Clinical Evaluation of Oral Midazolam Containing Cyclodextrin in Pediatric Magnetic Resonance: A Retrospective Cohort Study
Abstract
:1. Introduction
- -
- Psychomotor agitation or delirium, typically occurring within 45 min from emergence of anesthesia and often resolving spontaneously in about 15–30 min [7];
- -
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kain, Z.N.; Mayes, L.C.; O’Connor, T.Z.; Cicchetti, D.V. Preoperative Anxiety in Children. Arch. Pediatr. Adolesc. Med. 1996, 150, 1238–1245. [Google Scholar] [CrossRef]
- Rosembaum, A.; Kain, Z.N.; Larsson, P.; Lonnqvist, P.A.; Wolf, A.R. The place of premedication in pediatric practice. Pediatr. Anesth. 2009, 19, 817–828. [Google Scholar]
- MacLaren, J.; Kain, Z.N. Behavioral Analysis of Children’s Response to Induction of Anesthesia. Anesth. Analg. 2009, 109, 1434–1440. [Google Scholar] [CrossRef]
- Caumo, W.; Broenstrub, J.C.; Fialho, L.; Petry, S.; Brathwait, O.; Bandeira, D.; Loguercio, A.; Ferreira, M. Risk factors for postoperative anxiety in children. Acta Anaesthesiol. Scand. 2000, 44, 782–789. [Google Scholar] [CrossRef]
- Fortier, M.; Martin, S.; Chorney, J.; Mayes, L.; Kain, Z. Preoperative anxiety in adolescents undergoing surgery: A pilot study. Paediatric Anaesth. 2011, 21, 969–973. [Google Scholar]
- Kain, Z.N.; Mayes, L.C.; Caldwell-Andrews, A.A.; Karas, D.E.; McClain, B.C. Preoperative anxiety, postoperative pain, and behavioral recovery in young children undergoing surgery. Pediatrics 2006, 118, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Kain, Z.N.; Caldwell-Andrews, A.A.; Maranets, I.; McClain, B. Preoperative Anxiety and Emergence Delirium and Postoperative Maladaptive Behaviors. Anesth. Analg. 2004, 99, 1648–1654. [Google Scholar] [CrossRef]
- Lee, S.J.; Sung, T.Y. Emergence agitation: Current knowledge and unresolved questions. Korean J. Anesthesiol. 2020, 73, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Kain, Z.N.; Mayes, L.C.; Wang, S.M.; Hofstadter, M.B. Postoperative behavioral outcomes in children: Effects of sedative premedication. Anesthesiology 1999, 90, 758–765. [Google Scholar] [CrossRef]
- Agbayani, C.G.; Fortier, M.A.; Kain, Z.N. Non-pharmacological methods of reducing perioperative anxiety in children. BJA Educ. 2020, 20, 424–430. [Google Scholar] [CrossRef]
- Birnie, K.A.; Noel, M.; Chambers, C.T.; Uman, L.S.; Parker, J.A. Psychological interventions for needle-related procedural pain and distress in children and adolescents. Cochrane Database Syst. Rev. 2018, 10, CD005179. [Google Scholar] [CrossRef] [PubMed]
- Cuzzocrea, F.; Gugliandolo, M.C.; Larcan, R. A psychological preoperative program: Effects on anxiety and cooperative behaviors. Pediatr. Anesth. 2013, 23, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Brosius, K.K.; Bannister, C.F. Oral midazolam premedication in preadolescents and adolescents. Anesth. Analg. 2002, 94, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Conway, A.; Rolley, J.; Sutherland, J.R. Midazolam for sedation before procedures. Cochrane Database Syst. Rev. 2016, 5, CD009491. [Google Scholar] [CrossRef] [PubMed]
- Brosius, K.K.; Bannister, C.F. Midazolam premedication in children: A comparison of two oral dosage formulations on sedation score and plasma midazolam levels. Anesth. Analg. 2003, 96, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Cram, A.; Woertz, K. Playing hide and seek with poorly tasting paediatric medicines: Do not forget the excipients. Adv. Drug Deliv. Rev. 2014, 73, 14–33. [Google Scholar] [CrossRef] [PubMed]
- Berrin, I.; Ozgul, B.; Haluk, B. Effect of drinks that are added as flavoring in oral midazolam premedication on sedation success. Pediatr. Anesth. 2008, 18, 494–500. [Google Scholar]
- Marcon, F.; Mathiron, D.; Pilard, S.; Lemaire-Hurtel, A.S. Development and formulation of a 0.2% oral solution of midazolam containing gamma-cyclodextrin. Int. J. Pharm. 2009, 379, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Baum, V.C.; Bax, R.; Heon, D. Pediatric drug regulation: International perspectives. Pediatr. Anesth. 2019, 29, 572–582. [Google Scholar] [CrossRef]
- Altavilla, A.; Giannuzzi, V.; Lupo, M. Ethical, Legal and Regulatory Issues of Paediatric Translational Research. Call for an Adequate Model of Governance. Eur. J. Health Law 2020, 27, 213–231. [Google Scholar] [CrossRef]
- Carrier, R.L.; Miller, L.A.; Ahmed, I. The utility of cyclodextrins for enhancing oral bioavailability. J. Control. Release 2007, 123, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Mathiron, D.; Marcon, F.; Dubaele, J.-M. Benefits of methylated cyclodextrins in the development of midazolam pharmaceutical formulations. J. Pharm. Sci. 2013, 102, 2102–2111. [Google Scholar] [CrossRef] [PubMed]
- Zadrazil, M.; Marhofer, P.; Schmid, W. ADV6209 for premedication in Pediatric Anesthesia: A Double-Blinded, Randomized Controlled Trial. Pharmaceutics 2022, 14, 2062. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Díaz, D.; Valdivielso Serna, A.; Garrido Palomo, R.; Arias-Arias, Á.; Tárraga López, P.J.; Martínez Gutiérrez, A. Validation of the Ramsay scale for invasive procedures under deep sedation in pediatrics. Paediatr. Anaesth. 2021, 31, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Kain, Z.N.; Caldwell-Andrews, A.A.; Maranets, I.; Nelson, W.; Mayes, L.C. Predicting which child-parent pair will benefit from parental presence during induction of anesthesia: A decision-making approach. Anesth. Analg. 2006, 102, 81–84. [Google Scholar] [CrossRef]
- Sikich, N.; Lerman, J. Development and psychometric evaluation of the pediatric anesthesia emergence delirium scale. Anesthesiology 2004, 100, 1138–1145. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, B.N.; Kain, Z.N.; Kaplan, S.H.; Stevenson, R.S.; Mayes, L.C.; Guadarrama, J.; Fortier, M.A. Revisiting a measure of child postoperative recovery: Development of the Post Hospitalization Behavior Questionnaire for Ambulatory Surgery. Paediatr. Anaesth. 2015, 25, 738–745. [Google Scholar] [CrossRef]
- Schulte-Uentrop, L.; Goepfert, M.S. Anesthesia or sedation for MRI in children. Curr. Opin. Anaesthesiol. 2010, 23, 513–517. [Google Scholar] [CrossRef]
- Guitted, C.; Manso, M.; Burton, I. A Two-way Randomized Cross-over Pharmacokinetic and Pharmacodynamic Study of an Innovative Oral Solution of Midazolam (ADV6209). Pharm. Res. 2017, 34, 1840–1848. [Google Scholar] [CrossRef]
- Marcon, F.; Guitted, C.; Manso, M.A. Population Pharmacokinetic evaluation of ADV6209, an innovative oral solution of midazolam containing cyclodextrin. Eur. J. Pharm. Sci. 2018, 114, 46–54. [Google Scholar] [CrossRef]
- Payne, K.; Mattheyse, F.J.; Liebenberg, D. The pharmacokinetics of midazolam in paediatric patients. Eur. J. Clin. Pharmacol. 1989, 37, 267–272. [Google Scholar] [CrossRef]
- Reed, M.D.; Rodarte, A.; Blumer, J.L. The single-dose pharmacokinetics of midazolam and its primary metabolic in pediatric patients after oral and intravenous administration. J. Clin. Pharmacol. 2001, 41, 1359–1369. [Google Scholar] [CrossRef]
- Schwagmeier, R.; Alincic, S.; Striebel, H.W. Midazolam pharmacokinetics following intravenous and buccal administration. Br. J. Clin. Pharmacol. 1998, 46, 203–206. [Google Scholar] [CrossRef]
- Thummel, K.E.; O’Shea, D.; Paine, M.F. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin. Pharmacol. Ther. 1996, 59, 491–502. [Google Scholar] [CrossRef]
- Guittet, C.; Manso, M.; Casagrande, L. Abstract PR240: Evaluation of the Efficacy of An Innovative Oral Formulation of Midazolam for Moderate Sedation in Pediatric Patients. Anesth. Analg. 2016, 123, 313–314. [Google Scholar] [CrossRef]
- Nishina, K.; Mikawa, K.; Uesugi, T.; Obara, H. Oral clonidine premedication reduces minimum alveolar concentration of sevoflurane for laryngeal mask airway insertion in children. Pediatr. Anesth. 2006, 16, 834–839. [Google Scholar]
- Savla, J.R.; Ghai, B.; Bansal, D.; Wig, J. Effect of intranasal dexmedetomidine or oral midazolam premedication on sevoflurane EC50 for successful laryngeal mask airway placement in children: A randomized, double-blind, placebo-controlled trial. Pediatr. Anesth. 2014, 24, 433–439. [Google Scholar] [CrossRef]
- Bryan, Y.F.; Hoke, L.K.; Taghon, T.A.; Nick, T.G.; Wang, Y.; Kennedy, S.M.; Furstein, J.S.; Kurth, C.D. A randomized trial comparing sevoflurane and propofol in children undergoing MRI scans. Pediatr. Anesth. 2009, 19, 672–681. [Google Scholar]
- Costi, D.; Cyna, A.M.; Ahmed, S.; Stephens, K.; Stricklan, P.; Ellwood, J.; Larsson, J.N.; Chooi, C.; Burgoyne, L.L.; Middleton, P. Effects of sevoflurane versus other general anesthesia on emergence agitation in children. Cochrane Database Syst. Rev. 2014, 9, CD007084. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shahwan, I. Effect of propofol on emergence behavior in children after sevoflurane general anesthesia. Pediatr. Anesth. 2008, 18, 55–59. [Google Scholar]
- Sbaraglia, F.; Cuomo, C.; Della Sala, F.; Festa, R.; Garra, R.; Maiellare, F.; Micci, D.M.; Posa, D.; Pizzo, C.M.; Pusateri, A.; et al. State of the Art in Pediatric Anesthesia: A Narrative Review about the Use of Preoperative Time. J. Pers. Med. 2024, 14, 182. [Google Scholar] [CrossRef]
Characteristic | Midazolam/γ-Cyclodextrin Group (N = 50) | Control Group (N = 50) | p Value |
---|---|---|---|
Age | 4 (2, 5) | 4 (2, 6) | 0.628 |
Age 1–4 years | 34 (68) | 29 (58) | 0.300 |
Age 5–8 years | 12 (24) | 16 (32) | 0.372 |
Age 9–10 years | 4 (8) | 5 (10) | 0.999 |
Gender | 0.105 | ||
Female | 25 (50) | 17 (34) | |
Male | 25 (50) | 33 (66) | |
Weight, kg | 15 (12, 22) | 15 (11, 23) | † 0.909 |
ASA status 1 | 18 (36) | 13 (26) | 0.279 |
ASA status 2 | 31 (62) | 32 (64) | 0.835 |
ASA status 3 | 1 (2) | 5 (10) | 0.204 |
Mild intellectual disability | 3 (6) | 3 (6) | >0.999 |
Moderate intellectual disability | 2 (4) | 3 (6) | >0.999 |
Previous hospitalizations | 14 (28) | 23 (46) | 0.623 |
Indication to MRI | |||
Brain or spinal cord benign or malignant tumors | 9 (18) | 8 (16) | 0.790 |
Extracranial malignant tumors | 1 (2) | 3 (6) | 0.617 |
Cerebral venous thrombosis | 0 (0) | 2 (4) | 0.494 |
Craniosynostosis | 3 (6) | 2 (4) | >0.999 |
Epilepsy | 3 (6) | 6 (12) | 0.487 |
Spina bifida | 2 (4) | 3 (6) | >0.999 |
Autism spectrum disorder | 3 (6) | 5 (10) | 0.715 |
Polymalformative syndrome | 10 (20) | 6 (12) | 0.275 |
Growth restriction | 16 (32) | 9 (18) | 0.105 |
Preterm birth | 3 (6) | 6 (12) | 0.487 |
Midazolam/γ-Cyclodextrin Group (N = 50) | Control Group (N = 50) | p Value | |
---|---|---|---|
Mask accepted readily | 29 (58) | 11 (22) | <0.001 |
Mask accepted with mild resistance | 11 (22) | 14 (28) | 0.4888 |
Mask accepted with moderate struggle | 5 (10) | 9 (18) | 0.249 |
Need to be restrained to mask positioning | 5 (10) | 16 (32) | 0.006 |
Midazolam/γ-Cyclodextrin Group (N = 50) | |
---|---|
Dose accepted readily | 31 (62) |
Dose accepted with facial grimaces | 15 (30) |
Dose accepted with vocal disapproval | 2 (4) |
Dose completely rejected or spat out | 2 (4) |
Midazolam/γ-Cyclodextrin Group (N = 50) | |
---|---|
Awake; agitated or restless or both | 3 (6) |
Awake; cooperative, oriented, and tranquil | 37 (74) |
Awake but responds to commands only | 6 (12) |
Asleep; brisk response to light glabellar tap or loud auditory stimulus | 4 (8) |
Asleep; sluggish response to light glabellar tap or loud auditory stimulus | 0 (0) |
Asleep; no response to glabellar tap or loud auditory stimulus | 0 (0) |
Midazolam/γ-Cyclodextrin Group (N = 50) | Control Group (N = 50) | p Value | |
---|---|---|---|
Unafraid and cooperative or asleep | 38 (76) | 12 (24) | <0.001 |
Slightly afraid/crying, quiet with reassurance | 7 (14) | 15 (30) | 0.534 |
Moderately afraid and crying, not quiet with reassurance | 5 (10) | 15 (30) | 0.012 |
Crying, need for restraint | 0 (0) | 9 (18) | <0.001 |
Characteristic | Midazolam/γ-Cyclodextrin Group (N = 50) | Control Group (N = 50) | p Value |
---|---|---|---|
Duration of MRI, min | 19 (17, 23) | 23 (17, 31) | 0.053 |
Heart rate at induction of inhalational anesthesia, bpm | 102 (94, 112) | 100 (89, 110) | 0.120 |
SpO2 at induction of inhalational anesthesia | 98 (98, 99) | 98 (98, 99) | 0.470 |
SpO2 at arousal from inhalational anesthesia | 98 (97, 99) | 98 (98, 99) | 0.315 |
Highest EtCO2 during inhalational anesthesia | 41 (38, 42) | 39 (35, 41) | 0.048 |
Percentage of sevoflurane for eye closure at induction of inhalational anesthesia | 2 (2, 3) | 8 (6, 8) | <0.001 |
Percentage of sevoflurane for maintenance of inhalational anesthesia | 2 (2, 2) | 2.5 (2, 2.5) | <0.001 |
Time to eye closure at induction of inhalational anesthesia | 70 (90, 110) | 90 (80, 170) | 0.037 |
Children with emergence delirium at emergence from inhalational anesthesia | 23 (46) | 33 (66) | † 0.043 |
PAED score in children with ED | 12 (11, 13) | 12 (11, 14) | 0.634 |
Children with ED 15 min after emergence from inhalational anesthesia | 1 (2) | 6 (12) | † 0.111 |
Children with ED at discharge from PACU | 0 (0) | 0 (0) | † >0.999 |
Parents ‘reported new onset of maladaptive behaviours at 7 days from the procedure evaluated with the PHBQ-AS | 0 (0) | 0 (0) | † >0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garra, R.; Piersanti, A.; Del Vicario, M.; Pizzo, C.M.; Festa, R.; Tosi, F.; Sbaraglia, F.; Spano, M.M.; Della Sala, F.; Rossi, M. Clinical Evaluation of Oral Midazolam Containing Cyclodextrin in Pediatric Magnetic Resonance: A Retrospective Cohort Study. J. Pers. Med. 2024, 14, 472. https://doi.org/10.3390/jpm14050472
Garra R, Piersanti A, Del Vicario M, Pizzo CM, Festa R, Tosi F, Sbaraglia F, Spano MM, Della Sala F, Rossi M. Clinical Evaluation of Oral Midazolam Containing Cyclodextrin in Pediatric Magnetic Resonance: A Retrospective Cohort Study. Journal of Personalized Medicine. 2024; 14(5):472. https://doi.org/10.3390/jpm14050472
Chicago/Turabian StyleGarra, Rossella, Alessandra Piersanti, Miryam Del Vicario, Cecilia Maria Pizzo, Rossano Festa, Federica Tosi, Fabio Sbaraglia, Michelangelo Mario Spano, Filomena Della Sala, and Marco Rossi. 2024. "Clinical Evaluation of Oral Midazolam Containing Cyclodextrin in Pediatric Magnetic Resonance: A Retrospective Cohort Study" Journal of Personalized Medicine 14, no. 5: 472. https://doi.org/10.3390/jpm14050472
APA StyleGarra, R., Piersanti, A., Del Vicario, M., Pizzo, C. M., Festa, R., Tosi, F., Sbaraglia, F., Spano, M. M., Della Sala, F., & Rossi, M. (2024). Clinical Evaluation of Oral Midazolam Containing Cyclodextrin in Pediatric Magnetic Resonance: A Retrospective Cohort Study. Journal of Personalized Medicine, 14(5), 472. https://doi.org/10.3390/jpm14050472