The Role of Artificial Intelligence in Managing Multimorbidity and Cancer
Abstract
:1. Introduction
2. Multimorbidity in Geriatrics and Oncology
3. The Example of Gynecological Oncology
4. Results
4.1. Clustering Chronic Diseases
4.2. Managing Multimorbidity for Gyneco-Oncological Patients
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wikimedia Commons. Blind men and Elephant. Available online: https://commons.wikimedia.org/w/index.php?curid=4581263 (accessed on 4 January 2021).
- Greene, J.A.; Loscalzo, J. Putting the Patient Back Together—Social Medicine, Network Medicine and the Limits of Reductionism. N. Engl. J. Med. 2017, 377, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Snyder, M. Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Limkin, E.J.; Sun, R.; Dercle, L.; Zacharaki, E.I.; Robert, C.; Reuzé, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferté, C. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28, 1191–1206. [Google Scholar] [CrossRef] [PubMed]
- Bodalal, Z.; Trebeschi, S.; Beets-Tan, R. Radiomics: A critical step towards integrated healthcare. Insights Imaging 2018, 9, 911–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.; Andrearczyk, V.; Apte, A.; Saeed, A.; Bakas, S.; Beukinga, R.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinetti, M.E.; Fried, T.R.; Boyd, C.M. Designing health care for the most common chronic condition-multimorbidity. JAMA 2012, 307, 2493–2494. [Google Scholar] [CrossRef] [PubMed]
- Bien, B.; McKee, K.J.; Döhner, H.; Triantafillou, J.; Lamura, G.; Doroszkiewicz, H.; Krevers, B.; Kofahl, C. Disabled older people’s use of health and social care services and their unmet care needs in six European countries. Eur. J. Public Health 2013, 23, 1032–1038. [Google Scholar] [CrossRef] [Green Version]
- Kastner, M.; Hayden, L.; Wong, G.; Lai, Y.; Makarski, J.; Treister, V.; Chan, J.; Lee, J.H.; Ivers, N.M.; Holroyd-Leduc, J.; et al. Underlying mechanisms of complex interventions addressing the care of older adults with multimorbidity: A realist review. BMJ Open 2019, 9, e025009. [Google Scholar] [CrossRef] [Green Version]
- Vetrano, D.L.; Calderón-Larrañaga, A.; Marengoni, A.; Onder, G.; Bauer, J.M.; Cesari, M.; Ferrucci, L.; Fratiglioni, L. An International Perspective on Chronic Multimorbidity: Approaching the Elephant in the Room. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1350–1356. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Population Structure and Ageing. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing (accessed on 4 January 2021).
- Tew, W.P. Ovarian cancer in the older woman. J. Geriatr. Oncol. 2016, 7, 354–361. [Google Scholar] [CrossRef]
- Onder, G.; Palmer, K.; Navickas, R.; Jurevičienė, E.; Mammarella, F.; Strandzheva, M.; Mannucci, P.; Pecorelli, S.; Marengoni, A. Time to face the challenge of multimorbidity. A European perspective from the joint action on chronic diseases and promoting healthy ageing across the life cycle (JA-CHRODIS). Eur. J. Intern. Med. 2015, 26, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Marengoni, A.; Roso-Llorach, A.; Vetrano, D.L.; Fernández-Bertolín, S.; Guisado-Clavero, M.; Violán, C.; Calderón-Larrañaga, A. Patterns of Multimorbidity in a Population-Based Cohort of Older People: Sociodemographic, Lifestyle, Clinical and Functional Differences. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 798–805. [Google Scholar] [CrossRef]
- Bernabei, R.; Landi, F.; Onder, G.; Liperoti, R.; Gambassi, G. Second and third generation assessment instruments: The birth of standardization in geriatric care. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto-Perez-de-Celis, E.; Aapro, M.; Muss, H. ASCO 2020: The Geriatric Assessment Comes of Age. Oncologist 2020, 25, 909–912. [Google Scholar] [CrossRef]
- Wildiers, H.; Heeren, P.; Puts, M.; Topinkova, E.; Janssen-Heijnen, M.L.; Extermann, M.; Falandry, C.; Artz, A.; Brain, E.; Colloca, G.; et al. International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer. J. Clin. Oncol. 2014, 32, 2595–2603. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.; Mercer, S.W. Multimorbidity in Cancer Patients: The ‘New Normal’. Clin. Oncol. 2020, 32, 551–552. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Cheevers, K.; Armes, J. The emerging role of digital health in monitoring and supporting people living with cancer and the consequences of its treatments. Curr. Opin. Support. Palliat. Care 2018, 12, 268–275. [Google Scholar] [CrossRef]
- Pavic, M.; Klaas, V.; Theile, G.; Kraft, J.; Tröster, G.; Guckenberger, M. Feasibility and Usability Aspects of Continuous Remote Monitoring of Health Status in Palliative Cancer Patients Using Wearables. Oncology 2020, 98, 386–395. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Multimorbidity: Clinical assessment and management. Available online: https://www.nice.org.uk/guidance/ng56 (accessed on 4 January 2021).
- Sarfati, D.; Koczwara, B.; Jackson, C. The impact of comorbidity on cancer and its treatment. CA Cancer J. Clin. 2016, 66, 337–350. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database (Oxford) 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- Surveillance, Epidemiology and End Results Program (SEER). Available online: https://seer.cancer.gov/ (accessed on 4 January 2021).
- Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5.24 million UK adults. Lancet 2014, 384, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Colloca, G.; Di Capua, B.; Bellieni, A.; Fusco, D.; Ciciarello, F.; Tagliaferri, L.; Valentini, V.; Balducci, L. Biological and Functional Biomarkers of Aging: Definition, Characteristics, and How They Can Impact Everyday Cancer Treatment. Curr. Oncol. Rep. 2020, 22, 115. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Justice, J.N.; Ferrucci, L.; Newman, A.B.; Aroda, V.R.; Bahnson, J.L.; Divers, J.; Espeland, M.A.; Marcovina, S.; Pollak, M.N.; Kritchevsky, S.B.; et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: Report from the TAME Biomarkers Workgroup. Geroscience 2018, 40, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Guerra, F.; Calvani, R.; Bucci, C.; Lo Monaco, M.R.; Bentivoglio, A.R.; Landi, F.; Bernabei, R.; Marzetti, E. Mitochondrial-Derived Vesicles as Candidate Biomarkers in Parkinson’s Disease: Rationale, Design and Methods of the EXosomes in PArkiNson Disease (EXPAND) Study. Int. J. Mol. Sci. 2019, 20, 2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picca, A.; Ronconi, D.; Coelho-Junior, H.J.; Calvani, R.; Marini, F.; Biancolillo, A.; Gervasoni, J.; Primiano, A.; Pais, C.; Meloni, E. The “develOpment of metabolic and functional markers of Dementia IN Older people” (ODINO) Study: Rationale, Design and Methods. J. Pers. Med. 2020, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Calvani, R.; Picca, A.; Marini, F.; Biancolillo, A.; Cesari, M.; Pesce, V.; Lezza, A.M.S.; Bossola, M.; Leeuwenburgh, C.; Bernabei, R.; et al. The “BIOmarkers associated with Sarcopenia and PHysical frailty in EldeRly pErsons” (BIOSPHERE) study: Rationale, design and methods. Eur. J. Intern. Med. 2018, 56, 19–25. [Google Scholar] [CrossRef]
- Marzetti, E.; Calvani, R.; Landi, F.; Hoogendijk, E.O.; Fougère, B.; Vellas, B.; Pahor, M.; Bernabei, R.; Cesari, M. Innovative Medicines Initiative: The SPRINTT Project. J. Frailty Aging 2015, 4, 207–208. [Google Scholar]
- Cesari, M.; Landi, F.; Calvani, R.; Cherubini, A.; Di Bari, M.; Kortebein, P.; Del Signore, S.; Le Lain, R.; Vellas, B.; Pahor, M.; et al. Rationale for a preliminary operational definition of physical frailty and sarcopenia in the SPRINTT trial. Aging Clin. Exp. Res. 2017, 29, 81–88. [Google Scholar] [CrossRef]
- Cesari, M.; Marzetti, E.; Calvani, R.; Vellas, B.; Bernabei, R.; Bordes, P.; Roubenoff, R.; Landi, F.; Cherubini, A. The need of operational paradigms for frailty in older persons: The SPRINTT project. Aging Clin. Exp. Res. 2017, 29, 3–10. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Reflection Paper on Physical Frailty: Instruments for Baseline Characterisation of Older Populations in Clinical Trials. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-physical-frailty-instruments-baseline-characterisation-older-populations-clinical_en.pdf (accessed on 4 January 2021).
- Liu, M.A.; DuMontier, C.; Murillo, A.; Hshieh, T.T.; Bean, J.F.; Soiffer, R.J.; Stone, R.M.; Abel, G.A.; Driver, J.A. Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies. Blood 2019, 134, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Afilalo, J.; Sharma, A.; Zhang, S.; Brennan, J.M.; Edwards, F.H.; Mack, M.J.; McClurken, J.B.; Cleveland, J.C., Jr.; Smith, P.K.; Shahian, D.M.; et al. Gait Speed and 1-Year Mortality Following Cardiac Surgery: A Landmark Analysis From the Society of Thoracic Surgeons Adult Cardiac Surgery Database. J. Am. Heart Assoc. 2018, 7, e010139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetrano, D.L.; Rizzuto, D.; Calderón-Larrañaga, A.; Onder, G.; Welmer, A.K.; Qiu, C.; Bernabei, R.; Marengoni, A.; Fratiglioni, L. Walking Speed Drives the Prognosis of Older Adults with Cardiovascular and Neuropsychiatric Multimorbidity. Am. J. Med. 2019, 132, 1207–1215.e6. [Google Scholar] [CrossRef] [Green Version]
- Onder, G.; Bernabei, R.; Vetrano, D.L.; Palmer, K.; Marengoni, A. Facing multimorbidity in the precision medicine era. Mech. Ageing Dev. 2020, 190, 111287. [Google Scholar] [CrossRef]
- Violán, C.; Foguet-Boreu, Q.; Fernández-Bertolín, S.; Guisado-Clavero, M.; Cabrera-Bean, M.; Formiga, F.; Valderas, J.M.; Roso-Llorach, A. Soft clustering using real-world data for the identification of multimorbidity patterns in an elderly population: Cross-sectional study in a Mediterranean population. BMJ Open 2019, 9, e029594. [Google Scholar] [CrossRef] [Green Version]
- Violán, C.; Fernández-Bertolín, S.; Guisado-Clavero, M.; Foguet-Boreu, Q.; Valderas, J.M.; Vidal Manzano, J.; Roso-Llorach, A.; Cabrera-Bean, M. Five-year trajectories of multimorbidity patterns in an elderly Mediterranean population using Hidden Markov Models. Sci Rep. 2020, 10, 16879. [Google Scholar] [CrossRef]
- Marengoni, A.; Fratiglioni, L. Disease clusters in older adults: Rationale and need for investigation. J. Am. Geriatr. Soc. 2011, 59, 2395–2396. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.S.; Gubbi, S.; Barzilai, N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab. 2020, 32, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Zhavoronkov, A.; Li, R.; Ma, C.; Mamoshina, P. Deep biomarkers of aging and longevity: From research to applications. Aging (Albany NY) 2019, 11, 10771–10780. [Google Scholar] [CrossRef] [PubMed]
- Boldrini, L.; Bibault, J.E.; Masciocchi, C.; Shen, Y.; Bittner, M.I. Deep Learning: A Review for the Radiation Oncologist. Front. Oncol. 2019, 9, 977. [Google Scholar] [CrossRef] [Green Version]
- Vetrano, D.L.; Roso-Llorach, A.; Fernández, S.; Guisado-Clavero, M.; Violán, C.; Onder, G.; Fratiglioni, L.; Calderón-Larrañaga, A.; Marengoni, A. Twelve-year clinical trajectories of multimorbidity in a population of older adults. Nat. Commun. 2020, 11, 3223. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Ageing and Life Course. Integrated Care for Older People (ICOPE). Available online: https://www.who.int/ageing/health-systems/icope/en/ (accessed on 4 January 2021).
- Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh-Tehran, H.; Mondal, T.; Pang, Z.; Deen, M.J. Smart Homes for Elderly Healthcare-Recent Advances and Research Challenges. Sensors 2017, 17, 2496. [Google Scholar] [CrossRef] [Green Version]
- Manini, T.M.; Mendoza, T.; Battula, M.; Davoudi, A.; Kheirkhahan, M.; Young, M.E.; Weber, E.; Fillingim, R.B.; Rashidi, P. Perception of Older Adults Toward Smartwatch Technology for Assessing Pain and Related Patient-Reported Outcomes: Pilot Study. JMIR Mhealth Uhealth 2019, 7, e10044. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B.K.; Noone, A.M.; Mariotto, A.B.; Simard, E.P.; Boscoe, F.P.; Henley, S.J.; Jemal, A.; Cho, H.; Anderson, R.N.; Kohler, B.A.; et al. Annual Report to the Nation on the status of cancer, 1975-2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer 2014, 120, 1290–1314. [Google Scholar] [CrossRef] [PubMed]
- Varpe, P.; Huhtinen, H.; Rantala, A.; Grönroos, J. Patient’s age should not play a key role in clinical decisions on surgical treatment of rectal cancer. Aging Clin. Exp. Res. 2010, 22, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Tetsche, M.S.; Dethlefsen, C.; Pedersen, L.; Sorensen, H.T.; Norgaard, M. The impact of comorbidity and stage on ovarian cancer mortality: A nationwide Danish cohort study. BMC Cancer 2008, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortorella, L.; Vizzielli, G.; Fusco, D.; Cho, W.C.; Bernabei, R.; Scambia, G.; Colloca, G. Ovarian Cancer Management in the Oldest Old: Improving Outcomes and Tailoring Treatments. Aging Dis. 2017, 8, 677–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J.D.; Chen, L.; Tergas, A.I.; Patankar, S.; Burke, W.M.; Hou, J.Y.; Neugut, A.I.; Ananth, C.V.; Hershman, D.L. Trends in relative survival for ovarian cancer from 1975 to 2011. Obstet. Gynecol. 2015, 125, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Graetz, I.; Anderson, J.N.; McKillop, C.N.; Stepanski, E.J.; Paladino, A.J.; Tillmanns, T.D. Use of a web-based app to improve postoperative outcomes for patients receiving gynecological oncology care: A randomized controlled feasibility trial. Gynecol. Oncol. 2018, 150, 311–317. [Google Scholar] [CrossRef]
- Vizzielli, G.; Costantini, B.; Tortorella, L.; Pitruzzella, I.; Gallotta, V.; Fanfani, F.; Gueli Alletti, S.; Cosentino, F.; Nero, C.; Scambia, G.; et al. A laparoscopic risk-adjusted model to predict major complications after primary debulking surgery in ovarian cancer: A single-institution assessment. Gynecol. Oncol. 2016, 142, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.D.; Ananth, C.V.; Tsui, J.; Glied, S.A.; Burke, W.M.; Lu, Y.S.; Neugut, A.I.; Herzog, T.J.; Hershman, D.L. Comparative effectiveness of upfront treatment strategies in elderly women with ovarian cancer. Cancer 2014, 120, 1246–1254. [Google Scholar] [CrossRef]
- Fanfani, F.; Fagotti, A.; Salerno, M.G.; Margariti, P.A.; Gagliardi, M.L.; Gallotta, V.; Vizzielli, G.; Panico, G.; Monterossi, G.; Scambia, G. Elderly and very elderly advanced ovarian cancer patients: Does the age influence the surgical management? Eur. J. Surg. Oncol. 2012, 38, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Pignata, S.; Breda, E.; Scambia, G.; Pisano, C.; Zagonel, V.; Lorusso, D.; Greggi, S.; De Vivo, R.; Ferrandina, G.; Gallo, C.; et al. A phase II study of weekly carboplatin and paclitaxel as first-line treatment of elderly patients with advanced ovarian cancer. A Multicentre Italian Trial in Ovarian cancer (MITO-5) study. Crit. Rev. Oncol. Hematol. 2008, 66, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Dion, L.; Mimoun, C.; Nyangoh Timoh, K.; Bendifallah, S.; Bricou, A.; Collinet, P.; Touboul, C.; Ouldamer, L.; Azaïs, H.; Dabi, Y.; et al. Ovarian Cancer in the Elderly: Time to Move towards a More Logical Approach to Improve Prognosis-A Study from the FRANCOGYN Group. J. Clin. Med. 2020, 9, 1339. [Google Scholar] [CrossRef]
- Tsigelny, I.F. Artificial intelligence in drug combination therapy. Brief. Bioinform. 2019, 20, 1434–1448. [Google Scholar] [CrossRef]
- Cesario, A.; Auffray, C.; Russo, P.; Hood, L. P4 medicine needs P4 education. Curr. Pharm. Des. 2014, 20, 6071–6072. [Google Scholar] [CrossRef]
- Ho, A. Are we ready for artificial intelligence health monitoring in elder care? BMC Geriatr. 2020, 20, 358. [Google Scholar] [CrossRef]
- Altman, R.B. Artificial intelligence (AI) systems for interpreting complex medical datasets. Clin. Pharmacol. Ther. 2017, 101, 585–586. [Google Scholar] [CrossRef]
- Peterson, E.D. Machine Learning, Predictive Analytics, and Clinical Practice: Can the Past Inform the Present? JAMA 2019, 322, 2283–2284. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesario, A.; D’Oria, M.; Calvani, R.; Picca, A.; Pietragalla, A.; Lorusso, D.; Daniele, G.; Lohmeyer, F.M.; Boldrini, L.; Valentini, V.; et al. The Role of Artificial Intelligence in Managing Multimorbidity and Cancer. J. Pers. Med. 2021, 11, 314. https://doi.org/10.3390/jpm11040314
Cesario A, D’Oria M, Calvani R, Picca A, Pietragalla A, Lorusso D, Daniele G, Lohmeyer FM, Boldrini L, Valentini V, et al. The Role of Artificial Intelligence in Managing Multimorbidity and Cancer. Journal of Personalized Medicine. 2021; 11(4):314. https://doi.org/10.3390/jpm11040314
Chicago/Turabian StyleCesario, Alfredo, Marika D’Oria, Riccardo Calvani, Anna Picca, Antonella Pietragalla, Domenica Lorusso, Gennaro Daniele, Franziska Michaela Lohmeyer, Luca Boldrini, Vincenzo Valentini, and et al. 2021. "The Role of Artificial Intelligence in Managing Multimorbidity and Cancer" Journal of Personalized Medicine 11, no. 4: 314. https://doi.org/10.3390/jpm11040314
APA StyleCesario, A., D’Oria, M., Calvani, R., Picca, A., Pietragalla, A., Lorusso, D., Daniele, G., Lohmeyer, F. M., Boldrini, L., Valentini, V., Bernabei, R., Auffray, C., & Scambia, G. (2021). The Role of Artificial Intelligence in Managing Multimorbidity and Cancer. Journal of Personalized Medicine, 11(4), 314. https://doi.org/10.3390/jpm11040314