Predicting the Need for Therapeutic Intervention and Mortality in Acute Pancreatitis: A Two-Center International Study Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Cohorts and Data Collection
2.3. Potential Predictors
2.4. Definition of Groups
2.5. Statistical Analysis and Model Development
2.5.1. Data Sources
2.5.2. Univariate Analysis
2.5.3. Performance of the ML Algorithm
3. Results
3.1. Comparison of Characteristics between Intervention and Non-Intervention Patients with AP
3.2. Important Features and Predictors for Intervention and Mortality
3.3. Prediction and Diagnostic Performance for Intervention and Mortality
3.4. Comparison of the Models with Prognostic Scores
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Lund, J.L.; Dellon, E.S.; Williams, J.L.; Jensen, E.T.; Shaheen, N.J.; Barritt, A.S.; Lieber, S.R.; et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology 2019, 156, 254–272.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boxhoorn, L.; Voermans, R.P.; Bouwense, S.A.; Bruno, M.J.; Verdonk, R.C.; Boermeester, M.A.; van Santvoort, H.C.; Besselink, M.G. Acute pancreatitis. Lancet 2020, 396, 726–734. [Google Scholar] [CrossRef]
- Xiao, A.Y.; Tan, M.L.; Wu, L.M.; Asrani, V.M.; Windsor, J.A.; Yadav, D.; Petrov, M.S. Global incidence and mortality of pancreatic diseases: A systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol. Hepatol. 2016, 1, 45–55. [Google Scholar] [CrossRef]
- Moggia, E.; Koti, R.; Belgaumkar, A.P.; Fazio, F.; Pereira, S.P.; Davidson, B.R.; Gurusamy, K.S. Pharmacological interventions for acute pancreatitis. Cochrane Database Syst. Rev. 2017, 4, CD011384. [Google Scholar] [CrossRef]
- Gomatos, I.P.; Xiaodong, X.; Ghaneh, P.; Halloran, C.; Raraty, M.; Lane, B.; Sutton, R.; Neoptolemos, J.P. Prognostic markers in acute pancreatitis. Expert Rev. Mol. Diagn. 2014, 14, 333–346. [Google Scholar] [CrossRef]
- Staubli, S.M.; Oertli, D.; Nebiker, C.A. Laboratory markers predicting severity of acute pancreatitis. Crit. Rev. Clin. Lab. Sci. 2015, 52, 273–283. [Google Scholar] [CrossRef]
- Liu, T.; Huang, W.; Szatmary, P.; Abrams, S.T.; Alhamdi, Y.; Lin, Z.; Greenhalf, W.; Wang, G.; Sutton, R.; Toh, C.H. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br. J. Surg. 2017, 104, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Goswami, P.; Sonika, U.; Moka, P.; Sreenivas, V.; Saraya, A. Intestinal Fatty Acid Binding Protein and Citrulline as Markers of Gut Injury and Prognosis in Patients With Acute Pancreatitis. Pancreas 2017, 46, 1275–1280. [Google Scholar] [CrossRef]
- De-Madaria, E.; Molero, X.; Bonjoch, L.; Casas, J.; Cardenas-Jaen, K.; Montenegro, A.; Closa, D. Oleic acid chlorohydrin, a new early biomarker for the prediction of acute pancreatitis severity in humans. Ann. Intensive Care 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Wu, Z.; Chi, C.; Wu, C.; Su, L.; Zhang, Y.; Zhu, J.; Liu, Y. Angiopoietin-2 Is an Early Predictor for Acute Gastrointestinal Injury and Intestinal Barrier Dysfunction in Patients with Acute Pancreatitis. Dig. Dis. Sci. 2021, 66, 114–120. [Google Scholar] [CrossRef]
- Hong, W.; Lillemoe, K.D.; Pan, S.; Zimmer, V.; Kontopantelis, E.; Stock, S.; Zippi, M.; Wang, C.; Zhou, M. Development and validation of a risk prediction score for severe acute pancreatitis. J. Transl. Med. 2019, 17, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Li, J.; Zhao, J.; Li, S. A new scoring system can be applied to predict the organ failure related events in acute pancreatitis accurately and rapidly. Pancreatology 2020, 20, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.W.; Zhang, X.Q.; Geng, C.M.; Peng, L.L. Development of the National Early Warning Score-Calcium Model for Predicting Adverse Outcomes in Patients With Acute Pancreatitis. J. Emerg. Nurs. 2020, 46, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Rasch, S.; Pichlmeier, E.M.; Phillip, V.; Mayr, U.; Schmid, R.M.; Huber, W.; Lahmer, T. Prediction of Outcome in Acute Pancreatitis by the qSOFA and the New ERAP Score. Dig. Dis. Sci. 2022, 67, 1371–1378. [Google Scholar] [CrossRef]
- Fan, L.; Hui, X.; Mao, Y.; Zhou, J. Identification of Acute Pancreatitis-Related Genes and Pathways by Integrated Bioinformatics Analysis. Dig. Dis. Sci. 2020, 65, 1720–1732. [Google Scholar] [CrossRef]
- Blenkiron, C.; Askelund, K.J.; Shanbhag, S.T.; Chakraborty, M.; Petrov, M.S.; Delahunt, B.; Windsor, J.A.; Phillips, A.R. MicroRNAs in mesenteric lymph and plasma during acute pancreatitis. Ann. Surg. 2014, 260, 341–347. [Google Scholar] [CrossRef]
- Waldron, R.T.; Lugea, A.; Gulla, A.; Pandol, S.J. Proteomic Identification of Novel Plasma Biomarkers and Pathobiologic Pathways in Alcoholic Acute Pancreatitis. Front. Physiol. 2018, 9, 1215. [Google Scholar] [CrossRef]
- Garcia-Hernandez, V.; Sanchez-Bernal, C.; Schvartz, D.; Calvo, J.J.; Sanchez, J.C.; Sanchez-Yague, J. A tandem mass tag (TMT) proteomic analysis during the early phase of experimental pancreatitis reveals new insights in the disease pathogenesis. J. Proteom. 2018, 181, 190–200. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Tan, J.; Chen, B.; Sun, L. Improved Integrated Whole Proteomic and Phosphoproteomic Profiles of Severe Acute Pancreatitis. J. Proteome Res. 2020, 19, 2471–2482. [Google Scholar] [CrossRef]
- Papachristou, G.I.; Malehorn, D.E.; Lamb, J.; Slivka, A.; Bigbee, W.L.; Whitcomb, D.C. Serum proteomic patterns as a predictor of severity in acute pancreatitis. Pancreatology 2007, 7, 317–324. [Google Scholar] [CrossRef]
- Peng, Y.; Hong, J.; Raftery, D.; Xia, Q.; Du, D. Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166123. [Google Scholar] [CrossRef] [PubMed]
- Silva-Vaz, P.; Jarak, I.; Rato, L.; Oliveira, P.F.; Morgado-Nunes, S.; Paulino, A.; Castelo-Branco, M.; Botelho, M.F.; Tralhão, J.G.; Alves, M.G.; et al. Plasmatic Oxidative and Metabonomic Profile of Patients with Different Degrees of Biliary Acute Pancreatitis Severity. Antioxidants 2021, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Neyton, L.P.A.; Zheng, X.; Skouras, C.; Doeschl-Wilson, A.; Gutmann, M.U.; Uings, I.; Rao, F.V.; Nicolas, A.; Marshall, C.; Wilson, L.M.; et al. Molecular Patterns in Acute Pancreatitis Reflect Generalizable Endotypes of the Host Response to Systemic Injury in Humans. Ann. Surg. 2022, 275, e453–e462. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [Green Version]
- DeGregory, K.W.; Kuiper, P.; DeSilvio, T.; Pleuss, J.D.; Miller, R.; Roginski, J.W.; Fisher, C.B.; Harness, D.; Viswanath, S.; Heymsfield, S.B.; et al. A review of machine learning in obesity. Obes. Rev. 2018, 19, 668–685. [Google Scholar] [CrossRef]
- Connor, C.W. Artificial Intelligence and Machine Learning in Anesthesiology. Anesthesiology 2019, 131, 1346–1359. [Google Scholar] [CrossRef] [Green Version]
- Bleidorn, W.; Hopwood, C.J. Using Machine Learning to Advance Personality Assessment and Theory. Personal. Soc. Psychol. Rev. 2019, 23, 190–203. [Google Scholar] [CrossRef]
- Le Berre, C.; Sandborn, W.J.; Aridhi, S.; Devignes, M.D.; Fournier, L.; Smail-Tabbone, M.; Danese, S.; Peyrin-Biroulet, L. Application of Artificial Intelligence to Gastroenterology and Hepatology. Gastroenterology 2020, 158, 76–94.e2. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q.; Nian, Y.J.; Guo, Y.; Tang, L.; Lu, N.; Wen, L.Z.; Wang, B.; Chen, D.F.; Liu, K.J. Development and validation of three machine-learning models for predicting multiple organ failure in moderately severe and severe acute pancreatitis. BMC Gastroenterol. 2019, 19, 118. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.; Gao, L.; Yu, X.Q.; Wei, M.; Fang, G.Q.; He, J.; Cao, L.X.; Ke, L.; Tong, Z.H.; Li, W.Q. Machine Learning Models of Acute Kidney Injury Prediction in Acute Pancreatitis Patients. Gastroenterol. Res. Pract. 2020, 2020, 3431290. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Chen, X.; Li, C.; Liu, J.; Qiu, Q.; He, M.; Xiao, J.; Liu, Z.; Ji, B.; Chen, D.; et al. Prediction of Multiple Organ Failure Complicated by Moderately Severe or Severe Acute Pancreatitis Based on Machine Learning: A Multicenter Cohort Study. Mediat. Inflamm. 2021, 2021, 5525118. [Google Scholar] [CrossRef] [PubMed]
- Pearce, C.B.; Gunn, S.R.; Ahmed, A.; Johnson, C.D. Machine learning can improve prediction of severity in acute pancreatitis using admission values of APACHE II score and C-reactive protein. Pancreatology 2006, 6, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.W.; Lu, J.Y.; Weng, Y.X.; Chen, H.; He, Q.Y.; Liu, R.; Li, H.P.; Pan, J.Y.; Shi, K.Q. Accurate prediction of acute pancreatitis severity with integrative blood molecular measurements. Aging 2021, 13, 8817–8834. [Google Scholar] [CrossRef]
- Jin, X.; Ding, Z.; Li, T.; Xiong, J.; Tian, G.; Liu, J. Comparison of MPL-ANN and PLS-DA models for predicting the severity of patients with acute pancreatitis: An exploratory study. Am. J. Emerg. Med. 2021, 44, 85–91. [Google Scholar] [CrossRef]
- Liu, N.; He, J.; Hu, X.; Xu, S.F.; Su, W.; Luo, J.F.; Wang, Q.F.; Guo, F. Acute necrotising pancreatitis: Measurements of necrosis volume and mean CT attenuation help early prediction of organ failure and need for intervention. Eur. Radiol. 2021, 31, 7705–7714. [Google Scholar] [CrossRef]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Classification of acute pancreatitis--2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef]
- Working Group IAPAPAAPG. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 2013, 13, e1–e15. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef] [Green Version]
- Halonen, K.I.; Pettilä, V.; Leppäniemi, A.K.; Kemppainen, E.A.; Puolakkainen, P.A.; Haapiainen, R.K. Multiple organ dysfunction associated with severe acute pancreatitis. Crit. Care Med. 2002, 30, 1274–1279. [Google Scholar] [CrossRef]
- Mofidi, R.; Duff, M.D.; Wigmore, S.J.; Madhavan, K.K.; Garden, O.J.; Parks, R.W. Association between early systemic inflammatory response, severity of multiorgan dysfunction and death in acute pancreatitis. Br. J. Surg. 2006, 93, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.U.; Johannes, R.S.; Sun, X.; Tabak, Y.; Conwell, D.L.; Banks, P.A. The early prediction of mortality in acute pancreatitis: A large population-based study. Gut 2008, 57, 1698–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larvin, M.; McMahon, M.J. APACHE-II score for assessment and monitoring of acute pancreatitis. Lancet 1989, 2, 201–205. [Google Scholar] [CrossRef]
- Bollen, T.L.; Singh, V.K.; Maurer, R.; Repas, K.; van Es, H.W.; Banks, P.A.; Mortele, K.J. A comparative evaluation of radiologic and clinical scoring systems in the early prediction of severity in acute pancreatitis. Am. J. Gastroenterol. 2012, 107, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Windsor, J.A. A better way to predict the outcome in acute pancreatitis? Am. J. Gastroenterol. 2010, 105, 1671–1673. [Google Scholar] [CrossRef]
- Knight, S.R.; Ots, R.; Maimbo, M.; Drake, T.M.; Fairfield, C.J.; Harrison, E.M. Systematic review of the use of big data to improve surgery in low- and middle-income countries. Br. J. Surg. 2019, 106, e62–e72. [Google Scholar] [CrossRef] [Green Version]
- Murdoch, T.B.; Detsky, A.S. The inevitable application of big data to health care. JAMA 2013, 309, 1351–1352. [Google Scholar] [CrossRef]
- Belle, A.; Thiagarajan, R.; Soroushmehr, S.M.; Navidi, F.; Beard, D.A.; Najarian, K. Big Data Analytics in Healthcare. Biomed. Res. Int. 2015, 2015, 370194. [Google Scholar] [CrossRef] [Green Version]
- Adkins, D.E. Machine Learning and Electronic Health Records: A Paradigm Shift. Am. J. Psychiatry 2017, 174, 93–94. [Google Scholar] [CrossRef]
- Van Santvoort, H.C.; Besselink, M.G.; Bakker, O.J.; Hofker, H.S.; Boermeester, M.A.; Dejong, C.H.; van Goor, H.; Schaapherder, A.F.; van Eijck, C.H.; Bollen, T.L.; et al. A step-up approach or open necrosectomy for necrotizing pancreatitis. N. Engl. J. Med. 2010, 362, 1491–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raraty, M.G.; Halloran, C.M.; Dodd, S.; Ghaneh, P.; Connor, S.; Evans, J.; Sutton, R.; Neoptolemos, J.P. Minimal access retroperitoneal pancreatic necrosectomy: Improvement in morbidity and mortality with a less invasive approach. Ann. Surg. 2010, 251, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Gomatos, I.P.; Halloran, C.M.; Ghaneh, P.; Raraty, M.G.; Polydoros, F.; Evans, J.C.; Smart, H.L.; Yagati-Satchidanand, R.; Garry, J.M.; Whelan, P.A.; et al. Outcomes From Minimal Access Retroperitoneal and Open Pancreatic Necrosectomy in 394 Patients With Necrotizing Pancreatitis. Ann. Surg. 2016, 263, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Bang, J.Y.; Arnoletti, J.P.; Holt, B.A.; Sutton, B.; Hasan, M.K.; Navaneethan, U.; Feranec, N.; Wilcox, C.M.; Tharian, B.; Hawes, R.H.; et al. An Endoscopic Transluminal Approach, Compared With Minimally Invasive Surgery, Reduces Complications and Costs for Patients With Necrotizing Pancreatitis. Gastroenterology 2019, 156, 1027–1040.e3. [Google Scholar] [CrossRef] [Green Version]
- Hollemans, R.A.; Bakker, O.J.; Boermeester, M.A.; Bollen, T.L.; Bosscha, K.; Bruno, M.J.; Buskens, E.; Dejong, C.H.; van Duijvendijk, P.; van Eijck, C.H.; et al. Superiority of Step-up Approach vs Open Necrosectomy in Long-term Follow-up of Patients With Necrotizing Pancreatitis. Gastroenterology 2019, 156, 1016–1026. [Google Scholar] [CrossRef] [Green Version]
- Van Brunschot, S.; Hollemans, R.A.; Bakker, O.J.; Besselink, M.G.; Baron, T.H.; Beger, H.G.; Boermeester, M.A.; Bollen, T.L.; Bruno, M.J.; Carter, R.; et al. Minimally invasive and endoscopic versus open necrosectomy for necrotising pancreatitis: A pooled analysis of individual data for 1980 patients. Gut 2018, 67, 697–706. [Google Scholar] [CrossRef]
- Van Grinsven, J.; van Dijk, S.M.; Dijkgraaf, M.G.; Boermeester, M.A.; Bollen, T.L.; Bruno, M.J.; van Brunschot, S.; Dejong, C.H.; van Eijck, C.H.; van Lienden, K.P.; et al. Postponed or immediate drainage of infected necrotizing pancreatitis (POINTER trial): Study protocol for a randomized controlled trial. Trials 2019, 20, 239. [Google Scholar] [CrossRef] [Green Version]
- Tenner, S.; Baillie, J.; DeWitt, J.; Vege, S.S. American College of Gastroenterology guideline: Management of acute pancreatitis. Am. J. Gastroenterol. 2013, 108, 1400–1416. [Google Scholar] [CrossRef]
- Yokoe, M.; Takada, T.; Mayumi, T.; Yoshida, M.; Isaji, S.; Wada, K.; Itoi, T.; Sata, N.; Gabata, T.; Igarashi, H.; et al. Japanese guidelines for the management of acute pancreatitis: Japanese Guidelines 2015. J. Hepatobiliary Pancreat. Sci. 2015, 22, 405–432. [Google Scholar] [CrossRef]
- Italian Association for the Study of the Pancreas (AISP); Pezzilli, R.; Zerbi, A.; Campra, D.; Capurso, G.; Golfieri, R.; Arcidiacono, P.G.; Billi, P.; Butturini, G.; Calculli, L.; et al. Consensus guidelines on severe acute pancreatitis. Dig. Liver Dis. 2015, 47, 532–543. [Google Scholar] [CrossRef]
- Schepers, N.J.; Bakker, O.J.; Besselink, M.G.; Ahmed Ali, U.; Bollen, T.L.; Gooszen, H.G.; Van Santvoort, H.C.; Bruno, M.J. Impact of characteristics of organ failure and infected necrosis on mortality in necrotising pancreatitis. Gut 2019, 68, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, A.; Xia, Q.; Liu, X.; Tian, B.; Mai, G.; Huang, Z.; Chen, G.; Tang, W.; Jin, X.; et al. The role of organ failure and infection in necrotizing pancreatitis: A prospective study. Ann. Surg. 2014, 259, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Liu, T.; de la Iglesia-Garcia, D.; Deng, L.; Jin, T.; Lan, L.; Zhu, P.; Hu, W.; Zhou, Z.; Singh, V.; et al. Duration of organ failure impacts mortality in acute pancreatitis. Gut 2020, 69, 604–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, L.; Guo, Q.; Zhang, Z.; Zhao, W.; Yang, X.; Lu, H.; Zhou, Z.; Zhou, X. Classification of Infected Necrotizing Pancreatitis for Surgery Within or Beyond 4 Weeks Using Machine Learning. Front. Bioeng. Biotechnol. 2020, 8, 541. [Google Scholar] [CrossRef]
- Mofidi, R.; Duff, M.D.; Madhavan, K.K.; Garden, O.J.; Parks, R.W. Identification of Severe Acute Pancreatitis Using an Artificial Neural Network. Surgery 2007, 141, 59–66. [Google Scholar] [CrossRef]
- Ding, N.; Guo, C.; Li, C.; Zhou, Y.; Chai, X. An Artificial Neural Networks Model for Early Predicting in-Hospital Mortality in Acute Pancreatitis in Mimic-Iii. Biomed. Res. Int. 2021, 202, 6638919. [Google Scholar] [CrossRef]
Characteristic | Total (n = 2846) | Intervention (n = 132) | Non-Intervention (n = 2714) | p |
---|---|---|---|---|
Demographics | ||||
Age, year (M[Q]) | 46 (38–58) | 48 (39–62) | 46 (38–57) | 0.125 |
Male (%) | 1822 (64.0) | 88 (66.7) | 1734 (63.9) | 0.578 |
CCI (M[Q]) | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0.260 |
Modified CCI, (M[Q]) | 0 (0–1) | 0 (0–2) | 0 (0–1) | 0.176 |
ASA (%) | 0.005 | |||
I | 2120 (74.5) | 108 (81.8) | 2012 (74.1) | |
II | 573 (20.1) | 13 (9.8) | 560 (20.6) | |
III | 153 (5.4) | 11 (9.3) | 142 (5.2) | |
From onset to admission, h (M[Q]) | 18 (10–27) | 24 (10–33) | 18 (10–27) | 0.001 |
Aetiology (%) | 0.063 | |||
Biliary | 1069 (37.6) | 65 (49.2) | 1004 (37.0) | |
Hypertriglyceridemia | 805 (28.3) | 33 (25.0) | 772 (28.4) | |
Alcoholics | 216 (7.6) | 8 (6.1) | 208 (7.7) | |
ERCP | 20 (0.7) | 0 (0.0) | 20 (0.7) | |
Drug-induced | 8 (0.3) | 1 (0.8) | 7 (0.3) | |
Others | 728 (25.6) | 25 (18.9) | 703 (25.9) | |
Laboratory tests | ||||
WBC, 109/L (M[Q]) | 12.9 (10.01–16.30) | 14.3 (10.43–17.35) | 12.87 (10–16.26) | 0.011 |
Neutrophils, 109/L (M[Q]) | 11.00 (8.10–14.34) | 12.66 (9.17–15.61) | 10.95 (8.05–14.28) | 0.001 |
Lymphocyte, 109/L (M[Q]) | 1.01 (0.70–1.49) | 0.96 (0.62–1.53) | 1.02 (0.70–1.49) | 0.352 |
Hematocrit, % (M[Q]) | 43 (39–46) | 45 (40–49) | 43 (39.3–46) | 0.003 |
Urea, mmol/L (M[Q]) | 5.00 (3.72–6.60) | 6.36 (4.79–8.61) | 4.92 (3.70–6.47) | <0.001 * |
Creatinine, μmmol/L (M[Q]) | 74 (62–89) | 87 (68–134) | 73 (62–88) | <0.001 * |
Albumin, g/L (M[Q]) | 42.0 (38.2–45.3) | 37.3 (32.3–43.2) | 42.1 (38.6–45.4) | <0.001 * |
CRP, mg/L (M[Q]) | 28.7 (3.31–142) | 158 (20–22) | 26 (2.7–136) | <0.001 * |
Clinical scoring systems | ||||
SOFA (M[Q]) | 0 (0–2) | 2 (0–3) | 0 (0–1) | <0.001 * |
BISAP (M[Q]) | 1 (0–2) | 2 (1–2) | 1 (0–2) | <0.001 * |
SIRS (M[Q]) | 1 (1–2) | 2 (1–3) | 1 (1–2) | <0.001 * |
APACHE II (M[Q]) | 4 (2–7) | 7 (4–11) | 4 (2–7) | <0.001 * |
RAC (%) | <0.001 * | |||
Mild | 1373 (48.2) | 4 (3.0) | 1369 (50.4) | |
Moderately severe | 888 (31.2) | 29 (22.0) | 859 (31.7) | |
Severe | 585 (20.6) | 99 (75.0) | 486 (17.9) | |
Worst MCTSI (M[Q]) | 2 (0–6) | 8 (6–10) | 2 (0–6) | <0.001 * |
From admission to worst MCTSI, day (M[Q]) | 0 (0–2) | 2 (1–9) | 0 (0–1) | <0.001 * |
Clinical outcomes | ||||
Local complication | ||||
APFC (%) | 1121 (39.4) | 98 (74.2) | 1023 (37.7) | <0.001 * |
Necrosis (%) | 416 (14.6) | 84 (63.6) | 332 (12.2) | <0.001 * |
Single organ failure | ||||
Pulmonary failure (%) | <0.001 * | |||
TOF | 417 (14.7) | 8 (6.1) | 409 (15.1) | |
POF | 578 (20.3) | 99 (75.0) | 479 (17.6) | |
Onset of pulmonary failure, day (M[Q]) | 0 (0–1) | 1 (1–2) | 0 (0–1) | <0.001 * |
Duration of pulmonary failure, day (M[Q]) | 0 (0–1) | 12.5 (1–24) | 0 (0–1) | <0.001 * |
Circulatory failure (%) | <0.001 * | |||
TOF | 42 (1.5) | 9 (6.8) | 33 (1.2) | |
POF | 111 (3.9) | 42 (31.8) | 69 (2.5) | |
Onset of circulatory failure, day (M[Q]) | 0 (0–0) | 0 (0–3) | 0 (0–0) | <0.001 * |
Duration of circulatory failure, day (M[Q]) | 0 (0–0) | 0 (0–3) | 0 (0–0) | <0.001 * |
Renal failure (%) | <0.001 * | |||
TOF | 57 (2.0) | 15 (11.4) | 42 (1.5) | |
POF | 104 (3.7) | 29 (22.0) | 75 (2.8) | |
Onset of renal failure, day (M[Q]) | 0 (0–0) | 0 (0–1) | 0 (0–0) | <0.001 * |
Duration of renal failure, day (M[Q]) | 0 (0–0) | 0 (0–1) | 0 (0–0) | <0.001 * |
Pleural effusion (%) | 268 (9.4) | 15 (11.4) | 253 (9.3) | 0.528 |
IPN (%) | 85 (3.0) | 81 (61.4) | 4 (0.1) | <0.001 * |
Extrapancreatic infection (%) | <0.001 * | |||
Bacteremia | 75 (2.6) | 24 (18.2) | 51 (1.9) | |
Lung and others | 147 (5.2) | 31 (23.5) | 116 (4.3) |
Intervention | Death in Intervention | Death in Non-Intervention | |||
---|---|---|---|---|---|
Variable | Mean Decrease Gini | Variable | Mean Decrease Gini | Variable | Mean Decrease Gini |
Duration of pulmonary failure | 23.78 | Duration of renal failure | 2.54 | Renal failure | 10.99 |
Neutrophils | 10.18 | Duration of circulatory failure | 2.52 | Circulatory failure | 10.00 |
Albumin | 9.91 | Onset of circulatory failure | 2.35 | Duration of circulatory failure | 8.62 |
Lymphocytes | 9.06 | Circulatory failure | 2.21 | Onset of circulatory failure | 7.70 |
Creatine | 8.36 | Renal failure | 1.60 | Duration of renal failure | 6.37 |
Age | 8.27 | Creatinine | 1.59 | Onset of renal failure | 5.46 |
Hematocrit | 8.09 | Duration of pulmonary failure | 1.38 | APACHE II | 4.72 |
Onset of circulatory failure | 7.95 | Urea | 1.19 | Duration of pulmonary failure | 4.45 |
APACHE II | 6.70 | APACHE II | 1.19 | Creatinine | 4.09 |
Duration of circulatory failure | 5.48 | CRP | 0.92 | WBC | 3.80 |
Accuracy | AUC | Sensitivity | Specificity | Likelihood Ratio (+) | Likelihood Ratio (−) | |
---|---|---|---|---|---|---|
Predicting Intervention in AP (n = 2846) | ||||||
Validation (n = 569) | 0.96 | 0.90 | 0.74 | 0.97 | 22.3 | 0.27 |
Test (n = 569) | 0.97 | 0.91 | 0.76 | 0.97 | 25.5 | 0.35 |
Predicting Death in Intervention (n = 132) | ||||||
Validation (n = 26) | 0.84 | 0.89 | 0.74 | 0.86 | 6.14 | 0.30 |
Test (n = 26) | 0.82 | 0.89 | 0.82 | 0.82 | 4.80 | 0.28 |
Predicting Death in Non-Intervention (n = 2714) | ||||||
Validation (n = 543) | 0.98 | 0.98 | 0.76 | 0.99 | 69.6 | 0.25 |
Test (n = 543) | 0.98 | 0.99 | 0.77 | 0.99 | 71.9 | 0.31 |
Sensitivity | Specificity | Likelihood Ratio (+) | Post-Test Probability (%) | |
---|---|---|---|---|
Intervention (4.64% pre-test probability) | ||||
ML model | 0.76 | 0.97 | 25.5 | 55.4 |
SOFA | 0.08 | 0.98 | 5.0 | 19.6 |
BISAP | 0.08 | 0.98 | 4.3 | 17.3 |
SIRS | 0.06 | 0.98 | 3.2 | 13.5 |
APACHE II | 0.08 | 0.98 | 5.4 | 20.8 |
Worst MCTSI | 0.13 | 0.99 | 12.7 | 38.2 |
Death in intervention (21.97% pre-test probability) | ||||
ML model | 0.82 | 0.82 | 4.8 | 57.5 |
SOFA | 0.69 | 0.78 | 3.7 | 51.0 |
BISAP | 0.52 | 0.96 | 4.4 | 55.3 |
SIRS | 0.44 | 0.84 | 2.3 | 39.3 |
APACHE II | 0.69 | 0.92 | 6.4 | 64.3 |
Worst MCTSI | 0.48 | 0.69 | 2.0 | 36.0 |
Death in non-intervention (3.39% pre-test probability) | ||||
ML model | 0.77 | 0.99 | 71.9 | 71.6 |
SOFA | 0.11 | 0.99 | 21.5 | 43.0 |
BISAP | 0.14 | 0.99 | 32.5 | 53.3 |
SIRS | 0.07 | 0.99 | 12.7 | 30.8 |
APACHE II | 0.15 | 0.99 | 30.2 | 51.4 |
Worst MCTSI | 0.03 | 0.96 | 1.0 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, N.; Lan, L.; Luo, J.; Zhu, P.; Ward, T.R.W.; Szatmary, P.; Sutton, R.; Huang, W.; Windsor, J.A.; Zhou, X.; et al. Predicting the Need for Therapeutic Intervention and Mortality in Acute Pancreatitis: A Two-Center International Study Using Machine Learning. J. Pers. Med. 2022, 12, 616. https://doi.org/10.3390/jpm12040616
Shi N, Lan L, Luo J, Zhu P, Ward TRW, Szatmary P, Sutton R, Huang W, Windsor JA, Zhou X, et al. Predicting the Need for Therapeutic Intervention and Mortality in Acute Pancreatitis: A Two-Center International Study Using Machine Learning. Journal of Personalized Medicine. 2022; 12(4):616. https://doi.org/10.3390/jpm12040616
Chicago/Turabian StyleShi, Na, Lan Lan, Jiawei Luo, Ping Zhu, Thomas R. W. Ward, Peter Szatmary, Robert Sutton, Wei Huang, John A. Windsor, Xiaobo Zhou, and et al. 2022. "Predicting the Need for Therapeutic Intervention and Mortality in Acute Pancreatitis: A Two-Center International Study Using Machine Learning" Journal of Personalized Medicine 12, no. 4: 616. https://doi.org/10.3390/jpm12040616
APA StyleShi, N., Lan, L., Luo, J., Zhu, P., Ward, T. R. W., Szatmary, P., Sutton, R., Huang, W., Windsor, J. A., Zhou, X., & Xia, Q. (2022). Predicting the Need for Therapeutic Intervention and Mortality in Acute Pancreatitis: A Two-Center International Study Using Machine Learning. Journal of Personalized Medicine, 12(4), 616. https://doi.org/10.3390/jpm12040616