Apocynin-Tandospirone Derivatives Suppress Methamphetamine-Induced Hyperlocomotion in Rats with Neonatal Exposure to Dizocilpine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Neonatal MK-801 Treatment
2.2. Drug Administration
2.3. Locomotor Activity Testing
2.4. Presentation of the Results and Statistics
3. Results
3.1. Spontaneous Locomotion
3.2. MAP-Induced Locomotion
3.3. MAP-Induced Vertical Activity
4. Discussion
4.1. Effects of New Chemicals and Atypical Antipsychotics on MAP-Induced Hyperactivity
4.2. Mechanisms Underlying the Antidopaminergic Effects of Apocynin-Tandospirone Derivatives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steullet, P.; Cabungcal, J.H.; Monin, A.; Dwir, D.; O’Donnell, P.; Cuenod, M.; Do, K.Q. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A “central hub” in schizophrenia pathophysiology? Schizophr. Res. 2016, 176, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koga, M.; Serritella, A.V.; Sawa, A.; Sedlak, T.W. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr. Res. 2016, 176, 52–71. [Google Scholar] [CrossRef]
- Perkins, D.O.; Jeffries, C.D.; Do, K.Q. Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biol. Psychiatry 2020, 88, 326–336. [Google Scholar] [CrossRef]
- Steullet, P.; Cabungcal, J.H.; Coyle, J.; Didriksen, M.; Gill, K.; Grace, A.A.; Hensch, T.K.; LaMantia, A.S.; Lindemann, L.; Maynard, T.M.; et al. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol. Psychiatry 2017, 22, 936–943. [Google Scholar] [CrossRef]
- Tsugawa, S.; Noda, Y.; Tarumi, R.; Mimura, Y.; Yoshida, K.; Iwata, Y.; Elsalhy, M.; Kuromiya, M.; Kurose, S.; Masuda, F.; et al. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J. Psychopharmacol. 2019, 33, 1199–1214. [Google Scholar] [CrossRef]
- Do, K.Q.; Trabesinger, A.H.; Kirsten-Kruger, M.; Lauer, C.J.; Dydak, U.; Hell, D.; Holsboer, F.; Boesiger, P.; Cuenod, M. Schizophrenia: Glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 2000, 12, 3721–3728. [Google Scholar] [CrossRef] [PubMed]
- Gawryluk, J.W.; Wang, J.F.; Andreazza, A.C.; Shao, L.; Young, L.T. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol. 2011, 14, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mico, J.A.; Rojas-Corrales, M.O.; Gibert-Rahola, J.; Parellada, M.; Moreno, D.; Fraguas, D.; Graell, M.; Gil, J.; Irazusta, J.; Castro-Fornieles, J.; et al. Reduced antioxidant defense in early onset first-episode psychosis: A case-control study. BMC Psychiatry 2011, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Raffa, M.; Atig, F.; Mhalla, A.; Kerkeni, A.; Mechri, A. Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naive first-episode schizophrenic patients. BMC Psychiatry 2011, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, S.; Berger, M.; Schlogelhofer, M.; Schafer, M.R.; Rice, S.; Kim, S.W.; Hesse, J.; McGorry, P.D.; Smesny, S.; Amminger, G.P. Erythrocyte glutathione levels as long-term predictor of transition to psychosis. Transl. Psychiatry 2017, 7, e1064. [Google Scholar] [CrossRef] [Green Version]
- Conus, P.; Seidman, L.J.; Fournier, M.; Xin, L.; Cleusix, M.; Baumann, P.S.; Ferrari, C.; Cousins, A.; Alameda, L.; Gholam-Rezaee, M.; et al. N-acetylcysteine in a Double-Blind Randomized Placebo-Controlled Trial: Toward Biomarker-Guided Treatment in Early Psychosis. Schizophr. Bull. 2018, 44, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Fone, K.C.; Porkess, M.V. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2008, 32, 1087–1102. [Google Scholar] [CrossRef]
- Jones, C.A.; Watson, D.J.; Fone, K.C. Animal models of schizophrenia. Br. J. Pharmacol. 2011, 164, 1162–1194. [Google Scholar] [CrossRef]
- Herrmann, A.P.; Benvenutti, R.; Pilz, L.K.; Elisabetsky, E. N-acetylcysteine prevents increased amphetamine sensitivity in social isolation-reared mice. Schizophr. Res. 2014, 155, 109–111. [Google Scholar] [CrossRef]
- Uehara, T.; Kurachi, M.; Kondo, T.; Abe, H.; Zhao, Q.L.; Itoh, H.; Sumiyoshi, T.; Suzuki, M. Apocynin-tandospirone derivatives demonstrate antioxidant properties in the animal model of schizophrenia. Adv. Redox Res. 2021, 3, 100013. [Google Scholar] [CrossRef]
- Leucht, S.; Corves, C.; Arbter, D.; Engel, R.R.; Li, C.; Davis, J.M. Second-generation versus first-generation antipsychotic drugs for schizophrenia: A meta-analysis. Lancet 2009, 373, 31–41. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G.; Zuberek, M.; Grzelak, A.; Dietrich-Muszalska, A. Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophr. Res. 2016, 176, 245–251. [Google Scholar] [CrossRef]
- Brinholi, F.F.; Farias, C.C.; Bonifacio, K.L.; Higachi, L.; Casagrande, R.; Moreira, E.G.; Barbosa, D.S. Clozapine and olanzapine are better antioxidants than haloperidol, quetiapine, risperidone and ziprasidone in in vitro models. Biomed. Pharmacother. 2016, 81, 411–415. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Ito, H.; Kondo, T.; Uehara, T.; Ikeda, M.; Abe, H.; Saitoh, J.I.; Noguchi, K.; Suzuki, M.; Kurachi, M. Antipsychotic drugs scavenge radiation-induced hydroxyl radicals and intracellular ROS formation, and protect apoptosis in human lymphoma U937 cells. Free Radic. Res. 2019, 53, 304–312. [Google Scholar] [CrossRef]
- Uehara, T.; Sumiyoshi, T.; Seo, T.; Itoh, H.; Matsuoka, T.; Suzuki, M.; Kurachi, M. Long-term effects of neonatal MK-801 treatment on prepulse inhibition in young adult rats. Psychopharmacology 2009, 206, 623–630. [Google Scholar] [CrossRef]
- Uehara, T.; Sumiyoshi, T.; Seo, T.; Matsuoka, T.; Itoh, H.; Kurachi, M. T-817MA, but Not Haloperidol and Risperidone, Restores Parvalbumin-Positive gamma -Aminobutyric Acid Neurons in the Prefrontal Cortex and Hippocampus of Rats Transiently Exposed to MK-801 at the Neonatal Period. ISRN Psychiatry 2012, 2012, 947149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uehara, T.; Sumiyoshi, T.; Seo, T.; Matsuoka, T.; Itoh, H.; Suzuki, M.; Kurachi, M. Neonatal exposure to MK-801, an N-methyl-d-aspartate receptor antagonist, enhances methamphetamine-induced locomotion and disrupts sensorimotor gating in pre- and postpubertal rats. Brain Res. 2010, 1352, 223–230. [Google Scholar] [CrossRef]
- Uehara, T.; Sumiyoshi, T.; Hattori, H.; Itoh, H.; Matsuoka, T.; Iwakami, N.; Suzuki, M.; Kurachi, M. T-817MA, a novel neurotrophic agent, ameliorates loss of GABAergic parvalbumin-positive neurons and sensorimotor gating deficits in rats transiently exposed to MK-801 in the neonatal period. J. Psychiatr. Res. 2012, 46, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Uehara, T.; Sumiyoshi, T.; Matsuoka, T.; Itoh, H.; Kurachi, M. Effect of prefrontal cortex inactivation on behavioral and neurochemical abnormalities in rats with excitotoxic lesions of the entorhinal cortex. Synapse 2007, 61, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Boctor, S.Y.; Ferguson, S.A. Altered adult locomotor activity in rats from phencyclidine treatment on postnatal days 7, 9 and 11, but not repeated ketamine treatment on postnatal day 7. Neurotoxicology 2010, 31, 42–54. [Google Scholar] [CrossRef]
- Kocahan, S.; Akillioglu, K.; Binokay, S.; Sencar, L.; Polat, S. The effects of N-Methyl-D-Aspartate receptor blockade during the early neurodevelopmental period on emotional behaviors and cognitive functions of adolescent Wistar rats. Neurochem. Res. 2013, 38, 989–996. [Google Scholar] [CrossRef]
- Robinson, T.E.; Becker, J.B. Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986, 396, 157–198. [Google Scholar] [CrossRef]
- Miller, D.K.; Oelrichs, C.E.; Sun, G.Y.; Simonyi, A. Subchronic apocynin treatment attenuates methamphetamine-induced dopamine release and hyperactivity in rats. Life Sci. 2014, 98, 6–11. [Google Scholar] [CrossRef]
- Weinberger, D.R. Neurodevelopmental perspectives on schizophrenia. In Psychopharmacology; The Forth Generation of Progress; Bloom, F.E., Kupfer, D.J., Eds.; Raven Press: New York, NY, USA, 1995; pp. 1171–1183. [Google Scholar]
- Fink, J.S.; Smith, G.P. Mesolimbic and mesocortical dopaminergic neurons are necessary for normal exploratory behavior in rats. Neurosci. Lett. 1980, 17, 61–65. [Google Scholar] [CrossRef]
- Thiel, C.M.; Muller, C.P.; Huston, J.P.; Schwarting, R.K. High versus low reactivity to a novel environment: Behavioural, pharmacological and neurochemical assessments. Neuroscience 1999, 93, 243–251. [Google Scholar] [CrossRef]
- Bubenikova-Valesova, V.; Kacer, P.; Syslova, K.; Rambousek, L.; Janovsky, M.; Schutova, B.; Hruba, L.; Slamberova, R. Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int. J. Dev. Neurosci. 2009, 27, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Groos, D.; Zheng, F.; Rauh, M.; Quinger, B.; Kornhuber, J.; Muller, C.P.; Alzheimer, C. Chronic antipsychotic treatment targets GIRK current suppression, loss of long-term synaptic depression and behavioural sensitization in a mouse model of amphetamine psychosis. J. Psychopharmacol. 2019, 33, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Hu, G.; Li, M. Repeated antipsychotic treatment progressively potentiates inhibition on phencyclidine-induced hyperlocomotion, but attenuates inhibition on amphetamine-induced hyperlocomotion: Relevance to animal models of antipsychotic drugs. Eur. J. Pharmacol. 2009, 602, 334–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abekawa, T.; Ito, K.; Koyama, T. Different effects of a single and repeated administration of clozapine on phencyclidine-induced hyperlocomotion and glutamate releases in the rat medial prefrontal cortex at short- and long-term withdrawal from this antipsychotic. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2007, 375, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.S.; Casanova, J.P.; Gatica, R.I.; Escobar, F.; Fuentealba, J.A. Clozapine pre-treatment has a protracted hypolocomotor effect on the induction and expression of amphetamine sensitization. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 47, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.S.; Chang, S.T.; Huang, C.L.; Huang, N.K. The neurotoxic mechanisms of amphetamine: Step by step for striatal dopamine depletion. Neurosci. Lett. 2017, 639, 185–191. [Google Scholar] [CrossRef]
- Basmadjian, O.M.; Occhieppo, V.B.; Marchese, N.A.; Silvero, C.M.; Becerra, M.C.; Baiardi, G.; Bregonzio, C. Amphetamine Induces Oxidative Stress, Glial Activation and Transient Angiogenesis in Prefrontal Cortex via AT1-R. Front. Pharmacol. 2021, 12, 647747. [Google Scholar] [CrossRef]
- Yamamoto, B.K.; Raudensky, J. The role of oxidative stress, metabolic compromise, and inflammation in neuronal injury produced by amphetamine-related drugs of abuse. J. Neuroimmune Pharmacol. 2008, 3, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Todorovic, N.; Filipovic, D. Prefrontal cortical glutathione-dependent defense and proinflammatory mediators in chronically isolated rats: Modulation by fluoxetine or clozapine. Neuroscience 2017, 355, 49–60. [Google Scholar] [CrossRef]
- Ikonomidou, C.; Bosch, F.; Miksa, M.; Bittigau, P.; Vockler, J.; Dikranian, K.; Tenkova, T.I.; Stefovska, V.; Turski, L.; Olney, J.W. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999, 283, 70–74. [Google Scholar] [CrossRef]
- Lipska, B.K.; Jaskiw, G.E.; Weinberger, D.R. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: A potential animal model of schizophrenia. Neuropsychopharmacology 1993, 9, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipska, B.K.; Swerdlow, N.R.; Geyer, M.A.; Jaskiw, G.E.; Braff, D.L.; Weinberger, D.R. Neontal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology 1995, 122, 35–43. [Google Scholar] [CrossRef]
- Gobert, A.; Rivet, J.M.; Cistarelli, J.M.; Millan, M.J. Buspirone enhances duloxetine- and fluoxetine-induced increases in dialysate levels of dopamine and noradrenaline, but not serotonin, in the frontal cortex of freely moving rats. J. Neurochem. 1997, 68, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Nisijima, K.; Katoh, S.; Yui, K.; Nakamura, M. Tandospirone potentiates the fluoxetine-induced increases in extracellular dopamine via 5-HT(1A) receptors in the rat medial frontal cortex. Neurochem. Int. 2002, 40, 355–360. [Google Scholar] [CrossRef]
- Huang, M.; Panos, J.J.; Kwon, S.; Oyamada, Y.; Rajagopal, L.; Meltzer, H.Y. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: Role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. J. Neurochem. 2014, 128, 938–949. [Google Scholar] [CrossRef]
- Hamik, A.; Oksenberg, D.; Fischette, C.; Peroutka, S.J. Analysis of tandospirone (SM-3997) interactions with neurotransmitter receptor binding sites. Biol. Psychiatry 1990, 28, 99–109. [Google Scholar] [CrossRef]
- Kuroki, T.; Ichikawa, J.; Dai, J.; Meltzer, H.Y. R(+)-8-OH-DPAT, a 5-HT1A receptor agonist, inhibits amphetamine-induced serotonin and dopamine release in rat medial prefrontal cortex. Brain Res. 1996, 743, 357–361. [Google Scholar] [CrossRef]
- Ichikawa, J.; Kuroki, T.; Kitchen, M.T.; Meltzer, H.Y. R(+)-8-OH-DPAT, a 5-HT1A receptor agonist, inhibits amphetamine-induced dopamine release in rat striatum and nucleus accumbens. Eur. J. Pharmacol. 1995, 287, 179–184. [Google Scholar] [CrossRef]
- Rasmusson, A.M.; Goldstein, L.E.; Deutch, A.Y.; Bunney, B.S.; Roth, R.H. 5-HT1a agonist +/-8-OH-DPAT modulates basal and stress-induced changes in medial prefrontal cortical dopamine. Synapse 1994, 18, 218–224. [Google Scholar] [CrossRef]
- Koblan, K.S.; Kent, J.; Hopkins, S.C.; Krystal, J.H.; Cheng, H.; Goldman, R.; Loebel, A. A Non-D2-Receptor-Binding Drug for the Treatment of Schizophrenia. N. Engl. J. Med. 2020, 382, 1497–1506. [Google Scholar] [CrossRef]
- Dedic, N.; Jones, P.G.; Hopkins, S.C.; Lew, R.; Shao, L.; Campbell, J.E.; Spear, K.L.; Large, T.H.; Campbell, U.C.; Hanania, T.; et al. SEP-363856, a Novel Psychotropic Agent with a Unique, Non-D2 Receptor Mechanism of Action. J. Pharmacol. Exp. Ther. 2019, 371, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, D.; Bzdega, T.; Olszewski, R.T.; Moffett, J.R.; Neale, J.H. Effects of N-acetylaspartylglutamate (NAAG) peptidase inhibition on release of glutamate and dopamine in prefrontal cortex and nucleus accumbens in phencyclidine model of schizophrenia. J. Biol. Chem. 2012, 287, 21773–21782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Spontaneous | MAP-Induced | |||
---|---|---|---|---|
Locomotor Activity | Vertical Activity | Locomotor Activity | Vertical Activity | |
A-2 | − | − | − | |
A-3 | − | − | − | |
A-4 | − | − | − | |
CLZ | − | − | − | − |
OLA | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uehara, T.; Kurachi, M.; Kondo, T.; Abe, H.; Itoh, H.; Sumiyoshi, T.; Suzuki, M. Apocynin-Tandospirone Derivatives Suppress Methamphetamine-Induced Hyperlocomotion in Rats with Neonatal Exposure to Dizocilpine. J. Pers. Med. 2022, 12, 366. https://doi.org/10.3390/jpm12030366
Uehara T, Kurachi M, Kondo T, Abe H, Itoh H, Sumiyoshi T, Suzuki M. Apocynin-Tandospirone Derivatives Suppress Methamphetamine-Induced Hyperlocomotion in Rats with Neonatal Exposure to Dizocilpine. Journal of Personalized Medicine. 2022; 12(3):366. https://doi.org/10.3390/jpm12030366
Chicago/Turabian StyleUehara, Takashi, Masayoshi Kurachi, Takashi Kondo, Hitoshi Abe, Hiroko Itoh, Tomiki Sumiyoshi, and Michio Suzuki. 2022. "Apocynin-Tandospirone Derivatives Suppress Methamphetamine-Induced Hyperlocomotion in Rats with Neonatal Exposure to Dizocilpine" Journal of Personalized Medicine 12, no. 3: 366. https://doi.org/10.3390/jpm12030366
APA StyleUehara, T., Kurachi, M., Kondo, T., Abe, H., Itoh, H., Sumiyoshi, T., & Suzuki, M. (2022). Apocynin-Tandospirone Derivatives Suppress Methamphetamine-Induced Hyperlocomotion in Rats with Neonatal Exposure to Dizocilpine. Journal of Personalized Medicine, 12(3), 366. https://doi.org/10.3390/jpm12030366