A Novel Intensity-Based Approach to Increasing Prefrontal Cerebral Oxygenation by Walking Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Procedure
2.4. Measures
2.4.1. Heart Rate
2.4.2. Fitness Tracker
2.4.3. Prefrontal Cerebral Oxygenation
2.4.4. Exercise Intensity
2.5. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Intensity of Walking during the Session
3.3. Associations between Baseline HEG and Personal Habits
3.4. Changes in HEG across Phases
4. Discussion
Limitations of Our Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Kleinloog, J.P.D.; Mensink, R.P.; Ivanov, D.; Adam, J.J.; Uludağ, K.; Joris, P.J. Aerobic exercise training improves cerebral blood flow and executive function: A randomized, controlled cross-over trial in sedentary older men. Front. Aging Neurosci. 2019, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vanderbeken, I.; Kerckhofs, E. A systematic review of the effect of physical exercise on cognition in stroke and traumatic brain injury patients. NeuroRehabilitation 2017, 40, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.T.; Hopman, R.J.; Huang, C.J.; Chu, C.H.; Hillman, C.H.; Hung, T.M.; Chang, Y.K. The effect of exercise training on brain structure and function in older adults: A systematic review based on evidence from randomized control trials. J. Clin. Med. 2020, 9, 914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barha, C.K.; Falck, R.S.; Skou, S.T.; Liu-Ambrose, T. Personalising exercise recommendations for healthy cognition and mobility in ageing: Time to consider one’s pre-existing function and genotype (Part 2). Br. J. Sports Med. 2021, 55, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Hadgraft, N.T.; Winkler, E.; Climie, R.E.; Grace, M.S.; Romero, L.; Owen, N.; Dunstan, D.; Healy, G.; Dempsey, P.C. Effects of sedentary behaviour interventions on biomarkers of cardiometabolic risk in adults: Systematic review with meta-analyses. Br. J. Sports Med. 2021, 55, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.J.; Green, D.J.; Ellis, K.A.; Cerin, E.; Heinonen, I.; Naylor, L.H.; Larsen, R.; Wennberg, P.; Boraxbekk, C.J.; Lewis, J.; et al. Distinct effects of acute exercise and breaks in sitting on working memory and executive function in older adults: A three-arm, randomised cross-over trial to evaluate the effects of exercise with and without breaks in sitting on cognition. Br. J. Sports Med. 2020, 54, 776–781. [Google Scholar] [CrossRef]
- Meier, T.B.; Bellgowan, P.S.F.; Singh, R.; Kuplicki, R.; Polanski, D.W.; Mayer, A.R. Recovery of cerebral blood flow following sports-related concussion. JAMA Neurol. 2015, 72, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Cuevas, Á.G.; Quesada, J.I.P.; Perez-Soriano, P.; Belloch, S.L. Effects of the exercise in the cerebral blood flow and metabolism. A review. J. Hum. Sport Exerc. 2015, 10, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Subudhi, A.W.; Miramon, B.R.; Granger, M.E.; Roach, R.C. Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. J. Appl. Physiol. 2009, 106, 1153–1158. [Google Scholar] [CrossRef]
- Leeuwis, A.E.; Smith, L.A.; Melbourne, A.; Hughes, A.D.; Richards, M.; Prins, N.D.; Sokolska, M.; Atkinson, D.; Tillin, T.; Jäger, H.R.; et al. Cerebral blood flow and cognitive functioning in a community-based, multi-ethnic cohort: The SABRE study. Front. Ageing Neurosci. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, J.B.; Dolui, S.; Duda, J.; Gaggi, N.; Choi, R.; Detre, J.; Whyte, J.; Diaz-Arrastia, R.; Kim, J.J. Relationship of cerebral blood flow to cognitive function and recovery in early chronic traumatic brain injury. J. Neurotrauma 2020, 37, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- De Eulate, R.G.; Goñi, I.; Galiano, A.; Vidorreta, M.; Recio, M.; Riverol, M.; Zubieta, J.L.; Fernández-Seara, M.A. Reduced cerebral blood flow in mild cognitive impairment assessed using phase-contrast MRI. J. Alzheimers Dis. 2017, 58, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Lopez, O.L.; Carmichael, O.T.; Becker, J.T.; Kuller, L.H.; Gach, H.M. Mild cognitive impairment and Alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology 2009, 250, 856–866. [Google Scholar] [CrossRef]
- Wolters, F.J.; Zonneveld, H.I.; Hofman, A.; van der Lugt, A.; Koudstaal, P.J.; Vernooij, M.W.; Ikram, M.A.; Heart-Brain Connection Collaborative Research Group. Cerebral perfusion and the risk of dementia: A population-based study. Circulation 2017, 136, 719–728. [Google Scholar] [CrossRef] [Green Version]
- Catchlove, S.J.; Macpherson, H.; Hughes, M.E.; Chen, Y.; Parrish, T.B.; Pipingas, A. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging. PLoS ONE 2018, 13, e0197055. [Google Scholar] [CrossRef]
- Alfini, A.J.; Weiss, L.R.; Nielson, K.A.; Verber, M.D.; Smith, J.C. Resting cerebral blood flow after exercise training in mild cognitive impairment. J. Alzheimers Dis. 2019, 67, 671–684. [Google Scholar] [CrossRef]
- Robertson, A.D.; Crane, D.E.; Rajab, A.S.; Swardfager, W.; Marzolini, S.; Shirzadi, Z.; Middleton, L.E.; MacIntosh, B.J. Exercise intensity modulates the change in cerebral blood flow following aerobic exercise in chronic stroke. Exp. Brain Res. 2015, 233, 2467–2475. [Google Scholar] [CrossRef]
- Steventon, J.J.; Foster, C.; Furby, H.; Helme, D.; Wise, R.G.; Murphy, K. Hippocampal blood flow is increased after 20 min of moderate-intensity exercise. Cereb. Cortex 2020, 30, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Tung, Y.J.; Yen, Y.S.; Lin, B.S.; Chou, W. Cerebral oxygenation during exercise in patients with cardiopulmonary diseases: A prospective observational study. Acta Cardiol. Sin. 2020, 36, 667–674. [Google Scholar] [CrossRef]
- Inagaki, Y.; Sato, R.; Uchiyama, T.; Kojima, S.; Morishita, S.; Qin, W.; Tsubaki, A. Sex differences in the oxygenation of the left and right prefrontal cortex during moderate-intensity exercise. Int. J. Environ. Res. Public Health 2021, 18, 5212. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Steventon, J.J.; Helme, D.; Tomassini, V.; Wise, R.G. Assessment of the effects of aerobic fitness on cerebrovascular function in young adults using multiple inversion time arterial spin labeling MRI. Front. Physiol. 2020, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toomim, H.; Mize, W.; Kwong, P.C.; Toomim, M.; Marsh, R.; Kozlowski, G.P.; Kimball, M.; Rémond, A. Intentional increase of cerebral blood oxygenation using hemoencephalography (HEG): An efficient brain exercise therapy. J. Neurother. 2004, 8, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Serra-Sala, M.; Timoneda-Gallart, C.; Pérez-Álvarez, F. Clinical usefulness of hemoencephalography beyond the neurofeedback. Neuropsychiatr. Dis. Treat. 2016, 12, 1173–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Sala, M.; Timoneda-Gallart, C.; Pérez-Álvarez, F. Evaluating prefrontal activation and its relationship with cognitive and emotional processes by means of hemoencephalography (HEG). J. Neurother. 2012, 16, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Ometov, A.; Shubina, V.; Klus, L.; Skibińska, J.; Saafic, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O.; et al. A survey on wearable technology: History, state-of-the-art and current challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Ludwig, M.; Hoffmann, K.; Endler, S.; Asteroth, A.; Wiemeyer, J. Measurement, prediction, and control of individual heart rate responses to exercise—Basics and options for wearable devices. Front. Physiol. 2018, 9, 778. [Google Scholar] [CrossRef]
- Dooley, E.E.; Golaszewski, N.M.; Bartholomew, J.B. Estimating accuracy at exercise intensities: A comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR MHealth UHealth 2017, 5, 1–12. [Google Scholar] [CrossRef]
- Rooks, C.R.; Thom, N.J.; McCully, K.K.; Dishman, R.K. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: A systematic review. Prog. Neurobiol. 2010, 92, 134–150. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Giovas, P.P.; Gkinos, C.P.; Patouras, J.D. Validation of the Microlife WatchBP home device for self home blood pressure measurement according to the international protocol. Blood Press. Monit. 2007, 12, 185–188. [Google Scholar] [CrossRef]
- Borg, G.A. Perceived exertion: A note on “history” and methods. Med. Sci. Sports 1973, 5, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Jovanov, E.; Milosevic, M.; Milenkovic, A. A mobile system for assessment of physiological response to posture transitions. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; Volume 35899, pp. 7205–7208. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Roberge, R.; Powell, J.B.; Shafer, A.B.; Williams, W.J. Measurement accuracy of heart rate and respiratory rate during graded exercise and sustained exercise in the heat using the zephyr BioHarnessTM. Int. J. Sports Med. 2013, 34, 497–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazari, G.; MacDermid, J.C.; Sinden, K.E.; Richardson, J.; Tang, A. Reliability of Zephyr bioharness and Fitbit charge measures of heart rate and activity at rest, during the modified Canadian aerobic fitness test, and recovery. J. Strength Cond. Res. 2019, 33, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Nazari, G.; Bobos, P.; MacDermid, J.C.; Sinden, K.E.; Richardson, J.; Tang, A. Psychometric properties of the Zephyr bioharness device: A systematic review. BMC Sports Sci. Med. Rehabil. 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Sherrill, R. Effects of Hemoencephalographic (HEG) training at three prefrontal locations upon EEG ratios at Cz. J. Neurother. 2005, 8, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, P.J.; Chiu, C.C.; Lin, K.H.; Hu, F.K.; Tsai, P.J.; Wu, C.T.; Pang, Y.K.; Lin, Y.; Kuo, M.H.; Chen, K.H.; et al. Usability of wearable devices with a novel cardiac force index for estimating the dynamic cardiac function: Observational study. JMIR MHealth UHealth 2020, 8, 1–14. [Google Scholar] [CrossRef]
- Northey, J.M.; Rattray, B.; Pumpa, K.L.; Pryor, D.J.; Fraser, M.A.; Shaw, M.E.; Anstey, K.J.; Cherbuin, N. Objectively measured physical activity is associated with dorsolateral prefrontal cortex volume in older adults. NeuroImage 2020, 221, 11750. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P.; American College of Sports Medicine. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- Norton, K.; Norton, L.; Sadgrove, D. Position statement on physical activity and exercise intensity terminology. J. Sci. Med. Sports 2010, 13, 496–502. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Br. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar] [CrossRef]
- Mackie, P.; Crowfoot, G.; Gyawali, P.; Janssen, H.; Holliday, E.; Dunstan, D.; English, C. Acute effects of frequent low-intensity standing-based exercises that interrupt 8 hours of prolonged sitting on postprandial glucose in stroke survivors: A dose-escalation trial. J. Phys. Act. Health 2021, 18, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Gahete, F.J.; De-la-O, A.; Jurado-Fasoli, L.; Martinez-Tellez, B.; Ruiz, J.R.; Castillo, M.J. Exercise training as a treatment for cardiometabolic risk in sedentary adults: Are physical activity guidelines the best way to improve cardiometabolic health? The FIT-AGEING randomized controlled trial. J. Clin. Med. 2019, 8, 2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunstan, D.W.; Dogra, S.; Carter, S.E.; Owen, N. Sit less and move more for cardiovascular health: Emerging insights and opportunities. Nat. Rev. Cardiol. 2021, 18, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Chastin, S.F.M.; De Craemer, M.; De Cocker, K.; Powell, L.; Van Cauwenberg, J.; Dall, P.; Hamer, M.; Stamatakis, E. How does low-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br. J. Sports Med. 2019, 53, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Ide, K.; Secher, N.H. Cerebral blood flow and metabolism during exercise. Prog. Neurobiol. 2000, 61, 397–414. [Google Scholar] [CrossRef]
- Peltonen, G.L.; Harrell, J.W.; Aleckson, B.P.; LaPlante, K.M.; Crain, M.K.; Schrage, W.G. Cerebral blood flow regulation in women across menstrual phase: Differential contribution of cyclooxygenase to basal, hypoxic, and hypercapnic vascular tone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R222–R231. [Google Scholar] [CrossRef]
Exercise Intensity | p # | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Moderate | Low/Moderate | Low | Very Low | ||||||||
CFM: | <37.5 | 37.5–42.5 | 42.6–47.5 | >47.5 | |||||||
Variable | n | % (M) * | n | % (M) * | n | % (M) * | n | % (M) * | n | % (M) * | |
Sex | |||||||||||
Male | 59 | 51.8 | 14 | 53.8 | 13 | 50.0 | 22 | 51.2 | 10 | 52.6 | 0.99 |
Female | 55 | 48.2 | 12 | 46.2 | 13 | 50.0 | 21 | 48.8 | 9 | 47.4 | |
Age * | 22.56 | 0.14 | 22.33 | 0.29 | 22.63 | 0.26 | 22.62 | 0.23 | 22.55 | 0.14 | 0.86 |
BMI * | 21.95 | 0.21 | 21.87 | 0.43 | 21.74 | 0.41 | 22.39 | 0.37 | 21.37 | 0.38 | 0.35 |
SBP * | 115.45 | 1.14 | 114.1 | 1.91 | 117.0 | 2.65 | 115.3 | 1.88 | 115.6 | 3.09 | 0.87 |
DBP * | 69.81 | 0.70 | 70.8 | 1.53 | 69.5 | 1.38 | 69.2 | 1.03 | 70.3 | 2.16 | 0.85 |
HR * | 77.17 | 1.12 | 82.5 | 2.65 | 75.9 | 2.22 | 76.1 | 1.79 | 74.2 | 2.15 | 0.07 |
O2sat * | 98.10 | 0.10 | 97.9 | .21 | 97.8 | 0.20 | 98.2 | 0.14 | 98.6 | 0.24 | 0.05 |
Smoking | |||||||||||
No | 114 | 100 | 26 | 100 | 26 | 100 | 43 | 100 | 19 | 100 | |
Yes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Drinking | |||||||||||
No | 114 | 100 | 26 | 100 | 26 | 100 | 43 | 100 | 19 | 100 | |
Yes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Regular exercise | 0.13 | ||||||||||
No | 21 | 18.4 | 3 | 11.5 | 2 | 7.7 | 11 | 25.6 | 5 | 26.3 | |
Yes | 93 | 81.6 | 23 | 88.5 | 24 | 92.3 | 32 | 74.4 | 14 | 73.7 | |
Sessions per week | 0.32 | ||||||||||
1 | 13 | 11.4 | 5 | 19.2 | 4 | 15.4 | 4 | 9.3 | 0 | 0.0 | |
2 | 35 | 30.7 | 10 | 38.5 | 9 | 34.6 | 12 | 27.9 | 4 | 21.1 | |
3 | 30 | 26.3 | 5 | 19.2 | 8 | 30.8 | 10 | 23.3 | 7 | 36.8 | |
4 | 10 | 8.8 | 1 | 3.8 | 1 | 3.8 | 6 | 14.0 | 2 | 10.5 | |
5 | 5 | 4.4 | 2 | 7.7 | 2 | 7.7 | 0 | 0.0 | 1 | 5.3 | |
variable | 21 | 18.4 | 3 | 11.5 | 2 | 7.7 | 11 | 25.6 | 5 | 26.3 | |
Duration of session (min) | 0.32 | ||||||||||
<15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
15–30 | 28 | 24.6 | 10 | 38.5 | 8 | 30.7 | 6 | 13.9 | 4 | 21.1 | |
31–60 | 43 | 37.7 | 6 | 23.1 | 10 | 38.4 | 18 | 42.0 | 9 | 47.4 | |
>60 | 12 | 10.5 | 4 | 15.2 | 1 | 3.8 | 6 | 13.9 | 1 | 5.3 | |
variable | 31 | 27.2 | 6 | 23.1 | 7 | 26.9 | 13 | 30.2 | 5 | 26.3 | |
Sleep quality | 0.58 | ||||||||||
very good | 16 | 14.0 | 5 | 19.2 | 3 | 11.5 | 5 | 11.6 | 3 | 15.8 | |
good | 75 | 65.8 | 17 | 65.4 | 16 | 61.5 | 28 | 65.1 | 14 | 73.7 | |
bad | 21 | 18.4 | 4 | 15.4 | 7 | 26.9 | 9 | 20.9 | 1 | 5.3 | |
very bad | 2 | 1.8 | 0 | 0 | 0 | 0 | 1 | 2.3 | 1 | 5.3 |
CFM: Measure | Phase | Exercise Intensity | |||||||
---|---|---|---|---|---|---|---|---|---|
Moderate | Low/Moderate | Low | Very Low | ||||||
<37.5 | 37.5–42.5 | 42.6–47.5 | >47.5 | ||||||
M | SE | M | SE | M | SE | M | SE | ||
RPE | 11.1 | 0.33 | 10.58 | 0.27 | 9.81 | 0.28 | 9.21 | 0.39 | |
HRR (%) | Exercise | 49.20 | 1.77 | 40.40 | 1.51 | 29.20 | 1.13 | 20.96 | 1.26 |
HR | Baseline | 93.2 | 1.76 | 90.3 | 2.23 | 85.8 | 1.68 | 82.6 | 2.89 |
Warmup | 102.5 | 1.72 | 98.6 | 2.02 | 94.3 | 1.52 | 90.0 | 1.76 | |
Exercise | 140.1 | 0.95 | 125.7 | 0.94 | 112.3 | 0.52 | 100.3 | 1.11 | |
Cool down | 122.8 | 1.13 | 113.2 | 1.61 | 102.8 | 0.97 | 94.9 | 1.62 | |
Recovery | 97.6 | 1.60 | 88.9 | 1.62 | 81.5 | 1.46 | 75.7 | 1.83 | |
HEG | Baseline | 79.49 | 2.64 | 76.95 | 3.97 | 81.78 | 4.04 | 87.23 | 4.84 |
Warmup | 79.41 | 2.66 | 77.79 | 4.45 | 81.85 | 4.31 | 85.03 | 3.29 | |
Exercise | 84.75 | 2.43 | 82.34 | 5.21 | 85.04 | 4.25 | 84.66 | 3.86 | |
Cool down | 84.85 | 2.22 | 84.95 | 5.91 | 86.06 | 3.98 | 84.69 | 3.96 | |
Recovery | 88.89 | 4.61 | 84.55 | 6.85 | 85.53 | 4.34 | 83.12 | 2.94 |
Model | Total | Exercise Intensity (M/SE) | B | SE | β | t | p | |||
---|---|---|---|---|---|---|---|---|---|---|
Mod | Low/Mod | Low | V Low | |||||||
Weekly frequency | 2.56/0.11 | 2.35/0.24 | 2.50/0.23 | 2.56/0.17 | 3.00/0.23 | 4.51 | 2.18 | 0.22 | 2.07 | 0.04 |
Constant | 70.23 | 6.03 | 11.64 | <0.001 |
Variables | β | SE | χ2 | p |
---|---|---|---|---|
Intensity * ^ | ||||
Moderate | Reference | |||
Low/Mod | −3.44 | 6.46 | 0.28 | 0.59 |
Low | 2.95 | 5.78 | 0.26 | 0.61 |
Very Low | 7.21 | 5.49 | 1.06 | 0.30 |
Phase # | ||||
Baseline | Reference | |||
Warmup | −0.09 | 1.95 | 0.002 | 0.96 |
Exercise | 5.26 | 2.70 | 3.80 | 0.05 |
Cool down | 5.36 | 3.23 | 2.76 | 0.10 |
Recovery | 9.39 | 3.64 | 6.64 | 0.01 |
Intensity × Phase | ||||
Very Low × Recovery | −13.50 | 5.61 | 5.79 | 0.016 |
Very Low × Cool down | −7.90 | 4.97 | 2.52 | 0.11 |
Very Low × Exercise | −7.83 | 4.15 | 3.55 | 0.059 |
Very Low × Warmup | −2.11 | 3.01 | 0.49 | 0.48 |
Very Low × Baseline | Reference | |||
Low × Recovery | −5.65 | 4.62 | 1.50 | 0.22 |
Low × Cool down | −1.09 | 4.09 | 0.07 | 0.79 |
Low × Exercise | −2.00 | 3.42 | 0.34 | 0.56 |
Low × Warmup | 0.16 | 2.47 | 0.004 | 0.95 |
Low × Baseline | Reference | |||
Low/Mod × Recovery | −1.79 | 5.15 | 0.12 | 0.73 |
Low/Mod × Cool down | 2.64 | 4.57 | 0.33 | 0.56 |
Low/Mod × Exercise | 0.14 | 3.82 | 0.001 | 0.97 |
Low/Mod × Warmup | 0.93 | 2.76 | 0.11 | 0.74 |
Low/Mod × Baseline | Reference | |||
Weekly frequency of exercise | 3.88 | 1.80 | 6.90 | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, Y.-W.; Tzeng, H.-Y.; Chu, C.-M.; Lan, H.-Y.; Chiang, H.-H. A Novel Intensity-Based Approach to Increasing Prefrontal Cerebral Oxygenation by Walking Exercise. J. Pers. Med. 2022, 12, 510. https://doi.org/10.3390/jpm12040510
Hsiao Y-W, Tzeng H-Y, Chu C-M, Lan H-Y, Chiang H-H. A Novel Intensity-Based Approach to Increasing Prefrontal Cerebral Oxygenation by Walking Exercise. Journal of Personalized Medicine. 2022; 12(4):510. https://doi.org/10.3390/jpm12040510
Chicago/Turabian StyleHsiao, Ya-Wen, Hsin-Ya Tzeng, Chi-Ming Chu, Hsiang-Yun Lan, and Hui-Hsun Chiang. 2022. "A Novel Intensity-Based Approach to Increasing Prefrontal Cerebral Oxygenation by Walking Exercise" Journal of Personalized Medicine 12, no. 4: 510. https://doi.org/10.3390/jpm12040510
APA StyleHsiao, Y. -W., Tzeng, H. -Y., Chu, C. -M., Lan, H. -Y., & Chiang, H. -H. (2022). A Novel Intensity-Based Approach to Increasing Prefrontal Cerebral Oxygenation by Walking Exercise. Journal of Personalized Medicine, 12(4), 510. https://doi.org/10.3390/jpm12040510