Reference |
---|---|---|
ECFS Standards of Care (2018) |
| [71] |
CF Foundation (2015) |
| [29] |
Australasian Guideline (2017) |
| [81] |
European Diagnostic Working Group (2006) |
| [143] |
Royal College of Paediatrics ND Child Health (2017) |
| [142] |
American Diagnostic Criteria (2003) |
| [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anton-Păduraru, D.-T.; Azoicăi, A.N.; Trofin, F.; Mîndru, D.E.; Murgu, A.M.; Bocec, A.S.; Iliescu Halițchi, C.O.; Ciongradi, C.I.; Sȃrbu, I.; Iliescu, M.L. Diagnosing Cystic Fibrosis in the 21st Century—A Complex and Challenging Task. Diagnostics 2024, 14, 763. https://doi.org/10.3390/diagnostics14070763
Anton-Păduraru D-T, Azoicăi AN, Trofin F, Mîndru DE, Murgu AM, Bocec AS, Iliescu Halițchi CO, Ciongradi CI, Sȃrbu I, Iliescu ML. Diagnosing Cystic Fibrosis in the 21st Century—A Complex and Challenging Task. Diagnostics. 2024; 14(7):763. https://doi.org/10.3390/diagnostics14070763
Chicago/Turabian StyleAnton-Păduraru, Dana-Teodora, Alice Nicoleta Azoicăi, Felicia Trofin, Dana Elena Mîndru, Alina Mariela Murgu, Ana Simona Bocec, Codruța Olimpiada Iliescu Halițchi, Carmen Iulia Ciongradi, Ioan Sȃrbu, and Maria Liliana Iliescu. 2024. "Diagnosing Cystic Fibrosis in the 21st Century—A Complex and Challenging Task" Diagnostics 14, no. 7: 763. https://doi.org/10.3390/diagnostics14070763
APA StyleAnton-Păduraru, D. -T., Azoicăi, A. N., Trofin, F., Mîndru, D. E., Murgu, A. M., Bocec, A. S., Iliescu Halițchi, C. O., Ciongradi, C. I., Sȃrbu, I., & Iliescu, M. L. (2024). Diagnosing Cystic Fibrosis in the 21st Century—A Complex and Challenging Task. Diagnostics, 14(7), 763. https://doi.org/10.3390/diagnostics14070763