Autonomic Dysfunction Contributes to Impairment of Cerebral Autoregulation in Patients with Epilepsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Evaluation of Autonomic Nervous System Functions
2.2.1. Deep Breathing Test
2.2.2. Valsalva Maneuver
2.2.3. Head-Up Tilt Test
2.2.4. Quantitative Sudomotor Axon Reflex Test (Q-Sweat Test)
2.2.5. Modified Composite Autonomic Scoring Scale (mCASS)
2.3. Measurements of Cerebral Hemodynamics
2.3.1. The Breath-Holding Index (BHI)
2.3.2. An Autoregulatory Index for Phase II (ASI)
2.3.3. Cerebrovascular Resistance (CVR)
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Impairment of Autonomic Function and Cerebral Autoregulation in Patients with Epilepsy
3.3. Autonomic Dysfunction and Impaired Cerebral Autoregulation in Patients with Epilepsy
3.4. Autonomic Dysfunction Correlated with Impaired Cerebral Autoregulation in Patients with Epilepsy
3.5. Impaired Cerebral Autoregulation in Different Forms of Epilepsy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef]
- Page, T.; Rugg-Gunn, F.J. Bitemporal seizure spread and its effect on autonomic dysfunction. Epilepsy Behav. 2018, 84, 166–172. [Google Scholar] [CrossRef]
- Devinsky, O.; Perrine, K.; Theodore, W.H. Interictal autonomic nervous system function in patients with epilepsy. Epilepsia 1994, 35, 199–204. [Google Scholar] [CrossRef]
- Wannamaker, B.B. Autonomic nervous system and epilepsy. Epilepsia 1985, 26 (Suppl. 1), S31–S39. [Google Scholar] [CrossRef]
- Mraovitch, S.; Calando, Y. Interactions between limbic, thalamo-striatal-cortical, and central autonomic pathways during epileptic seizure progression. J. Comp. Neurol. 1999, 411, 145–161. [Google Scholar] [CrossRef]
- Devinsky, O. Effects of Seizures on Autonomic and Cardiovascular Function. Epilepsy Curr. 2004, 4, 43–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, R. Cardiovascular manifestations of autonomic epilepsy. Clin. Auton. Res. 2006, 16, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Chahal, C.A.A.; Salloum, M.N.; Alahdab, F.; Gottwald, J.A.; Tester, D.J.; Anwer, L.A.; So, E.L.; Murad, M.H.; St Louis, E.K.; Ackerman, M.J.; et al. Systematic Review of the Genetics of Sudden Unexpected Death in Epilepsy: Potential Overlap With Sudden Cardiac Death and Arrhythmia-Related Genes. J. Am. Heart Assoc. 2020, 9, e012264. [Google Scholar] [CrossRef]
- Whitney, D.G.; Kannikeswaran, S.; Whibley, D. Risk for respiratory and cardiovascular disease and mortality after non-trauma fracture and the mediating effects of respiratory and cardiovascular disease on mortality risk among adults with epilepsy. Epilepsy Res. 2020, 166, 106411. [Google Scholar] [CrossRef] [PubMed]
- Vivanco-Hidalgo, R.M.; Gomez, A.; Moreira, A.; Diez, L.; Elosua, R.; Roquer, J. Prevalence of cardiovascular risk factors in people with epilepsy. Brain Behav. 2017, 7, e00618. [Google Scholar] [CrossRef]
- Terrence, C.F.; Rao, G.R.; Perper, J.A. Neurogenic pulmonary edema in unexpected, unexplained death of epileptic patients. Ann. Neurol. 1981, 9, 458–464. [Google Scholar] [CrossRef]
- Pathak, S.J.; Shah, V.B. Sudden Unexpected Death in Epilepsy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Moseley, B.; Bateman, L.; Millichap, J.J.; Wirrell, E.; Panayiotopoulos, C.P. Autonomic epileptic seizures, autonomic effects of seizures, and SUDEP. Epilepsy Behav. 2013, 26, 375–385. [Google Scholar] [CrossRef]
- Verrier, R.L.; Pang, T.D.; Nearing, B.D.; Schachter, S.C. The Epileptic Heart: Concept and clinical evidence. Epilepsy Behav. 2020, 105, 106946. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Devinsky, O. The role of autonomic dysfunction in sudden unexplained death in epilepsy patients. Rev. Neurol. Dis. 2005, 2, 61–69. [Google Scholar] [PubMed]
- Fialho, G.L.; Pagani, A.G.; Walz, R.; Wolf, P.; Lin, K. Maximal/exhaustive treadmill test features in patients with temporal lobe epilepsy: Search for sudden unexpected death biomarkers. Epilepsy Res. 2017, 133, 83–88. [Google Scholar] [CrossRef]
- Ravindran, K.; Powell, K.L.; Todaro, M.; O’Brien, T.J. The pathophysiology of cardiac dysfunction in epilepsy. Epilepsy Res. 2016, 127, 19–29. [Google Scholar] [CrossRef]
- Castro, P.; Azevedo, E.; Sorond, F. Cerebral Autoregulation in Stroke. Curr. Atheroscler. Rep. 2018, 20, 37. [Google Scholar] [CrossRef]
- Tiecks, F.P.; Lam, A.M.; Aaslid, R.; Newell, D.W. Comparison of static and dynamic cerebral autoregulation measurements. Stroke 1995, 26, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Diehl, B.; Diehl, R.R.; Stodieck, S.R.; Ringelstein, E.B. Spontaneous oscillations in cerebral blood flow velocities in middle cerebral arteries in control subjects and patients with epilepsy. Stroke 1997, 28, 2457–2459. [Google Scholar] [CrossRef]
- Lv, S.; Guo, Z.N.; Jin, H.; Sun, X.; Jia, M.; Ma, H.; Lv, Y.; Qiu, Q.; Liu, J.; Yang, Y. Compromised Dynamic Cerebral Autoregulation in Patients with Epilepsy. Biomed. Res. Int. 2018, 2018, 6958476. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Torres, R.A.; Garcia, S.; Frometa, Y.; Bae, J.; Deshmukh, A.; Lin, W.C.; Zheng, Y.; Riera, J.J. Dysfunction of Neurovascular/Metabolic Coupling in Chronic Focal Epilepsy. IEEE Trans. Biomed. Eng. 2016, 63, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.H. Neurovascular coupling and epilepsy: Hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr. 2007, 7, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.; Boorman, L.; Bruyns-Haylett, M.; Kennerley, A.; Ma, H.; Zhao, M.; Overton, P.G.; Schwartz, T.H.; Berwick, J. Contralateral dissociation between neural activity and cerebral blood volume during recurrent acute focal neocortical seizures. Epilepsia 2014, 55, 1423–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siniscalchi, A.; Mintzer, S. Statins for poststroke seizures: The first antiepileptogenic agent? Neurology 2015, 85, 661–662. [Google Scholar] [CrossRef] [PubMed]
- Cleary, P.; Shorvon, S.; Tallis, R. Late-onset seizures as a predictor of subsequent stroke. Lancet 2004, 363, 1184–1186. [Google Scholar] [CrossRef]
- Brigo, F.; Tezzon, F.; Nardone, R. Late-onset seizures and risk of subsequent stroke: A systematic review. Epilepsy Behav. 2014, 31, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.C.; Chuang, H.Y.; Lin, T.K.; Chang, C.C.; Lu, C.H.; Chang, W.N.; Chen, S.D.; Tan, T.Y.; Huang, C.R.; Chan, S.H. Effects of long-term antiepileptic drug monotherapy on vascular risk factors and atherosclerosis. Epilepsia 2012, 53, 120–128. [Google Scholar] [CrossRef]
- Tan, T.Y.; Lu, C.H.; Chuang, H.Y.; Lin, T.K.; Liou, C.W.; Chang, W.N.; Chuang, Y.C. Long-term antiepileptic drug therapy contributes to the acceleration of atherosclerosis. Epilepsia 2009, 50, 1579–1586. [Google Scholar] [CrossRef]
- Chen, S.F.; Jou, S.B.; Chen, N.C.; Chuang, H.Y.; Huang, C.R.; Tsai, M.H.; Tan, T.Y.; Tsai, W.C.; Chang, C.C.; Chuang, Y.C. Serum Levels of Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor 1 Are Associated With Autonomic Dysfunction and Impaired Cerebral Autoregulation in Patients With Epilepsy. Front. Neurol. 2018, 9, 969. [Google Scholar] [CrossRef]
- Fisher, R.S.; Cross, J.H.; D’Souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshe, S.L.; et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017, 58, 531–542. [Google Scholar] [CrossRef] [Green Version]
- Low, P.A. Testing the autonomic nervous system. Semin. Neurol. 2003, 23, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Low, P.A. Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin. Proc. 1993, 68, 748–752. [Google Scholar] [CrossRef]
- Low, P.A.; Tomalia, V.A.; Park, K.J. Autonomic function tests: Some clinical applications. J. Clin. Neurol. 2013, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.F.; Chang, Y.T.; Lu, C.H.; Huang, C.R.; Tsai, N.W.; Chang, C.C.; Huang, C.C.; Chuang, Y.C.; Chang, W.N. Sweat output measurement of the post-ganglion sudomotor response by Q-Sweat test: A normative database of Chinese individuals. BMC Neurosci. 2012, 13, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, P.A.; Denq, J.C.; Opfer-Gehrking, T.L.; Dyck, P.J.; O’Brien, P.C.; Slezak, J.M. Effect of age and gender on sudomotor and cardiovagal function and blood pressure response to tilt in normal subjects. Muscle Nerve 1997, 20, 1561–1568. [Google Scholar] [CrossRef]
- Markus, H.S.; Harrison, M.J. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 1992, 23, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiecks, F.P.; Lam, A.M.; Matta, B.F.; Strebel, S.; Douville, C.; Newell, D.W. Effects of the valsalva maneuver on cerebral circulation in healthy adults. A transcranial Doppler Study. Stroke 1995, 26, 1386–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiecks, F.P.; Douville, C.; Byrd, S.; Lam, A.M.; Newell, D.W. Evaluation of impaired cerebral autoregulation by the Valsalva maneuver. Stroke 1996, 27, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Yew, B.; Nation, D.A.; Alzheimer’s Disease Neuroimaging Initiative. Cerebrovascular resistance: Effects on cognitive decline, cortical atrophy, and progression to dementia. Brain 2017, 140, 1987–2001. [Google Scholar] [CrossRef]
- Schondorf, R.; Benoit, J.; Wein, T. Cerebrovascular and cardiovascular measurements during neurally mediated syncope induced by head-up tilt. Stroke 1997, 28, 1564–1568. [Google Scholar] [CrossRef]
- Fialho, G.L.; Wolf, P.; Walz, R.; Lin, K. Increased cardiac stiffness is associated with autonomic dysfunction in patients with temporal lobe epilepsy. Epilepsia 2018, 59, e85–e90. [Google Scholar] [CrossRef]
- Habek, M.; Crnosija, L.; Junakovic, A.; Adamec, I.; Barun, B.; Gabelic, T.; Skoric, M.K. Autonomic nervous system abnormalities predict cardiovascular changes after initiation of siponimod in secondary progressive multiple sclerosis. Clin. Neurophysiol. 2021, 132, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Legere, M.; Li, T.; Levine, S.; Hao, K.; Valcarcel, B.; Pasinetti, G.M. Autonomic Nervous System Dysfunctions as a Basis for a Predictive Model of Risk of Neurological Disorders in Subjects with Prior History of Traumatic Brain Injury: Implications in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 56, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Coon, E.A. Autonomic Dysfunction in the Synucleinopathies. Semin. Neurol. 2020, 40, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Paudel, B.; Paudel, K.; Paudel, R.; Pandru, K. Parkisonism with Shy-Drager syndrome--a case report. Nepal Med. Coll. J. 2008, 10, 68–71. [Google Scholar] [PubMed]
- Dobkin, B.H.; Rosenthal, N.P. Clinical assessment of autonomic dysfunction: An approach to the Shy-Drager syndrome. Bull. Los Angeles Neurol. Soc. 1975, 40, 101–110. [Google Scholar]
- Palermo, G.; Del Prete, E.; Bonuccelli, U.; Ceravolo, R. Early autonomic and cognitive dysfunction in PD, DLB and MSA: Blurring the boundaries between alpha-synucleinopathies. J. Neurol. 2020, 267, 3444–3456. [Google Scholar] [CrossRef]
- Maguire, J.; Salpekar, J.A. Stress, seizures, and hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Epilepsy Behav. 2013, 26, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Braune, S.; Auer, A.; Schulte-Monting, J.; Schwerbrock, S.; Lucking, C.H. Cardiovascular parameters: Sensitivity to detect autonomic dysfunction and influence of age and sex in normal subjects. Clin. Auton. Res. 1996, 6, 3–15. [Google Scholar] [CrossRef]
- Ndayisaba, J.P.; Fanciulli, A.; Granata, R.; Duerr, S.; Hintringer, F.; Goebel, G.; Krismer, F.; Wenning, G.K. Sex and age effects on cardiovascular autonomic function in healthy adults. Clin. Auton. Res. 2015, 25, 317–326. [Google Scholar] [CrossRef]
- The Task Force for the Diagnosis and Management of Syncope of the European Society of Cardiology (ESC); European Heart Rhythm Association (EHRA); Heart Failure Association (HFA); Heart Rhythm Society (HRS); Moya, A.; Sutton, R.; Ammirati, F.; Blanc, J.J.; Brignole, M.; Dahm, J.B.; et al. Guidelines for the diagnosis and management of syncope (version 2009). Eur. Heart J. 2009, 30, 2631–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dono, F.; Evangelista, G.; Frazzini, V.; Vollono, C.; Carrarini, C.; Russo, M.; Ferrante, C.; Di Stefano, V.; Marchionno, L.P.; De Angelis, M.V.; et al. Interictal Heart Rate Variability Analysis Reveals Lateralization of Cardiac Autonomic Control in Temporal Lobe Epilepsy. Front. Neurol. 2020, 11, 842. [Google Scholar] [CrossRef]
- Koseoglu, E.; Kucuk, S.; Arman, F.; Ersoy, A.O. Factors that affect interictal cardiovascular autonomic dysfunction in temporal lobe epilepsy: Role of hippocampal sclerosis. Epilepsy Behav. 2009, 16, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Dutsch, M.; Devinsky, O.; Doyle, W.; Marthol, H.; Hilz, M.J. Cerebral autoregulation improves in epilepsy patients after temporal lobe surgery. J. Neurol. 2004, 251, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.A.; Harper, R.M.; Kumar, R.; Guye, M.; Ogren, J.A.; Lhatoo, S.D.; Lemieux, L.; Scott, C.A.; Vos, S.B.; Rani, S.; et al. Dysfunctional Brain Networking among Autonomic Regulatory Structures in Temporal Lobe Epilepsy Patients at High Risk of Sudden Unexpected Death in Epilepsy. Front. Neurol. 2017, 8, 544. [Google Scholar] [CrossRef]
- Sone, D.; Ota, M.; Yokoyama, K.; Sumida, K.; Kimura, Y.; Imabayashi, E.; Matsuda, H.; Sato, N. Noninvasive evaluation of the correlation between regional cerebral blood flow and intraventricular brain temperature in temporal lobe epilepsy. Magn. Reson. Imaging 2016, 34, 451–454. [Google Scholar] [CrossRef] [PubMed]
Age | 35.3 ± 9.70 |
Female | 34.2 ± 8.32 |
Male | 36.1 ± 10.70 |
Sex (Female/Male), n (%) | 36 (44.4%)/45 (55.6%) |
Duration of Epilepsy (Years) | 17.8 ± 9.31 |
Form of Epilepsy, n (%) | |
Temporal lobe epilepsy | 33 (40.7%) |
Extratemporal lobe epilepsy | 27 (33.3%) |
Generalized epilepsy | 21 (25.9%) |
Seizure frequency (per month) | 2.0 ± 5.2 |
Seizure Control, n (%) | |
Refractory epilepsy | 30 (37.0%) |
Seizure free * | 29 (35.8%) |
AED Numbers, n (%) | |
Single | 25 (30.9%) |
Multiple | 56 (69.1%) |
Score | Patients with Epilepsy (n = 81) | Controls (n = 45) | p Value | |
---|---|---|---|---|
Adrenergic | 0 | 16 | 45 | <0.001 * |
1 | 56 | 0 | ||
2 | 9 | 0 | ||
Cardiovagal | 0 | 39 | 45 | <0.001 * |
1 | 27 | 0 | ||
2 | 12 | 0 | ||
3 | 3 | 0 | ||
Sudomotor | 0 | 14 | 45 | <0.001 * |
1 | 40 | 0 | ||
2 | 12 | 0 | ||
3 | 15 | 0 | ||
mCASS | 0 | 3 | 45 | <0.001 * |
1 | 8 | 0 | ||
2 | 19 | 0 | ||
3 | 23 | 0 | ||
4 | 15 | 0 | ||
5 | 10 | 0 | ||
6 | 3 | 0 |
Patients with Epilepsy (n = 81) | Controls (n = 45) | p Value | |
---|---|---|---|
BHI | 0.88 (0.64, 1.08) | 1.05 (0.85, 1.37) | 0.001 * |
ASI | −1.84 (−5.42, 2.99) | 8.26 (3.12, 10.22) | 0.001 * |
CVR2-min | 1.35 (1.20, 1.46) | 1.54 (1.26, 2.06) | 0.004 * |
Adrenergic | Cardiovagal | Sudomotor | mCASS | BHI | ASI | CVR2-min | |
---|---|---|---|---|---|---|---|
Age (years) | 0.219 (0.049 *) | 0.115 (0.309) | 0.055 (0.628) | 0.189 (0.091) | −0.158 (0.160) | 0.073 (0.546) | 0.321 (0.005 *) |
Sex (female/male) | −0.146 (0.192) | −0.024 (0.830) | −0.075 (0.507) | −0.075 (0.506) | −0.025 (0.825) | 0.096 (0.428) | 0.278 (0.017 *) |
Duration of epilepsy (years) | 0.179 (0.112) | 0.047 (0.680) | 0.188 (0.095) | 0.239 (0.033 *) | −0.127 (0.263) | 0.243 (0.044 *) | 0.182 (0.123) |
Seizure frequency (per month) | 0.124 (0.271) | 0.219 (0.050 *) | 0.205 (0.066) | 0.339 (0.002 *) | −0.121 (0.283) | 0.011 (0.925) | 0.074 (0.532) |
Seizure control | |||||||
Refractory epilepsy | 0.069 (0.539) | 0.199 (0.074) | 0.229 (0.040 *) | 0.321 (0.004 *) | −0.049 (0.663) | 0.026 (0.829) | 0.126 (0.283) |
Seizure free # | −0.165 (0.142) | −0.185 (0.099) | −0.213 (0.056) | −0.333 (0.002 *) | 0.116 (0.304) | −0.055 (0.652) | −0.119 (0.313) |
AED numbers | |||||||
Single | 0.098 (0.382) | 0.043 (0.704) | −0.141 (0.210) | −0.063 (0.575) | −0.030 (0.792) | −0.093 (0.442) | −0.137 (0.244) |
Multiple | −0.098 (0.382) | −0.043 (0.704) | 0.141 (0.210) | 0.063 (0.575) | 0.030 (0.792) | 0.093 (0.442) | 0.137 (0.244) |
Adrenergic | Cardiovagal | Sudomotor | mCASS | |
---|---|---|---|---|
BHI | −0.285 (0.001 *) | −0.198 (0.026 *) | −0.246 (0.005 *) | −0.289 (0.001 *) |
ASI | −0.444 (0.001 *) | −0.388 (0.001 *) | −0.351 (0.001 *) | −0.455 (0.001 *) |
CVR2-min | −0.224 (0.014 *) | −0.088 (0.343) | −0.200 (0.029 *) | −0.214 (0.019 *) |
Temporal Lobe Epilepsy (n = 33) | Extratemporal Lobe Epilepsy (n = 27) | Generalized Epilepsy (n = 21) | Controls (n = 45) | p Value | |
---|---|---|---|---|---|
BHI | 0.80 (0.49, 0.98) # | 0.92 (0.65, 1.10) | 0.96 (0.63, 1.24) | 1.05 (0.85, 1.37) | 0.001 * |
ASI | −1.12 (−3.76, 4.26) | −2.51 (−5.40, −0.42) | −2.95 (−9.18, 3.12) | 8.26 (3.12, 10.22) | 0.001 * |
CVR2-min | 1.29 (1.18, 1.45) | 1.39 (1.19, 1.55) | 1.38 (1.24, 1.44) | 1.54 (1.26, 2.06) | 0.036 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-F.; Pan, H.-Y.; Huang, C.-R.; Huang, J.-B.; Tan, T.-Y.; Chen, N.-C.; Hsu, C.-Y.; Chuang, Y.-C. Autonomic Dysfunction Contributes to Impairment of Cerebral Autoregulation in Patients with Epilepsy. J. Pers. Med. 2021, 11, 313. https://doi.org/10.3390/jpm11040313
Chen S-F, Pan H-Y, Huang C-R, Huang J-B, Tan T-Y, Chen N-C, Hsu C-Y, Chuang Y-C. Autonomic Dysfunction Contributes to Impairment of Cerebral Autoregulation in Patients with Epilepsy. Journal of Personalized Medicine. 2021; 11(4):313. https://doi.org/10.3390/jpm11040313
Chicago/Turabian StyleChen, Shu-Fang, Hsiu-Yung Pan, Chi-Ren Huang, Jyun-Bin Huang, Teng-Yeow Tan, Nai-Ching Chen, Chung-Yao Hsu, and Yao-Chung Chuang. 2021. "Autonomic Dysfunction Contributes to Impairment of Cerebral Autoregulation in Patients with Epilepsy" Journal of Personalized Medicine 11, no. 4: 313. https://doi.org/10.3390/jpm11040313
APA StyleChen, S. -F., Pan, H. -Y., Huang, C. -R., Huang, J. -B., Tan, T. -Y., Chen, N. -C., Hsu, C. -Y., & Chuang, Y. -C. (2021). Autonomic Dysfunction Contributes to Impairment of Cerebral Autoregulation in Patients with Epilepsy. Journal of Personalized Medicine, 11(4), 313. https://doi.org/10.3390/jpm11040313