Machine Learning in Prediction of IgA Nephropathy Outcome: A Comparative Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Endpoints, Outcome, and Model Classification
2.3. Machine Learning Models
- Gaussian Naive Bayes Classifier
- Support Vector Machine
- Random Forest Classifier
- K-nearest Neighbor Classifier
- Multi-Layer Perceptron, which is also an example of an artificial neural network (ANN)
3. Results
3.1. Characteristics of the Study Population
3.2. The Performance of Classifiers
3.3. A Different Approach to Neural Networks
3.4. Regression Model
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russell, S.; Bohannon, J. Artificial intelligence. Fears of an AI pioneer. Science 2015, 349, 252. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, R.J.; Julian, B.A. IgA nephropathy. N. Engl. J. Med. 2013, 368, 2402–2414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J.C.; Haas, M.; Reich, H.N. IgA Nephropathy. Clin. J. Am. Soc. Nephrol. 2017, 12, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 2014, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trimarchi, H.; Barratt, J.; Cattran, D.C.; Cook, H.T.; Coppo, R.; Haas, M.; Liu, Z.H.; Roberts, I.S.; Yuzawa, Y.; Zhang, H.; et al. Oxford Classification of IgA nephropathy 2016: An update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017, 91, 1014–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Halligan, S.; Altman, D.G.; Mallett, S. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach. Eur. Radiol. 2015, 25, 932–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhang, Y.; Liu, D.; Tan, X.; Tang, X.; Zhang, F.; Xia, M.; Chen, G.; He, L.; Zhou, L.; et al. Prediction of ESRD in IgA Nephropathy Patients from an Asian Cohort: A Random Forest Model. Kidney Blood Press. Res. 2018, 43, 1852–1864. [Google Scholar] [CrossRef] [PubMed]
- Bartosik, L.P.; Lajoie, G.; Sugar, L.; Cattran, D.C. Predicting progression in IgA nephropathy. Am. J. Kidney Dis. 2001, 38, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Chen, F.-A.; Chen, C.-F.; Liu, W.-S.; Shih, C.-J.; Ou, S.-M.; Yang, W.-C.; Lin, C.-C.; Yang, A.-H. Diagnostic Accuracy of Urine Protein/Creatinine Ratio Is Influenced by Urine Concentration. PLoS ONE 2015, 10, e0137460. [Google Scholar] [CrossRef] [PubMed]
- Schena, F.P.; Anelli, V.W.; Trotta, J.; Di Noia, T.; Manno, C.; Tripepi, G.; D’Arrigo, G.; Chesnaye, N.C.; Russo, M.L.; Stangou, M.; et al. Development and testing of an artificial intelligence tool for predicting end stage kidney disease in patients with immunoglobulin A nephropathy. Kidney Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, X.; Li, Y.; Xia, E.; Qin, Y.; Liang, S.; Xu, F.; Liang, D.; Zeng, C.; Liu, Z. Prediction and Risk Stratification of Kidney Outcomes in IgA Nephropathy. Am. J. Kidney Dis. 2019, 74, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zheng, X.; Wang, Y.; Sun, X.; Xiao, Y.; Tang, Y.; Qin, W. Random forest can accurately predict the development of end-stage renal disease in immunoglobulin a nephropathy patients. Ann. Transl. Med. 2019, 7, 234. [Google Scholar] [CrossRef] [PubMed]
Feature | Values |
---|---|
* n (%) | |
Mean ± SD (Min-Max) | |
Female/Male (%) | 35/35 (44%/66%) * |
Age [years] | 39.34 ± 13.89 (19–76) |
EST-C score: | |
M1 | 66 (82.5%) * |
E1 | 24 (30.0%) * |
S1 | 40 (50%) * |
T2 | 1 (1.25%) * |
C1 | 7 (8.75%) * |
C2 | 1 (1.25%) * |
Presence of IgM deposits | 77 (96.25%) * |
Interstitial fibrosis [%] | 6.98 ± 8.13 (0–50) |
SBP [mmHg] | 131.25 ± 16.20 (100–170) |
DBP [mmHg] | 80.13 ± 11.19 (60–110) |
MAP [mmHg] | 95.46 ± 11.99 (72–128) |
Erythrocyturia [RBC/HPF] | 17.47 ± 15.51 (0.5–40) |
WBC [ref. 4–10 103/μL] | 7.34 ± 2.43 (3.72–19.26) |
NEU [ref. 2.5–6 103/μL] | 4.45 ± 2.00 (1.2–12.45) |
LYM [ref. 1.5–3.5 103/μL] | 2.04 ± 0.77 (0.56–5.29) |
PLT [ref. 140–440 103/μL] | 255.90 ± 64.34 (89–467) |
NEU to LYM ratio (NLR) | 2.58 ± 2.28 (0.65–19.16) |
PLT to LYM ratio (PLR) | 140.36 ± 58.62 (33.1–403.6) |
Total cholesterol (TCh) [ref. 130–200 mg/dL] | 258.38 ± 103.87 (121–753) |
Triglycerides (TG) [ref. <150 mg/dL] | 172.44 ± 91.42 (41–569) |
Uric Acid [ref. 2.6–6 mg/dL] | 6.57 ± 1.71 (3.2–11.1) |
Fasting blood glucose [ref. 70–99 mg/dL] | 92.79 ± 11.41 (69–141) |
Serum albumin (ALB) [ref. 3.5–5.2 g/dL] | 3.49 ± 0.92 (1.3–4.9) |
Total protein (TP) [ref. 6.6–8.3 g/dL] | 6.06 ± 1.20 (3.1–8.7) |
Serum creatinine concentration (sCr) [ref. 0.7–1.1 mg/dL] | 1.37 ± 1.36 (0.59–12.78) |
eGFR [mL/min/1.73 m2] | 68.40 ± 24.09 (5–135) |
UPCR [g/g] | 1.85 ± 2.17 (0.04–10.13) |
Serum creatinine concentration difference | 0.16 ± 2.27 (−11.74–15.32) |
ACE inhibitors use | 52 (65.0%) * |
Algorithm | Input Parameters | AVG | SD | MIN | MAX |
---|---|---|---|---|---|
KNN | UPCR, sCr | 0.7599 | 0.1109 | 0.3750 | 1.0000 |
TP, UPCR | 0.7367 | 0.1151 | 0.3750 | 1.0000 | |
ALB, TP, UPCR | 0.7323 | 0.1172 | 0.2500 | 1.0000 | |
TP, UPCR, ALB | 0.7317 | 0.1183 | 0.3125 | 1.0000 | |
TP, UPCR, ALB, TCh | 0.5449 | 0.1368 | 0.1250 | 0.9375 | |
All parameters | 0.5152 | 0.1279 | 0.1875 | 0.8750 | |
GNB | UPCR, sCr | 0.6628 | 0.1236 | 0.5000 | 0.9375 |
TP, UPCR | 0.7267 | 0.1100 | 0.5000 | 1.0000 | |
ALB, TP, UPCR | 0.6933 | 0.1123 | 0.4375 | 0.9375 | |
TP, UPCR, ALB | 0.6933 | 0.1226 | 0.4375 | 1.0000 | |
TP, UPCR, ALB, TCh | 0.7064 | 0.1170 | 0.4375 | 0.9375 | |
All parameters | 0.6584 | 0.1160 | 0.4375 | 0.8750 | |
SVM | UPCR, sCr | 0.7980 | 0.1016 | 0.5000 | 1.0000 |
TP, UPCR | 0.7427 | 0.1146 | 0.5000 | 1.0000 | |
ALB, TP, UPCR | 0.7602 | 0.1143 | 0.5000 | 0.9375 | |
TP, UPCR, ALB | 0.7500 | 0.1112 | 0.5000 | 1.0000 | |
TP, UPCR, ALB, TCh | 0.5218 | 0.1334 | 0.1875 | 0.7500 | |
All parameters | 0.5189 | 0.1424 | 0.2500 | 0.7500 | |
RF | UPCR, sCr | 0.7547 | 0.1034 | 0.5000 | 1.0000 |
TP, UPCR | 0.7854 | 0.0931 | 0.5625 | 0.9375 | |
ALB, TP, UPCR | 0.7682 | 0.0986 | 0.5625 | 1.0000 | |
TP, UPCR, ALB | 0.7791 | 0.0916 | 0.6250 | 0.9375 | |
TP, UPCR, ALB, TP | 0.8009 | 0.0973 | 0.6250 | 1.0000 | |
All parameters | 0.8025 | 0.0879 | 0.5625 | 0.9375 | |
MLP | UPCR, sCr | 0.7527 | 0.1261 | 0.2500 | 1.0000 |
TP, UPCR | 0.7450 | 0.1366 | 0.2500 | 1.0000 | |
ALB, TP, UPCR | 0.7201 | 0.1372 | 0.1875 | 1.0000 | |
TP, UPCR, ALB | 0.7104 | 0.1339 | 0.2500 | 1.0000 | |
TP, UPCR, ALB, TCh | 0.6465 | 0.1712 | 0.1875 | 1.0000 | |
All parameters | 0.4901 | 0.1230 | 0.0000 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konieczny, A.; Stojanowski, J.; Krajewska, M.; Kusztal, M. Machine Learning in Prediction of IgA Nephropathy Outcome: A Comparative Approach. J. Pers. Med. 2021, 11, 312. https://doi.org/10.3390/jpm11040312
Konieczny A, Stojanowski J, Krajewska M, Kusztal M. Machine Learning in Prediction of IgA Nephropathy Outcome: A Comparative Approach. Journal of Personalized Medicine. 2021; 11(4):312. https://doi.org/10.3390/jpm11040312
Chicago/Turabian StyleKonieczny, Andrzej, Jakub Stojanowski, Magdalena Krajewska, and Mariusz Kusztal. 2021. "Machine Learning in Prediction of IgA Nephropathy Outcome: A Comparative Approach" Journal of Personalized Medicine 11, no. 4: 312. https://doi.org/10.3390/jpm11040312
APA StyleKonieczny, A., Stojanowski, J., Krajewska, M., & Kusztal, M. (2021). Machine Learning in Prediction of IgA Nephropathy Outcome: A Comparative Approach. Journal of Personalized Medicine, 11(4), 312. https://doi.org/10.3390/jpm11040312