Interrelationship of Gut Microbiota, Obesity, Body Composition and Insulin Resistance in Asians with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Sample and Clinical Data Collection
2.3. Stool Sample Collection and Microbial DNA Extraction
2.4. Real-Time Quantitative Polymerase Chain Reaction (qPCR)
2.5. Measurement of Body Composition
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Entire Cohort
Entire Cohort (n = 154) | HOMR-IR <Median & BMI < 25 (n = 35) | HOMR-IR <Median & BMI ≥ 25 (n = 40) | HOMR-IR ≥Median & BMI < 25 (n = 22) | HOMR-IR≥Median & BMI ≥ 25 (n = 57) | p-Value | |
---|---|---|---|---|---|---|
Age, year | 63.1 ± 9.7 | 64.9 ± 9.7 | 65.3 ± 9.0 | 66.3 ± 6.8 | 59.1 ± 10.0 | 0.001 |
Sex (male), % | 58.4 | 74.3 | 65.0 | 40.9 | 50.9 | 0.04 |
Smoke, % | 30.5 | 37.1 | 30.0 | 27.3 | 28.1 | 0.80 |
Alcohol, % | 22.7 | 37.1 | 20.0 | 22.7 | 15.8 | 0.11 |
Hypertension, % | 62.3 | 36.1 | 70.0 | 54.5 | 75.4 | 0.001 |
Gout, % | 10.7 | 5.6 | 12.5 | 13.6 | 11.5 | 0.71 |
Hyperlipidemia, % | 83.0 | 80.6 | 82.5 | 72.7 | 88.5 | 0.37 |
DM duration, year | 9.2 ± 8.4 | 9.2 ± 9.3 | 8.3 ± 9.7 | 9.5 ± 6.1 | 9.5 ± 7.7 | 0.90 |
Body Mass Index, kg/m2 | 26.7 ± 3.9 | 22.9 ± 1.5 | 27.8 ± 2.3 | 23.1 ± 1.3 | 29.6 ± 3.5 | <0.001 |
Diet habit, % | 0.45 | |||||
Protein more than fiber | 18.1 | 14.3 | 15.8 | 9.1 | 25.9 | |
Fiber more than protein | 26.2 | 34.3 | 21.1 | 31.8 | 22.2 | |
Fiber equal to protein | 55.7 | 51.4 | 63.2 | 59.1 | 51.9 | |
Medication | ||||||
Sulfonylurea (yes vs. no) | 45.9 | 44.4 | 30.0 | 45.5 | 57.4 | 0.06 |
DPP4 inhibitor (yes vs. no) | 73.0 | 58.3 | 75.0 | 81.8 | 77.0 | 0.15 |
Metformin (yes vs. no) | 85.5 | 91.7 | 75.0 | 95.5 | 85.5 | 0.09 |
Actos (yes vs. no) | 3.8 | 5.6 | 7.5 | 0.0 | 1.6 | 0.32 |
Insulin (yes vs. no) | 19.5 | 2.8 | 5.0 | 31.8 | 34.4 | <0.001 |
Statin (yes vs. no) | 61.6 | 55.6 | 67.5 | 50.0 | 65.6 | 0.42 |
Body composition | ||||||
Lean mass index, kg/m2 | 12.0 ± 2.1 | 11.9 ± 1.9 | 12.2 ± 2.0 | 10.8 ± 1.8 | 12.3 ± 2.2 | 0.07 |
Fat mass index, kg/m2 | 14.4 ± 4.1 | 10.4 ± 2.2 | 15.3 ± 3.0 | 12.2 ± 1.9 | 17.5 ± 3.8 | <0.001 |
Laboratory parameters | ||||||
HOMA-IR | 2.5 (1.6, 4.5) | 1.6 (1.1, 2.0) | 1.6 (1.2, 2.2) | 3.6 (2.9, 5.7) | 5.2 (3.3, 8.7) | <0.001 |
Cr, mg/dL | 1.0 ± 0.5 | 1.0 ± 0.4 | 1.1 ± 0.6 | 0.9 ± 0.3 | 1.1 ± 0.5 | 0.27 |
Hemoglobin, g/dL | 13.5 ± 1.8 | 13.5 ± 1.8 | 13.0 ± 1.9 | 13.4 ± 1.6 | 13.9 ± 1.7 | 0.12 |
Albumin, g/dL | 4.6± 0.2 | 4.6 ± 0.2 | 4.6 ± 0.2 | 4.6 ± 0.2 | 4.5 ± 0.2 | 0.11 |
Uric acid, mg/dL | 6.0 ± 1.6 | 5.8 ± 1.7 | 6.3 ± 1.6 | 5.8 ± 1.4 | 6.0 ± 1.6 | 0.42 |
Cholesterol, mg/dL | 166.5 ± 42.6 | 157.7 ± 24.8 | 153.6 ± 39.1 | 165.4 ± 41.0 | 181.5 ± 50.0 | 0.006 |
Triglyceride, mg/dL | 129 (90, 184) | 99 (68, 129) | 112 (86, 164) | 122 (85, 186) | 162 (129, 258) | <0.001 |
HDL, mg/dL | 44.5 ± 22.5 | 45.8 ± 11.0 | 45.8 ± 27.9 | 42.1 ± 12.2 | 43.7 ± 26.5 | 0.02 |
LDL, mg/dL | 92.5 ± 32.5 | 89.8 ± 23.1 | 86.4 ± 34.4 | 94.8 ± 32.0 | 97.5 ± 36.1 | 0.43 |
Glycated hemoglobin, % | 7.0 (6.4, 8.0) | 6.8 (6.2, 7.1) | 6.5 (6.1, 7.0) | 7.2 (6.8, 8.6) | 7.8 (6.9, 9.0) | <0.001 |
3.2. The Distribution of Gut Microbiota in T2D Patients Stratified by HOMA-IR and BMI
3.3. Gut Microbiota and the Severity of HOMA-IR
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diseases, G.B.D.; Injuries, C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.R.F. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Simmons, R.K.; Alberti, K.G.; Gale, E.A.; Colagiuri, S.; Tuomilehto, J.; Qiao, Q.; Ramachandran, A.; Tajima, N.; Brajkovich Mirchov, I.; Ben-Nakhi, A.; et al. The metabolic syndrome: Useful concept or clinical tool? Report of a WHO Expert Consultation. Diabetologia 2010, 53, 600–605. [Google Scholar] [CrossRef]
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, Y.; Kurose, S.; Shinno, H.; Cao Thu, H.; Takao, N.; Tsutsumi, H.; Kimura, Y. Importance of Lean Muscle Maintenance to Improve Insulin Resistance by Body Weight Reduction in Female Patients with Obesity. Diabetes Metab. J. 2016, 40, 147–153. [Google Scholar] [CrossRef]
- Abu-Shanab, A.; Quigley, E.M. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 691–701. [Google Scholar] [CrossRef]
- Allin, K.H.; Nielsen, T.; Pedersen, O. Mechanisms in endocrinology: Gut microbiota in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 2015, 172, R167–R177. [Google Scholar] [CrossRef] [Green Version]
- Iruzubieta, P.; Medina, J.M.; Fernandez-Lopez, R.; Crespo, J.; de la Cruz, F. A Role for Gut Microbiome Fermentative Pathways in Fatty Liver Disease Progression. J. Clin. Med. 2020, 9, 1369. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Vigliotti, C.; Witjes, J.; Le, P.; Holleboom, A.G.; Verheij, J.; Nieuwdorp, M.; Clement, K. Gut microbiota and human NAFLD: Disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 279–297. [Google Scholar] [CrossRef]
- Tsai, H.J.; Tsai, Y.C.; Hung, W.W.; Hung, W.C.; Chang, C.C.; Dai, C.Y. Gut Microbiota and Non-Alcoholic Fatty Liver Disease Severity in Type 2 Diabetes Patients. J. Pers. Med. 2021, 11, 238. [Google Scholar] [CrossRef]
- Saad, M.J.; Santos, A.; Prada, P.O. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology 2016, 31, 283–293. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Miquel, S.; Martin, R.; Rossi, O.; Bermudez-Humaran, L.G.; Chatel, J.M.; Sokol, H.; Thomas, M.; Wells, J.M.; Langella, P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013, 16, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Cantabrana, C.; Delgado, S.; Ruiz, L.; Ruas-Madiedo, P.; Sanchez, B.; Margolles, A. Bifidobacteria and Their Health-Promoting Effects. Microbiol. Spectr. 2017, 5, 5.3.21. [Google Scholar] [CrossRef] [PubMed]
- Le, K.A.; Li, Y.; Xu, X.; Yang, W.; Liu, T.; Zhao, X.; Tang, Y.G.; Cai, D.; Go, V.L.; Pandol, S.; et al. Alterations in fecal Lactobacillus and Bifidobacterium species in type 2 diabetic patients in Southern China population. Front. Physiol. 2012, 3, 496. [Google Scholar] [CrossRef] [Green Version]
- Miura, K.; Ohnishi, H. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 7381–7391. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, N.; Wang, X.; Chi, Y.; Zhang, Y.; Qiu, X.; Hu, Y.; Li, J.; Liu, Y. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 2015, 5, 8096. [Google Scholar] [CrossRef]
- WHO. Setting Committee of the WHO Western Pacific Region II. In The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; WHO: Sydney, Australia, 2000. [Google Scholar]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Tsai, H.J.; Tsai, W.C.; Hung, W.C.; Hung, W.W.; Chang, C.C.; Dai, C.Y.; Tsai, Y.C. Gut Microbiota and Subclinical Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus. Nutrients 2021, 13, 2679. [Google Scholar] [CrossRef] [PubMed]
- Wabel, P.; Chamney, P.; Moissl, U.; Jirka, T. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 2009, 27, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Wieskotten, S.; Heinke, S.; Wabel, P.; Moissl, U.; Becker, J.; Pirlich, M.; Keymling, M.; Isermann, R. Bioimpedance-based identification of malnutrition using fuzzy logic. Physiol. Meas. 2008, 29, 639–654. [Google Scholar] [CrossRef] [PubMed]
- Chamney, P.W.; Wabel, P.; Moissl, U.M.; Muller, M.J.; Bosy-Westphal, A.; Korth, O.; Fuller, N.J. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 2007, 85, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Ou, Z.; Deng, L.; Lu, Z.; Wu, F.; Liu, W.; Huang, D.; Peng, Y. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J. Funct. Foods 2017, 33, 194–201. [Google Scholar] [CrossRef]
- Ottman, N.; Geerlings, S.Y.; Aalvink, S.; de Vos, W.M.; Belzer, C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pr. Res. Clin. Gastroenterol. 2017, 31, 637–642. [Google Scholar] [CrossRef] [Green Version]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.C.; Zhang, X.W. Akkermansia muciniphila: A promising target for the therapy of metabolic syndrome and related diseases. Chin. J. Nat. Med. 2019, 17, 835–841. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Cheng, L.; Buch, H.; Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 2019, 12, 1109–1125. [Google Scholar] [CrossRef] [Green Version]
- Abuqwider, J.N.; Mauriello, G.; Altamimi, M. Akkermansia muciniphila, a New Generation of Beneficial Microbiota in Modulating Obesity: A Systematic Review. Microorganisms 2021, 9, 1098. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; de Vos, W.M. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front. Microbiol. 2017, 8, 1765. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordoba-Rodriguez, D.P.; Iglesia, I.; Gomez-Bruton, A.; Rodriguez, G.; Casajus, J.A.; Morales-Devia, H.; Moreno, L.A. Fat-free/lean body mass in children with insulin resistance or metabolic syndrome: A systematic review and meta-analysis. BMC Pediatr. 2022, 22, 58. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ma, F.; Lou, H.; Liu, Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health 2013, 13, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosomworth, N.J. Normal-weight central obesity: Unique hazard of the toxic waist. Can. Fam. Physician 2019, 65, 399–408. [Google Scholar]
Entire Cohort (n = 154) | HOMR-IR <Median & BMI < 25 (n = 35) | HOMR-IR <Median & BMI ≥ 25 (n = 40) | HOMR-IR ≥Median & BMI < 25 (n = 22) | HOMR-IR≥Median & BMI ≥ 25 (n = 57) | p-Value | |
---|---|---|---|---|---|---|
Firmicutes, copies × 109/g | 4.4 (2.3, 7.2) | 4.7 (2.6, 8.8) | 5.0 (2.3, 6.6) | 3.7 (2.6, 8.5) | 3.8 (1.9, 7.2) | 0.69 |
Bacteroidetes, copies × 109/g | 8.9 (3.8, 17.2) | 14.6 (4.6, 19.9) | 9.0 (3.3, 17.2) | 8.8 (4.5, 18.4) | 8.3 (3.1, 13.6) | 0.33 |
Firmicutes/Bacteroidetes | 0.5 (0.2, 1.1) | 0.5 (0.3, 1.1) | 0.6 (0.2, 1.2) | 0.5 (0.1, 1.0) | 0.5 (0.3, 1.3) | 0.92 |
C. leptum group, copies × 108/g | 5.9 (2.2, 11.6) | 4.8 (1.9, 12.2) | 6.9 (2.2, 11.8) | 6.4 (3.0, 16.5) | 5.0 (1.7, 9.4) | 0.54 |
F. prausnitzii, copies × 107/g | 11.0 (2.0, 28.3) | 11.6 (1.7, 28.6) | 1.5 (3.9, 28.5) | 9.0 (1.3, 30.6) | 7.5 (1.7, 26.9) | 0.67 |
Bacteroides, copies × 109/g | 1.6 (0.8, 3.6) | 1.8 (1.1, 2.8) | 2.3 (0.8, 4.4) | 1.6 (0.8, 4.2) | 1.4 (0.9, 3.6) | 0.89 |
Bifidobacterium, copies × 106/g | 3.6 (0.3, 13.8) | 4.3 (0.4, 15.4) | 4.2 (0.1, 10.4) | 5.5 (0.8, 31.9) | 1.7 (0.2, 12.1) | 0.37 |
A. muciniphila, copies × 104/g | 0.8 (0.2, 410.0) | 3.4 (0.4, 767.2) | 2.0 (0.1, 132.0) | 1.3 (0.4, 29.0) | 0.4 (0.1, 22.1) | 0.01 |
E. coli, copies × 108/g | 1.2 (0.3, 5.9) | 1.1 (0.4, 4.5) | 1.2 (0.1, 9.7) | 1.8 (0.8, 22.3) | 1.2 (0.3, 5.9) | 0.28 |
High HOMA-IR | Crude OR (95%Cl) | p-Value | Adjusted OR (95%Cl) (Forward) | p-Value |
---|---|---|---|---|
Clinical data | ||||
Age, year | 0.96 (0.92, 0.99) | 0.01 | - | - |
Sex (male vs. female) | 0.41 (0.21, 0.79) | 0.008 | 0.29 (0.12–0.70) | 0.006 |
Body mass index, kg/m2 | 1.19 (1.07, 1.30) | 0.001 | 1.12 (0.99–1.26) | 0.05 |
Smoke (yes vs. no) | 0.77 (0.38, 1.53) | 0.46 | - | - |
Alcohol (yes vs. no) | 0.55 (0.25, 1.19) | 0.13 | - | - |
Diet habit, % | ||||
Fiber more than protein | 0.88 (0.42, 1.83) | 0.73 | - | - |
Protein more than fiber | 1.50 (0.65, 3.50) | 0.34 | - | - |
Protein equal fiber | 0.86 (0.45, 1.65) | 0.66 | - | - |
Sulfonylurea (yes vs. no) | 2.03 (1.07–3.83) | 0.03 | - | - |
DPP4 inhibitor (yes vs. no) | 1.77 (0.87–3.59) | 0.11 | - | - |
Metformin (yes vs. no) | 1.51 (0.62–3.67) | 0.36 | - | - |
Actos (yes vs. no) | 0.17 (0.02–1.51) | 0.11 | - | - |
Insulin (yes vs. no) | 12.39 (3.58–45.85) | <0.001 | 4.67 (1.11–19.59) | 0.04 |
Statin (yes vs. no) | 0.98 (0.52–1.86) | 0.95 | - | - |
Laboratory data | ||||
Creatinine, mg/dL | 0.83 (0.45, 1.52) | 0.55 | - | - |
Hemoglobin, g/dL | 1.16 (0.97, 1.39) | 0.09 | - | - |
Albumin, g/dL | 0.35 (0.09, 1.38) | 0.13 | - | - |
Uric acid, mg/dL | 0.92 (0.75, 1.11) | 0.39 | - | - |
Cholesterol, mg/dL | 1.01 (1.01, 1.02) | 0.003 | - | - |
Log (Triglyceride) | 1.01 (1.01, 1.02) | <0.001 | 1.01 (1.01–1.02) | 0.001 |
HDL, mg/dL | 0.99 (0.98, 1.01) | 0.49 | - | - |
LDL, mg/dL | 1.01 (0.99–1.01) | 0.10 | - | - |
Glycated hemoglobin, % | 2.66 (1.79, 3.95) | <0.001 | 2.22 (1.36–3.63) | 0.001 |
Lean mass index, kg/m2 | 1.14 (0.80, 1.61) | 0.45 | ||
Fat mass index, kg/m2 | 1.43 (0.90, 2.27) | 0.12 | ||
Microbiome | ||||
Log (Firmicutes/g) | 0.81 (0.36, 1.85) | 0.62 | - | - |
Log (Bacteroidetes/g) | 0.99 (0.59, 1.66) | 0.97 | - | - |
Log (Firmicutes/Bacteriodetes) | 0.99 (0.96, 1.02) | 0.59 | - | - |
Log (C. leptum group/g) | 1.01 (0.57, 1.78) | 0.96 | - | - |
Log (Bacteroides/g) | 1.03 (0.62, 1.72) | 0.90 | - | - |
Log (Bifidobacterium/g) | 0.99 (0.77, 1.26) | 0.95 | - | - |
Log (F. prausnitzii/g) | 0.84 (0.62, 1.14) | 0.27 | - | - |
Log (A. muciniphila/g) | 0.83 (0.72, 0.97) | 0.02 | 0.80 (0.66, 0.99) | 0.04 |
Log (E. coli/g) | 1.32 (0.95, 1.85) | 0.09 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pai, C.-S.; Wang, C.-Y.; Hung, W.-W.; Hung, W.-C.; Tsai, H.-J.; Chang, C.-C.; Hwang, S.-J.; Dai, C.-Y.; Ho, W.-Y.; Tsai, Y.-C. Interrelationship of Gut Microbiota, Obesity, Body Composition and Insulin Resistance in Asians with Type 2 Diabetes Mellitus. J. Pers. Med. 2022, 12, 617. https://doi.org/10.3390/jpm12040617
Pai C-S, Wang C-Y, Hung W-W, Hung W-C, Tsai H-J, Chang C-C, Hwang S-J, Dai C-Y, Ho W-Y, Tsai Y-C. Interrelationship of Gut Microbiota, Obesity, Body Composition and Insulin Resistance in Asians with Type 2 Diabetes Mellitus. Journal of Personalized Medicine. 2022; 12(4):617. https://doi.org/10.3390/jpm12040617
Chicago/Turabian StylePai, Che-Sheng, Cheng-Yuan Wang, Wei-Wen Hung, Wei-Chun Hung, Hui-Ju Tsai, Chen-Chia Chang, Shang-Jyh Hwang, Chia-Yen Dai, Wen-Yu Ho, and Yi-Chun Tsai. 2022. "Interrelationship of Gut Microbiota, Obesity, Body Composition and Insulin Resistance in Asians with Type 2 Diabetes Mellitus" Journal of Personalized Medicine 12, no. 4: 617. https://doi.org/10.3390/jpm12040617
APA StylePai, C. -S., Wang, C. -Y., Hung, W. -W., Hung, W. -C., Tsai, H. -J., Chang, C. -C., Hwang, S. -J., Dai, C. -Y., Ho, W. -Y., & Tsai, Y. -C. (2022). Interrelationship of Gut Microbiota, Obesity, Body Composition and Insulin Resistance in Asians with Type 2 Diabetes Mellitus. Journal of Personalized Medicine, 12(4), 617. https://doi.org/10.3390/jpm12040617