Non-Invasive Assessment of Intravascular Pressure Gradients: A Review of Current and Proposed Novel Methods
Abstract
:1. Introduction
2. Literature Search
3. From Images to Pressure Gradients
4. Imaging Modalities
4.1. Magnetic Resonance Imaging
4.2. Ultrasound
5. Estimation of Pressure Gradients in the Heart and the Larger Thoracic Arteries
5.1. Aortic and Mitral Valves
5.2. Pulmonary Arteries
5.3. Coarctation of the Aorta
5.4. Coronary Arteries
6. Estimation of Pressure Gradients in Carotids and Peripheral Vessels
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carabello, B.A.; Crawford, F.A. Valvular Heart Disease. N. Engl. J. Med. 1997, 337, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Chen, G.; Alexander, B.; Cannesson, M. Non-invasive continuous blood pressure monitoring: A review of current applications. Front. Med. 2013, 7, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Fan, Z.; Xie, G.; He, Y.; Natsuaki, Y.; Jin, N.; Bi, X.; An, J.; Liu, X.; Zhang, Z.; et al. Pressure gradient measurement in the coronary artery using 4D PC-MRI: Towards noninvasive quantification of fractional flow reserve. J. Cardiovasc. Magn. Reson. 2014, 16, O55. [Google Scholar] [CrossRef]
- Donati, F.; Figueroa, C.A.; Smith, N.P.; Lamata, P.; Nordsletten, D.A. Non-invasive pressure difference estimation from PC-MRI using the work-energy equation. Med. Image Anal. 2015, 26, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Ralovich, K.; Itu, L.; Vitanovski, D.; Sharma, P.; Ionasec, R.; Mihalef, V.; Krawtschuk, W.; Zheng, Y.; Everett, A.; Pongiglione, G.; et al. Noninvasive hemodynamic assessment, treatment outcome prediction and follow-up of aortic coarctation from MR imaging. Med. Phys. 2015, 42, 2143–2156. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Lee, S.H.; Voswinckel, R.; Palazzini, M.; Jais, X.; Marinelli, A.; Barst, R.J.; Ghofrani, H.A.; Jing, Z.-C.; Opitz, C.; et al. Complications of Right Heart Catheterization Procedures in Patients with Pulmonary Hypertension in Experienced Centers. J. Am. Coll. Cardiol. 2006, 48, 2546–2552. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, R.A.; Carabello, B.A. Hemodynamics in the Cardiac Catheterization Laboratory of the 21st Century. Circulation 2012, 125, 2138–2150. [Google Scholar] [CrossRef] [Green Version]
- Syamasundar Rao, P.; Carey, P. Doppler ultrasound in the prediction of pressure gradients across aortic coarctation. Am. Heart J. 1989, 118, 299–307. [Google Scholar] [CrossRef]
- de Vecchi, A.; Clough, R.E.; Gaddum, N.R.; Rutten, M.C.M.; Lamata, P.; Schaeffter, T.; Nordsletten, D.A.; Smith, N.P. Catheter-Induced Errors in Pressure Measurements in Vessels: An In-Vitro and Numerical Study. IEEE Trans. Biomed. Eng. 2014, 61, 1844–1850. [Google Scholar] [CrossRef]
- Mermel, L.A. Prevention of Intravascular Catheter–Related Infections. Ann. Intern. Med. 2000, 132, 391–402. [Google Scholar] [CrossRef]
- Omran, H.; Schmidt, H.; Hackenbroch, M.; Illien, S.; Bernhardt, P.; von der Recke, G.; Fimmers, R.; Flacke, S.; Layer, G.; Pohl, C.; et al. Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: A prospective, randomised study. Lancet 2003, 361, 1241–1246. [Google Scholar] [CrossRef]
- Carabello, B.A.; Barry, W.H.; Grossman, W. Changes in arterial pressure during left heart pullback in patients with aortic stenosis: A sign of severe aortic stenosis. Am. J. Cardiol. 1979, 44, 424–427. [Google Scholar] [CrossRef]
- Garcia, L.A.; Carrozza, J.P. Physiologic Evaluation of Translesion Pressure Gradients in Peripheral Arteries: Comparison of Pressure Wire and Catheter-Derived Measurements. J. Interv. Cardiol. 2007, 20, 63–65. [Google Scholar] [CrossRef]
- Søndergaard, L.; Ståhlberg, F.; Thomsen, C. Magnetic Resonance Imaging of Valvular Heart Disease. J. Magn. Reson. Imaging 1999, 10, 627–638. [Google Scholar] [CrossRef]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F.; Otto, C.M. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2017, 30, 372–392. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [Green Version]
- Hatle, L.; Brubakk, A.; Tromsdal, A.; Angelsen, B. Noninvasive assessment of pressure drop in mitral stenosis by Doppler ultrasound. Br. Heart J. 1978, 40, 131–140. [Google Scholar] [CrossRef]
- Yoganathan, A.P.; Cape, E.G.; Sung, H.W.; Williams, F.P.; Jimoh, A. Review of hydrodynamic principles for the cardiologist: Applications to the study of blood flow and jets by imaging techniques. J. Am. Coll. Cardiol. 1988, 12, 1344–1353. [Google Scholar] [CrossRef]
- Yang, G.Z.; Kilner, P.J.; Wood, N.B.; Underwood, S.R.; Firmin, D.N. Computation of flow pressure fields from magnetic resonance velocity mapping. Magn. Reson. Med. 1996, 36, 520–526. [Google Scholar] [CrossRef]
- Olesen, J.; Traberg, M.; Pihl, M.; Jensen, J. Noninvasive estimation of 2-D pressure gradients in steady flow using ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1409–1418. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Ren, L.; Xiong, H.; Gao, Z.; Xu, P.; Huang, W.; Wu, W. Functional assessment of the stenotic carotid artery by CFD-based pressure gradient evaluation. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H645–H653. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Evangelista, A.; Griffin, B.P.; Iung, B.; Otto, C.M.; Pellikka, P.A.; Quiñones, M.; et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur. J. Echocardiogr. 2009, 10, 1–25. [Google Scholar] [CrossRef]
- Donati, F.; Myerson, S.; Bissell, M.M.; Smith, N.P.; Neubauer, S.; Monaghan, M.J.; Nordsletten, D.A.; Lamata, P. Beyond Bernoulli: Improving the Accuracy and Precision of Noninvasive Estimation of Peak Pressure Drops. Circ. Cardiovasc. Imaging 2017, 10, e005207. [Google Scholar] [CrossRef] [PubMed]
- Ebbers, T.; Wigström, L.; Bolger, A.F.; Engvall, J.; Karlsson, M. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magn. Reson. Med. 2001, 45, 872–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canchi, T.; Kumar, S.D.; Ng, E.Y.K.; Narayanan, S. A Review of Computational Methods to Predict the Risk of Rupture of Abdominal Aortic Aneurysms. Biomed. Res. Int. 2015, 2015, 861627. [Google Scholar] [CrossRef] [PubMed]
- Fache, J.S. Magnetic resonance imaging. Can. Fam. Phys. 1986, 32, 1087–1090. [Google Scholar]
- Berger, A. Magnetic resonance imaging. BMJ 2002, 324, 35. [Google Scholar] [CrossRef]
- Moran, P.R. A flow velocity zeugmatographic interlace for NMR imaging in humans. Magn. Reson. Imaging 1982, 1, 197–203. [Google Scholar] [CrossRef]
- Bryant, D.J.; Payne, J.A.; Firmin, D.N.; Longmore, D.B. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J. Comput. Assist. Tomogr. 1984, 8, 588–593. [Google Scholar] [CrossRef]
- Moran, P.R.; Moran, R.A.; Karstaedt, N. Verification and evaluation of internal flow and motion. True magnetic resonance imaging by the phase gradient modulation method. Radiology 1985, 154, 433–441. [Google Scholar] [CrossRef]
- Dyverfeldt, P.; Bissell, M.; Barker, A.J.; Bolger, A.F.; Carlhäll, C.-J.; Ebbers, T.; Francios, C.J.; Frydrychowicz, A.; Geiger, J.; Giese, D.; et al. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 2015, 17, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohns, J.M.; Kowallick, J.T.; Joseph, A.A.; Merboldt, K.D.; Voit, D.; Fasshauer, M.; Staab, W.; Frahm, J.; Lotz, J.; Unterberg-Buchwald, C. Peak flow velocities in the ascending aorta-real-time phase-contrast magnetic resonance imaging vs. cine magnetic resonance imaging and echocardiography. Quant. Imaging Med. Surg. 2015, 5, 685–690. [Google Scholar] [PubMed]
- Bollache, E.; van Ooij, P.; Powell, A.; Carr, J.; Markl, M.; Barker, A.J. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int. J. Cardiovasc. Imaging 2016, 32, 1529–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, C.; Kihlberg, J.; Ebbers, T.; Lindström, L.; Carlhäll, C.-J.; Engvall, J.E. Phase-contrast MRI volume flow—A comparison of breath held and navigator based acquisitions. BMC Med. Imaging 2016, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Gerber, A.J.; Peterson, B.S. What is an image? J. Am. Acad. Child. Adolesc. Psychiatry 2008, 47, 245–248. [Google Scholar] [CrossRef]
- Huang, C.-H.; Chen, C.-C.V.; Siow, T.-Y.; Hsu, S.-H.S.; Hsu, Y.-H.; Jaw, F.-S.; Chang, C. High-Resolution Structural and Functional Assessments of Cerebral Microvasculature Using 3D Gas ΔR2*-mMRA. PLoS ONE 2013, 8, e78186. [Google Scholar] [CrossRef]
- Saloner, D.; Liu, J.; Haraldsson, H. MR physics in practice: How to optimize acquisition quality and time for cardiac MR imaging. Magn. Reson. Imaging Clin. N. Am. 2015, 23, 1–6. [Google Scholar] [CrossRef]
- Sun, A.; Zhao, B.; Li, Y.; He, Q.; Li, R.; Yuan, C. Real-time phase-contrast flow cardiovascular magnetic resonance with low-rank modeling and parallel imaging. J. Cardiovasc. Magn. Reson. 2017, 19. [Google Scholar] [CrossRef]
- Patil, P.; Dasgupta, B. Role of diagnostic ultrasound in the assessment of musculoskeletal diseases. Ther. Adv. Musculoskelet. Dis. 2012, 4, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.A. Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach; Cambridge University Press: New York, NY, USA, 1996; ISBN 978-0-521-46484-0. [Google Scholar]
- Errico, C.; Pierre, J.; Pezet, S.; Desailly, Y.; Lenkei, Z.; Couture, O.; Tanter, M. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 2015, 527, 499–502. [Google Scholar] [CrossRef]
- Hegrenaes, L.; Hatle, L. Aortic stenosis in adults. Non-invasive estimation of pressure differences by continuous wave Doppler echocardiography. Br. Heart J. 1985, 54, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Torok, R.D.; Campbell, M.J.; Fleming, G.A.; Hill, K.D. Coarctation of the aorta: Management from infancy to adulthood. World J. Cardiol. 2015, 7, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Bach, D.S. Echo/Doppler evaluation of hemodynamics after aortic valve replacement: Principles of interrogation and evaluation of high gradients. JACC Cardiovasc. Imaging 2010, 3, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Humbert, M.; Vachiery, J.-L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. Rev. Esp. Cardiol. 2016, 69, 177. [Google Scholar] [CrossRef] [PubMed]
- Stamm, R.B.; Martin, R.P. Quantification of pressure gradients across stenotic valves by Doppler ultrasound. J. Am. Coll. Cardiol. 1983, 2, 707–718. [Google Scholar] [CrossRef]
- Warnes, C.A.; Williams, R.G.; Bashore, T.M.; Child, J.S.; Connolly, H.M.; Dearani, J.A.; Del Nido, P.; Fasules, J.W.; Graham, T.P.; Hijazi, Z.M.; et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults with Congenital Heart Disease). Developed in Collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2008, 52, e143–e263. [Google Scholar] [PubMed]
- Saeed, M.; Van, T.A.; Krug, R.; Hetts, S.W.; Wilson, M.W. Cardiac MR imaging: Current status and future direction. Cardiovasc. Diagn. Ther. 2015, 5, 290–310. [Google Scholar]
- Hochhegger, B.; de Souza, V.V.S.; Marchiori, E.; Irion, K.L.; Souza, A.S., Jr.; Elias Junior, J.; Rodrigues, R.S.; Barreto, M.M.; Escuissato, D.L.; Mançano, A.D.; et al. Chest magnetic resonance imaging: A protocol suggestion. Radiol Bras 2015, 48, 373–380. [Google Scholar] [CrossRef]
- Nayak, K.S.; Nielsen, J.-F.; Bernstein, M.A.; Markl, M.; Gatehouse, P.; Botnar, R.M.; Saloner, D.; Lorenz, C.; Wen, H.; Hu, B.S.; et al. Cardiovascular magnetic resonance phase contrast imaging. J. Cardiovasc. Magn. Reson. 2015, 17, 71. [Google Scholar] [CrossRef] [Green Version]
- Knutsen, K.M.; Bae, E.A.; Sivertssen, E.; Grendahl, H. Doppler ultrasound in mitral stenosis. Assessment of pressure gradient and atrioventricular pressure half-time. Acta Med. Scand. 1982, 211, 433–436. [Google Scholar] [CrossRef]
- Hatle, L.; Angelsen, B.A.; Tromsdal, A. Non-invasive assessment of aortic stenosis by Doppler ultrasound. Br. Heart J. 1980, 43, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Currie, P.J.; Seward, J.B.; Reeder, G.S.; Vlietstra, R.E.; Bresnahan, D.R.; Bresnahan, J.F.; Smith, H.C.; Hagler, D.J.; Tajik, A.J. Continuous-wave Doppler echocardiographic assessment of severity of calcific aortic stenosis: A simultaneous Doppler-catheter correlative study in 100 adult patients. Circulation 1985, 71, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Currie, P.J.; Hagler, D.J.; Seward, J.B.; Reeder, G.S.; Fyfe, D.A.; Bove, A.A.; Taji, A.J. Instantaneous pressure gradient: A simultaneous doppler and dual catheter correlative study. J. Am. Coll. Cardiol. 1986, 7, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Burstow, D.J.M.; Nishimura, R.A.; Bailey, K.R.; Reeder, G.S.; Holmes, D.R.J.; Seward, J.B.; Tajik, A.J. Continuous Wave Doppler Echocardiographic Measurement of Prosthetic Valve Gradients: A Simultaneous Doppler-Catheter Correlative Study. Circulation 1989, 80, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Yeager, M.; Yock, P.G.; Popp, R.L. Comparison of Doppler-derived pressure gradient to that determined at cardiac catheterization in adults with aortic valve stenosis: Implications for management. Am. J. Cardiol. 1986, 57, 644–648. [Google Scholar] [CrossRef]
- Ohlsson, J.; Wranne, B. Noninvasive assessment of valve area in patients with aortic stenosis. J. Am. Coll. Cardiol. 1986, 7, 501–508. [Google Scholar] [CrossRef]
- Baumgartner, H.; Stefenelli, T.; Niederberger, J.; Schima, H.; Maurer, G. “Overestimation” of catheter gradients by Doppler ultrasound in patients with aortic stenosis: A predictable manifestation of pressure recovery. J. Am. Coll. Cardiol. 1999, 33, 1655–1661. [Google Scholar] [CrossRef]
- VanAuker, M.D.; Hla, A.; Meisner, J.S.; Strom, J.A. Simultaneous Doppler/catheter measurements of pressure gradients in aortic valve disease: A correction to the Bernoulli equation based on velocity decay in the stenotic jet. J. Heart Valve Dis. 2000, 9, 291–298. [Google Scholar] [PubMed]
- Yamazawa, H. Accuracy of the Doppler-derived pressure gradient in pediatric patients with aortic valvular stenosis: Is the correction for pressure recovery necessary? Hokkaido Igaku Zasshi 2010, 85, 225–231. [Google Scholar]
- Eichenberger, A.C.; Jenni, R.; von Schulthess, G.K. Aortic valve pressure gradients in patients with aortic valve stenosis: Quantification with velocity-encoded cine MR imaging. AJR Am. J. Roentgenol. 1993, 160, 971–977. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Hioka, T.; Kaga, S.; Mikami, T.; Okada, K.; Murayama, M.; Masauzi, N.; Nakabachi, M.; Nishino, H.; Yokoyama, S.; Nishida, M.; et al. Overestimation by echocardiography of the peak systolic pressure gradient between the right ventricle and right atrium due to tricuspid regurgitation and the usefulness of the early diastolic transpulmonary valve pressure gradient for estimating pulmonary artery pressure. Heart Vessels 2017, 32, 833–842. [Google Scholar] [PubMed]
- Fisher, M.R.; Forfia, P.R.; Chamera, E.; Housten-Harris, T.; Champion, H.C.; Girgis, R.E.; Corretti, M.C.; Hassoun, P.M. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2009, 179, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Magnino, C.; Omedè, P.; Avenatti, E.; Presutti, D.; Iannaccone, A.; Chiarlo, M.; Moretti, C.; Gaita, F.; Veglio, F.; Milan, A.; et al. Inaccuracy of Right Atrial Pressure Estimates Through Inferior Vena Cava Indices. Am. J. Cardiol. 2017, 120, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Janda, S.; Shahidi, N.; Gin, K.; Swiston, J. Diagnostic accuracy of echocardiography for pulmonary hypertension: A systematic review and meta-analysis. Heart 2011, 97, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Nogami, M.; Ohno, Y.; Koyama, H.; Kono, A.; Takenaka, D.; Kataoka, T.; Kawai, H.; Kawamitsu, H.; Onishi, Y.; Matsumoto, K.; et al. Utility of phase contrast MR imaging for assessment of pulmonary flow and pressure estimation in patients with pulmonary hypertension: Comparison with right heart catheterization and echocardiography. J. Magn. Reson. Imaging 2009, 30, 973–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, G.R.; Allen, H.D. Accuracy and pitfalls of Doppler evaluation of the pressure gradient in aortic coarctation. J. Am. Coll. Cardiol. 1986, 7, 1379–1385. [Google Scholar] [CrossRef]
- Houston, A.B.; Simpson, I.A.; Pollock, J.C.; Jamieson, M.P.; Doig, W.B.; Coleman, E.N. Doppler ultrasound in the assessment of severity of coarctation of the aorta and interruption of the aortic arch. Br. Heart J. 1987, 57, 38–43. [Google Scholar] [CrossRef]
- Wisotzkey, B.L.; Hornik, C.P.; Green, A.S.; Barker, P.C.A. Comparison of invasive and non-invasive pressure gradients in aortic arch obstruction. Cardiol. Young 2015, 25, 1348–1357. [Google Scholar] [CrossRef]
- Tang, L.; Forbes, T.J.; Du, W.; Zilberman, M.V. Echocardiographic Evaluation of Pressure Gradient across the Stent in Patients Treated for Coarctation of the Aorta. Cong. Heart Dis. 2009, 4, 269–272. [Google Scholar] [CrossRef]
- Oshinski, J.N.; Parks, W.J.; Markou, C.P.; Bergman, H.L.; Larson, B.E.; Ku, D.N.; Mukundan, S.; Pettigrew, R.I. Improved measurement of pressure gradients in aortic coarctation by magnetic resonance imaging. J. Am. Coll. Cardiol. 1996, 28, 1818–1826. [Google Scholar] [CrossRef]
- Itu, L.; Sharma, P.; Ralovich, K.; Mihalef, V.; Ionasec, R.; Everett, A.; Ringel, R.; Kamen, A.; Comaniciu, D. Non-invasive hemodynamic assessment of aortic coarctation: Validation with in vivo measurements. Ann. Biomed. Eng. 2013, 41, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, J.A.; Valverde, I.; Beerbaum, P.B.; Greil, G.F.; Schaeffter, T.; Razavi, R.; Hurtado, D.E.; Uribe, S.; Figueroa, C.A. Pressure gradient prediction in aortic coarctation using a computational-fluid-dynamics model: Validation against invasive pressure catheterization at rest and pharmacological stress. J. Cardiovasc. Magn. Reson. 2015, 17, Q78. [Google Scholar] [CrossRef]
- Goubergrits, L.; Riesenkampff, E.; Yevtushenko, P.; Schaller, J.; Kertzscher, U.; Hennemuth, A.; Berger, F.; Schubert, S.; Kuehne, T. MRI-based computational fluid dynamics for diagnosis and treatment prediction: Clinical validation study in patients with coarctation of aorta. J. Magn. Reson. Imaging 2015, 41, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Mirzaee, H.; Henn, T.; Krause, M.J.; Goubergrits, L.; Schumann, C.; Neugebauer, M.; Kuehne, T.; Preusser, T.; Hennemuth, A. MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study. J. Magn. Reson. Imaging 2017, 45, 139–146. [Google Scholar] [CrossRef]
- Chest Pain of Recent Onset: Assessment and Diagnosis|Guidance and Guidelines|NICE. Available online: https://www.nice.org.uk/guidance/cg95 (accessed on 9 August 2018).
- Deng, Z.; Fan, Z.; Lee, S.-E.; Nguyen, C.; Xie, Y.; Pang, J.; Bi, X.; Yang, Q.; Choi, B.-W.; Kim, J.-S.; et al. Noninvasive measurement of pressure gradient across a coronary stenosis using phase contrast (PC)-MRI: A feasibility study. Magn. Reson. Med. 2017, 77, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Nasiraei-Moghaddam, A.; Behrens, G.; Fatouraee, N.; Agarwal, R.; Choi, E.T.; Amini, A.A. Factors affecting the accuracy of pressure measurements in vascular stenoses from phase-contrast MRI. Magn. Reson. Med. 2004, 52, 300–309. [Google Scholar] [CrossRef] [Green Version]
- Lum, D.P.; Johnson, K.M.; Paul, R.K.; Turk, A.S.; Consigny, D.W.; Grinde, J.R.; Mistretta, C.A.; Grist, T.M. Transstenotic pressure gradients: Measurement in swine—Retrospectively ECG-gated 3D phase-contrast MR angiography versus endovascular pressure-sensing guidewires. Radiology 2007, 245, 751–760. [Google Scholar] [CrossRef]
- Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A.J.; Robinson, J.D.; Rigsby, C.K. Advanced flow MRI: Emerging techniques and applications. Clin. Radiol. 2016, 71, 779–795. [Google Scholar] [CrossRef]
- Krzanowski, M.; Bodzoń, W.; Dimitrow, P.P. Imaging of all three coronary arteries by transthoracic echocardiography. an illustrated guide. Cardiovasc. Ultrasound. 2003, 1, 16. [Google Scholar] [CrossRef]
- Vegsundvåg, J.; Holte, E.; Wiseth, R.; Hegbom, K.; Hole, T. Transthoracic echocardiography for imaging of the different coronary artery segments: A feasibility study. Cardiovasc. Ultrasound. 2009, 7, 58. [Google Scholar] [CrossRef]
- Labombarda, F.; Castelnuovo, S.; Goularas, D.; Sirtori, C.R. Status and potential clinical value of a transthoracic evaluation of the coronary arteries. Cardiovasc. Ultrasound. 2016, 14, 5. [Google Scholar] [CrossRef]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e726–e779. [Google Scholar] [PubMed]
- Illig, K.A.; Ouriel, K.; DeWeese, J.A.; Holen, J.; Green, R.M. Measurement of carotid bifurcation pressure gradients using the Bernoulli principle. Cardiovasc. Surg. 1996, 4, 130–134. [Google Scholar] [CrossRef]
- De Smet, A.A.; Tetteroo, E.; Moll, F.L. Noninvasive evaluation before and after percutaneous therapy of iliac artery stenoses: The value of the Bernoulli-predicted pressure gradient. J. Vasc. Surg. 2000, 32, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Kohler, T.R.; Nicholls, S.C.; Zierler, R.E.; Beach, K.W.; Schubart, P.J.; Strandness, D.E. Assessment of pressure gradient by Doppler ultrasound: Experimental and clinical observations. J. Vasc. Surg. 1987, 6, 460–469. [Google Scholar] [CrossRef]
- Langsfeld, M.; Nepute, J.; Hershey, F.B.; Thorpe, L.; Auer, A.I.; Binnington, H.B.; Hurley, J.J.; Peterson, G.J.; Schwartz, R.; Woods, J.J. The use of deep duplex scanning to predict hemodynamically significant aortoiliac stenoses. J. Vasc. Surg. 1988, 7, 395–399. [Google Scholar] [CrossRef]
- Strauss, A.L.; Roth, F.J.; Rieger, H. Noninvasive assessment of pressure gradients across iliac artery stenoses: Duplex and catheter correlative study. J. Ultrasound. Med. 1993, 12, 17–22. [Google Scholar] [CrossRef]
- Moftakhar, R.; Aagaard-Kienitz, B.; Johnson, K.; Turski, P.A.; Turk, A.S.; Niemann, D.B.; Consigny, D.; Grinde, J.; Wieben, O.; Mistretta, C.A. Noninvasive measurement of intra-aneurysmal pressure and flow pattern using phase contrast with vastly undersampled isotropic projection imaging. AJNR Am. J. Neuroradiol. 2007, 28, 1710–1714. [Google Scholar] [CrossRef]
- Turk, A.S.; Johnson, K.M.; Lum, D.; Niemann, D.; Aagaard-Kienitz, B.; Consigny, D.; Grinde, J.; Turski, P.; Haughton, V.; Mistretta, C. Physiologic and anatomic assessment of a canine carotid artery stenosis model utilizing phase contrast with vastly undersampled isotropic projection imaging. AJNR Am. J. Neuroradiol. 2007, 28, 111–115. [Google Scholar]
- Bley, T.A.; Johnson, K.M.; François, C.J.; Reeder, S.B.; Schiebler, M.L.; R Landgraf, B.; Consigny, D.; Grist, T.M.; Wieben, O. Noninvasive assessment of transstenotic pressure gradients in porcine renal artery stenoses by using vastly undersampled phase-contrast MR angiography. Radiology 2011, 261, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Bonhoeffer, P.; De Groot, N.M.S.; de Haan, F.; Deanfield, J.E.; Galie, N.; Gatzoulis, M.A.; Gohlke-Baerwolf, C.; Kaemmerer, H.; Kilner, P.; et al. ESC Guidelines for the management of grown-up congenital heart disease (new version 2010) The Task Force on the Management of Grown-up Congenital Heart Disease of the European Society of Cardiology (ESC). Eur. Heart J. 2010, 31, 2915–2957. [Google Scholar] [PubMed]
- VanAuker, M.D.; Chandra, M.; Shirani, J.; Strom, J.A. Jet eccentricity: A misleading source of agreement between Doppler/catheter pressure gradients in aortic stenosis. J. Am. Soc. Echocardiogr. 2001, 14, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.; Kim, G.B.; Kweon, J.; Huh, H.K.; Lee, S.J.; Koo, H.J.; Kang, J.-W.; Lim, T.-H.; Kim, D.-H.; Kim, Y.-H.; et al. Turbulent Kinetic Energy Measurement Using Phase Contrast MRI for Estimating the Post-Stenotic Pressure Drop: In Vitro Validation and Clinical Application. PLoS ONE 2016, 11, e0151540. [Google Scholar] [CrossRef] [PubMed]
- Gatehouse, P.D.; Keegan, J.; Crowe, L.A.; Masood, S.; Mohiaddin, R.H.; Kreitner, K.-F.; Firmin, D.N. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur. Radiol. 2005, 15, 2172–2184. [Google Scholar] [CrossRef] [PubMed]
- Rich, J.D.; Shah, S.J.; Swamy, R.S.; Kamp, A.; Rich, S. Inaccuracy of Doppler Echocardiographic Estimates of Pulmonary Artery Pressures in Patients with Pulmonary Hypertension: Implications for Clinical Practice. Chest 2011, 139, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.A.; Munk, P. A new method for estimation of velocity vectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 837–851. [Google Scholar] [CrossRef]
- Olesen, J.B.; Villagomez-Hoyos, C.A.; Moller, N.D.; Ewertsen, C.; Hansen, K.L.; Nielsen, M.B.; Bech, B.; Lonn, L.; Traberg, M.S.; Jensen, J.A. Noninvasive Estimation of Pressure Changes Using 2-D Vector Velocity Ultrasound: An Experimental Study With In Vivo Examples. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Brandt, A.H.; Hansen, K.L.; Ewertsen, C.; Holbek, S.; Olesen, J.B.; Moshavegh, R.; Thomsen, C.; Jensen, J.A.; Nielsen, M.B. A Comparison Study of Vector Velocity, Spectral Doppler and Magnetic Resonance of Blood Flow in the Common Carotid Artery. Ultrasound. Med. Biol. 2018, 44, 1751–1761. [Google Scholar] [CrossRef]
- Holbek, S.; Hansen, K.L.; Bouzari, H.; Ewertsen, C.; Stuart, M.B.; Thomsen, C.; Nielsen, M.B.; Jensen, J.A. Common Carotid Artery Flow Measured by 3-D Ultrasonic Vector Flow Imaging and Validated with Magnetic Resonance Imaging. Ultrasound. Med. Biol. 2017, 43, 2213–2220. [Google Scholar] [CrossRef]
Study | Year | Country | Study Population (Subjects) | Methods Used | Results |
---|---|---|---|---|---|
Aortic and Mitral Valve | |||||
Hatle et al. [17] | 1978 | Norway | Mitral valve stenosis (n = 35) Other valve lesions (n = 20) | Simultaneous Doppler US and simultaneous left and right heart catheterization. Doppler US before and after simultaneous left and right heart catheterization. | Reports good correlation between Doppler US and catheter gradients |
Hegrenaes et al. [42] | 1985 | Norway | Aortic valve stenosis (n = 87) | Doppler US and catheter pullback | Reported underestimation by Doppler US |
Stamm et al. [46] | 1983 | USA | Aortic valve stenosis (n = 26) Mitral valve stenosis (n = 27) | Doppler US and simultaneous left ventricular and femoral artery catheterization. | Aortic valve stenosis: r = 0.95 Mitral valve stenosis: r = 0.85 |
Knutsen et al. [51] | 1982 | Norway | Mitral valve stenosis (n = 16) | Simultaneous Doppler US and simultaneous left and right heart catheterization. | Mean gradient: r = 0.83 Mean difference: −4.9 mmHg |
Hatle et al. [52] | 1980 | Norway | Aortic valve stenosis (n = 37) | Doppler US and catheterization | Reported underestimation by Doppler US in 8 out of 37 patients |
Currie et al. [53] | 1985 | USA | Aortic valve stenosis (n = 100) | Simultaneous Doppler US and dualhead-catheter Simultaneous Doppler US and catheter pullback | Mean gradient: r = 0.92, mean difference: −4 mmHg Instantaneous gradient: r = 0.92, mean difference: −19 mmHg Peak-to-peak gradient: r = 0.91 |
Currie et al. [54] | 1986 | USA | Cardiac lesions (n = 95) | Simultaneous Doppler US and dualhead-catheter | Instantaneous gradient: r = 0.95, mean difference: −4 mmHg Peak-to-peak gradient: r = 0.92 |
Burstow et al. [55] | 1989 | USA | Prosthetic valves (n = 36) | Simultaneous Doppler US and dualhead-catheter | Mean gradient: r = 0.97 Instantaneous gradient: r = 0.94 Peak-to-peak gradient: r = 0.72, mean difference: −1 mmHg |
Yeager et al. [56] | 1986 | USA | Aortic valve stenosis (n = 52) | Doppler US and catheter pullback | Mean gradient: r = 0.87 Peak-to-peak gradient: r = 0.84 |
Ohlsson et al. [57] | 1986 | Sweden | Aortic valve stenosis (n = 24) | Doppler US and simultaneous aortic arch and left ventricle catheterization | Mean gradient: r = 0.92 Instantaneous gradient: r = 0.89 |
Baumgartner et al. [58] | 1999 | Austria | Aortic valve stenosis (n = 21) | Doppler US and dualhead-catheter | Non-corrected instantaneous gradient: r = 0.95, mean difference: +18 mmHg Corrected instantaneous gradient: r = 0.97, mean difference: +0.4 mmHg Non-corrected mean gradient: r = 0.93, mean difference: +12 mmHg Corrected mean gradient: r = 0.96, mean difference: +1.1 mmHg |
VanAuker et al. [59] | 2000 | USA | Aortic valve stenosis (n = 14) | Simultaneous Doppler US and dualhead-catheter | Mean difference: +42% |
Yamazawa et al. [60] | 2010 | Japan | Aortic valve stenosis (n = 13) | Doppler US and catheter pullback | Non-corrected mean gradient: r = 0.98, mean difference: +5.7 mmHg Non-corrected peak-to-peak gradient: r = 0.87, mean difference: +8.5 mmHg Corrected mean gradient: r = 0.91, mean difference: −4.9 mmHg Corrected peak-to-peak gradient: r = 0.79, mean difference: −9.1 mmHg |
Eichenberger et al. [61] | 1993 | Switzerland | Aortic valve stenosis (n = 19) | Doppler US (n = 15) MRI (n = 19) Catheterization (n = 13) | Doppler US vs catheter: r = 0.96 MRI vs catheter: r = 0.97 |
Pulmonary Hypertension | |||||
Hioka et al. [63] | 2017 | Japan | Patients referred for right heart catheterization (n = 55) | Doppler US and catheterization | Tricuspid gradient: r = 0.73, mean difference: +2.52 mmHg |
Fisher et al. [64] | 2009 | USA | Pulmonary hypertension (n = 65) | Doppler US and catheterization | Pulmonary artery systolic pressure: r = 0.66, mean difference: −0.6 mmHg Tricuspid mean difference: −1.8 mmHg |
Janda et al. [66] | 2011 | Canada | Pulmonary hypertension | Meta-analysis | Pulmonary artery systolic pressure: r = 0.70 Summary sensitivity: 83% Summary specificity: 72% |
Nogami et al. [67] | 2009 | Japan | Pulmonary hypertension (n = 20) | Doppler US, MRI and catheterization | Pulmonary artery systolic pressure: Doppler US vs. catheter: r = 0.86 MRI vs. catheter: r = 0.94 |
Coarctation of Aorta | |||||
Syamasundar et al. [8] | 1989 | Saudi Arabia | Coarctation of Aorta (n = 28) | Doppler US and catheter pullback | Simple Bernoulli: r = 0.76 Expanded Bernoulli: r = 0.76 |
Marx et al. [68] | 1986 | USA | Coarctation of aorta (n = 28) | Doppler US and catheter pullback | Simple Bernoulli: r = 0.91, mean difference: +8 mmHg Expanded Bernoulli: r = 0.98, mean difference: 0 mmHg |
Houston et al. [69] | 1987 | Scotland | Coarctation of aorta (n = 46) | Doppler US, catheter pullback, dualhead-catheter, two catheters | Instantaneous gradient: r = 0.36 Peak-to-peak: r = 0.42 |
Wisotzkey et al. [70] | 2015 | USA | Aortic arch obstruction (n = 60) | Doppler US and catheter pullback | Simple Bernoulli: r = 0.47 Expanded Bernoulli: r = 0.35 |
Tang et al. [71] | 2009 | USA | Coarctation of aorta (n = 34) | Doppler US and catheter pullback | Peak-to-peak gradient: r = 0.37, mean gradient: r = 0.001 Reported overestimation of peak pressure gradient by Doppler US |
Oshinski et al. [72] | 1996 | USA | Coarctation of aorta (n = 32) | Doppler US (n = 22) MRI (n = 22) Catheterization (n = 6) | Reported a non-significant difference between MRI and catheter gradients after correction after a new suggested model |
Itu et al. [73] | 2013 | USA | Coarctation of aorta (n = 4) | Computer simulation on patient MRI data and catheterization data | Reported good agreement between MRI and catheter gradients |
Sotelo et al. [74] | 2015 | France | Coarctation of aorta (n = 7) | Simultaneous MRI and catheterization. | Reported good agreement between MRI and catheter gradients. |
Goubergrits et al. [75] | 2015 | Germany | Coarctation of aorta (n = 13) | MRI and simultaneous ascending aorta and femoral catheterization | Peak gradient: Pre-treatment: r = 0.97, Mean difference: −0.5 mmHg (p = 0.8) Post-treatment: r = 0.87, Mean difference: +3.0 mmHg (p = 0.00) |
Mirzaee et al. [76] | 2017 | Germany | Coarctation of aorta (n = 12) | MRI and catheterization | Pre-treatment: r = 0.85, Mean difference: −0.58 mmHg (p = 0.64) Post-treatment: r = NA*, Mean difference: −2.54 mmHg (p = 0.04) |
Coronary Artery | |||||
Deng et al. [78] | 2017 | USA | Coronary artery stenosis (n = 6) | MRI and catheterization | Reported a trend between MRI and catheterization |
Carotid Artery | |||||
Illig et al. [86] | 1996 | USA | Carotid artery stenosis (n = 76) | Doppler US, and direct puncture of the common carotid and internal carotid artery | Simplified Bernoulli: r = 0.374 Expanded Bernoulli: r = 0.419 |
Iliac Artery | |||||
De Smet et al. [87] | 2000 | Netherlands | Iliac artery stenosis (n = 261) | Doppler US and dual-catheter before and after treatment. | Instantaneous gradient: r = 0.27 Reported overestimation by Doppler US |
Kohler et al. [88] | 1987 | USA | Iliac artery stenosis (n = 18) | Doppler US and catheterization | Expanded Bernoulli: r =0.54 |
Langsfeld et al. [89] | 1988 | USA | Iliac artery stenosis (n = 11) | Doppler US and catheter pullback | Pressure gradient: r = 0.9 |
Strauss et al. [90] | 1993 | Germany | Iliac artery stenosis (n = 28) | Doppler US and catheter pullback | Mean gradient: r = 0.77, mean difference: −2 mmHg Instantaneous gradient: r = 0.80, mean difference: −1 mmHg Peak-to-peak gradient: r = 0.76, mean difference: −7 mmHg |
Animal studies | |||||
Lum et al. [80] | 2007 | USA | Porcine with surgically created stenosis (n = 12) | MRI and dual-catheter in: Carotid stenosis (n = 12) Renal artery stenosis (n = 9) Iliac stenosis (n = 9) | Mean gradients: Carotid artery: r = 0.891 Renal artery: r = −0.0815 Iliac artery: r = 0.915 Mean difference for carotid + iliac arteries: +0.86 mmHg |
Moftakhar et al. [91] | 2007 | USA | Canines with surgically created carotid bifurcation aneurysm (n = 8) | MRI and catheterization | Intra-aneurysmal pressures: r = 0.82 |
Turk et al. [92] | 2007 | USA | Canines with surgically created carotid bifurcation stenosis (n = 6) | MRI and catheter pullback | Pressure gradient: r = 0.86 |
Bley et al. [93] | 2011 | USA | Porcine with surgically created renal artery stenosis (n = 12) | MRI and two catheters before and after stenosis | Peak gradient: r = 0.91 Mean gradient: r = 0.98 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-Q.; Hansen, K.L.; Bechsgaard, T.; Lönn, L.; Jensen, J.A.; Nielsen, M.B. Non-Invasive Assessment of Intravascular Pressure Gradients: A Review of Current and Proposed Novel Methods. Diagnostics 2019, 9, 5. https://doi.org/10.3390/diagnostics9010005
Nguyen T-Q, Hansen KL, Bechsgaard T, Lönn L, Jensen JA, Nielsen MB. Non-Invasive Assessment of Intravascular Pressure Gradients: A Review of Current and Proposed Novel Methods. Diagnostics. 2019; 9(1):5. https://doi.org/10.3390/diagnostics9010005
Chicago/Turabian StyleNguyen, Tin-Quoc, Kristoffer Lindskov Hansen, Thor Bechsgaard, Lars Lönn, Jørgen Arendt Jensen, and Michael Bachmann Nielsen. 2019. "Non-Invasive Assessment of Intravascular Pressure Gradients: A Review of Current and Proposed Novel Methods" Diagnostics 9, no. 1: 5. https://doi.org/10.3390/diagnostics9010005
APA StyleNguyen, T. -Q., Hansen, K. L., Bechsgaard, T., Lönn, L., Jensen, J. A., & Nielsen, M. B. (2019). Non-Invasive Assessment of Intravascular Pressure Gradients: A Review of Current and Proposed Novel Methods. Diagnostics, 9(1), 5. https://doi.org/10.3390/diagnostics9010005