Influence of Heart Rate and Change in Wavefront Direction through Pacing on Conduction Velocity and Voltage Amplitude in a Porcine Model: A High-Density Mapping Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anesthesia and Vascular Access
2.2. Thoracotomy
2.3. Electroanatomical Mapping and Pacing
2.4. Post-Processing in Rhythmia
2.5. Calculation of Local CV and VA
2.6. Statistical Analysis
3. Results
3.1. Influence of Heart Rate on CV and VA
3.2. Influence of Pacing (Change in Wavefront Direction) on CV and VA
3.2.1. Conduction Velocity
Overall Analysis
Absolute Local Changes
Regional Analysis
Comparison of Overall and Regional Analysis
3.2.2. Voltage Amplitude
Overall Analysis
Absolute Local Changes
Regional Analysis
Comparison of Overall and Regional Analysis
4. Discussion
4.1. Electroanatomical Mapping of All Heart Chambers
4.2. Heart Rate Influence on CV
4.3. Heart Rate Influence on VA
4.4. Effect of Pacing Location on Conduction Velocity
4.5. Effect of Pacing Location on Voltage Amplitude
4.6. Regional Differences in Electrophysiological Responses
4.7. Limitations
4.8. Comparison with Research Results of Diseased Human Hearts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kircher, S.; Arya, A.; Altmann, D.; Rolf, S.; Bollmann, A.; Sommer, P.; Dagres, N.; Richter, S.; Breithardt, O.-A.; Dinov, B.; et al. Individually Tailored vs. Standardized Substrate Modification during Radiofrequency Catheter Ablation for Atrial Fibrillation: A Randomized Study. EP Eur. 2018, 20, 1766–1775. [Google Scholar] [CrossRef]
- Jaïs, P.; Maury, P.; Khairy, P.; Sacher, F.; Nault, I.; Komatsu, Y.; Hocini, M.; Forclaz, A.; Jadidi, A.S.; Weerasooryia, R.; et al. Elimination of Local Abnormal Ventricular Activities: A New End Point for Substrate Modification in Patients With Scar-Related Ventricular Tachycardia. Circulation 2012, 125, 2184–2196. [Google Scholar] [CrossRef] [PubMed]
- Honarbakhsh, S.; Schilling, R.J.; Orini, M.; Providencia, R.; Finlay, M.; Keating, E.; Lambiase, P.D.; Chow, A.; Earley, M.J.; Sporton, S.; et al. Left Atrial Scarring and Conduction Velocity Dynamics: Rate Dependent Conduction Slowing Predicts Sites of Localized Reentrant Atrial Tachycardias. Int. J. Cardiol. 2019, 278, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Blandino, A.; Bianchi, F.; Grossi, S.; Biondi-Zoccai, G.; Conte, M.R.; Gaido, L.; Gaita, F.; Scaglione, M.; Rametta, F. Left Atrial Substrate Modification Targeting Low-Voltage Areas for Catheter Ablation of Atrial Fibrillation: A Systematic Review and Meta-Analysis. Pacing Clin. Electrophysiol. 2017, 40, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Rolf, S.; Kircher, S.; Arya, A.; Eitel, C.; Sommer, P.; Richter, S.; Gaspar, T.; Bollmann, A.; Altmann, D.; Piedra, C.; et al. Tailored Atrial Substrate Modification Based on Low-Voltage Areas in Catheter Ablation of Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2014, 7, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Nademanee, K.; McKenzie, J.; Kosar, E.; Schwab, M.; Sunsaneewitayakul, B.; Vasavakul, T.; Khunnawat, C.; Ngarmukos, T. A New Approach for Catheter Ablation of Atrial Fibrillation: Mapping of the Electrophysiologic Substrate. J. Am. Coll. Cardiol. 2004, 43, 2044–2053. [Google Scholar] [CrossRef]
- Anter, E.; Neuzil, P.; Reddy, V.Y.; Petru, J.; Park, K.-M.; Sroubek, J.; Leshem, E.; Zimetbaum, P.J.; Buxton, A.E.; Kleber, A.G.; et al. Ablation of Reentry-Vulnerable Zones Determined by Left Ventricular Activation From Multiple Directions: A Novel Approach for Ventricular Tachycardia Ablation: A Multicenter Study (PHYSIO-VT). Circ. Arrhythm. Electrophysiol. 2020, 13, e008625. [Google Scholar] [CrossRef] [PubMed]
- Chierchia, G.-B.; Sieira, J.; Vanderper, A.; Osorio, T.G.; Bala, G.; Stroker, E.; Brugada, P.; Al Houssari, M.; Cecchini, F.; Mojica, J.; et al. Substrate Mapping of the Left Atrium in Persistent Atrial Fibrillation: Spatial Correlation of Localized Complex Conduction Patterns in Global Charge-Density Maps to Low-Voltage Areas in 3D Contact Bipolar Voltage Maps. J. Interv. Card. Electrophysiol. 2021, 62, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Jadidi, A.S.; Duncan, E.; Miyazaki, S.; Lellouche, N.; Shah, A.J.; Forclaz, A.; Nault, I.; Wright, M.; Rivard, L.; Liu, X.; et al. Functional Nature of Electrogram Fractionation Demonstrated by Left Atrial High-Density Mapping. Circ. Arrhythm. Electrophysiol. 2012, 5, 32–42. [Google Scholar] [CrossRef]
- Martin, C.A.; Martin, R.; Maury, P.; Meyer, C.; Wong, T.; Dallet, C.; Shi, R.; Gajendragadkar, P.; Takigawa, M.; Frontera, A.; et al. Effect of Activation Wavefront on Electrogram Characteristics During Ventricular Tachycardia Ablation. Circ. Arrhythm. Electrophysiol. 2019, 12, e007293. [Google Scholar] [CrossRef] [PubMed]
- Nguyên, U.C.; Potse, M.; Vernooy, K.; Mafi-Rad, M.; Heijman, J.; Caputo, M.L.; Conte, G.; Regoli, F.; Krause, R.; Moccetti, T.; et al. A Left Bundle Branch Block Activation Sequence and Ventricular Pacing Influence Voltage Amplitudes: An in Vivo and in Silico Study. EP Eur. 2018, 20, iii77–iii86. [Google Scholar] [CrossRef] [PubMed]
- Tung, R.; Josephson, M.E.; Bradfield, J.S.; Shivkumar, K. Directional Influences of Ventricular Activation on Myocardial Scar Characterization: Voltage Mapping With Multiple Wavefronts During Ventricular Tachycardia Ablation. Circ. Arrhythm. Electrophysiol. 2016, 9, e004155. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.E.; Hersh, L.T.; Scher, A.M. Influence of Cardiac Fiber Orientation on Wavefront Voltage, Conduction Velocity, and Tissue Resistivity in the Dog. Circ. Res. 1979, 44, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Spach, M.S.; Miller, W.T.; Geselowitz, D.B.; Barr, R.C.; Kootsey, J.M.; Johnson, E.A. The Discontinuous Nature of Propagation in Normal Canine Cardiac Muscle. Evidence for Recurrent Discontinuities of Intracellular Resistance That Affect the Membrane Currents. Circ. Res. 1981, 48, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Bian, W.; Tung, L. Structure-Related Initiation of Reentry by Rapid Pacing in Monolayers of Cardiac Cells. Circ. Res. 2006, 98, e29–e38. [Google Scholar] [CrossRef] [PubMed]
- Kondratyev, A.A.; Ponard, J.G.C.; Munteanu, A.; Rohr, S.; Kucera, J.P. Dynamic Changes of Cardiac Conduction during Rapid Pacing. Am. J. Physiol.-Heart Circ. Physiol. 2007, 292, H1796–H1811. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.M.; Luik, A.; Schilling, C.; Seemann, G.; Krueger, M.W.; Lorenz, C.; Schmitt, C.; Dossel, O. Conduction Velocity Restitution of the Human Atrium—An Efficient Measurement Protocol for Clinical Electrophysiological Studies. IEEE Trans. Biomed. Eng. 2011, 58, 2648–2655. [Google Scholar] [CrossRef] [PubMed]
- Mantziari, L.; Butcher, C.; Kontogeorgis, A.; Panikker, S.; Roy, K.; Markides, V.; Wong, T. Utility of a Novel Rapid High-Resolution Mapping System in the Catheter Ablation of Arrhythmias. JACC Clin. Electrophysiol. 2015, 1, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, T.I.; Lewalter, T.; Fischer, J.; Reiser, J.; Werner, J.; Baumgartner, C.; Gleirscher, L.; Hoppmann, P.; Kupatt, C.; Tiemann, K.; et al. Electroanatomical Conduction Characteristics of Pig Myocardial Tissue Derived from High-Density Mapping. J. Clin. Med. 2023, 12, 5598. [Google Scholar] [CrossRef] [PubMed]
- Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware, Inc.: Clifton Park, NY, USA, 2015; ISBN 978-1-930934-30-6. [Google Scholar]
- Hansen, C.; Johnson, C.R. ParaView: An End-User Tool for Large Data Visualization, Visualization Handbook; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 978-0-12-387582-2. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. Available online: https://github.com/lme4/lme4/ (accessed on 15 July 2022).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest: Tests in Linear Mixed Effects Models. Available online: https://github.com/runehaubo/lmerTestR (accessed on 15 July 2022).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. Available online: https://github.com/rvlenth/emmeans (accessed on 15 July 2022).
- Iso, K.; Watanabe, I.; Kogawa, R.; Okumura, Y.; Nagashima, K.; Takahashi, K.; Watanabe, R.; Arai, M.; Ohkubo, K.; Nakai, T.; et al. Wavefront Direction and Cycle Length Affect Left Atrial Electrogram Amplitude. J. Arrhythm. 2017, 33, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Glashan, C.A.; Tofig, B.J.; Tao, Q.; Blom, S.A.; Jongbloed, M.R.M.; Nielsen, J.C.; Lukac, P.; Kristiansen, S.B.; Zeppenfeld, K. Multisize Electrodes for Substrate Identification in Ischemic Cardiomyopathy. JACC Clin. Electrophysiol. 2019, 5, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Nairn, D.; Lehrmann, H.; Müller-Edenborn, B.; Schuler, S.; Arentz, T.; Dössel, O.; Jadidi, A.; Loewe, A. Comparison of Unipolar and Bipolar Voltage Mapping for Localization of Left Atrial Arrhythmogenic Substrate in Patients With Atrial Fibrillation. Front. Physiol. 2020, 11, 575846. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.X.; Stiles, M.K.; John, B.; Brooks, A.G.; Lau, D.H.; Dimitri, H.; Kuklik, P.; Shipp, N.J.; Sullivan, T.; Sanders, P. Direction-Dependent Conduction in Lone Atrial Fibrillation. Heart Rhythm. 2010, 7, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.X.; John, B.; Brooks, A.G.; Chandy, S.T.; Kuklik, P.; Lau, D.H.; Sullivan, T.; Roberts-Thomson, K.C.; Sanders, P. Direction-Dependent Conduction Abnormalities in the Chronically Stretched Atria. Europace 2012, 14, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Amorós-Figueras, G.; Jorge, E.; Alonso-Martin, C.; Traver, D.; Ballesta, M.; Bragós, R.; Rosell-Ferrer, J.; Cinca, J. Endocardial Infarct Scar Recognition by Myocardial Electrical Impedance Is Not Influenced by Changes in Cardiac Activation Sequence. Heart Rhythm. 2018, 15, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Brunckhorst, C.B.; Delacretaz, E.; Soejima, K.; Maisel, W.H.; Friedman, P.L.; Stevenson, W.G. Impact of Changing Activation Sequence on Bipolar Electrogram Amplitude for Voltage Mapping of Left Ventricular Infarcts Causing Ventricular Tachycardia. J. Interv. Card. Electrophysiol. 2005, 12, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Seifert, M.; Erk, J.; Heiderfazel, S.; Georgi, C.; Keil, A.; Butter, C. Impact of Mapping Points in High-Density Mapping of the Left Atrium. J. Interv. Card. Electrophysiol. 2020, 58, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Camacho, P.; Fan, H.; Liu, Z.; He, J.-Q. Large Mammalian Animal Models of Heart Disease. J. Cardiovasc. Dev. Dis. 2016, 3, 30. [Google Scholar] [CrossRef]
- Milani-Nejad, N.; Janssen, P.M.L. Small and Large Animal Models in Cardiac Contraction Research: Advantages and Disadvantages. Pharmacol. Ther. 2014, 141, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Anter, E.; Josephson, M.E. Bipolar voltage amplitude: What does it really mean? Heart Rhythm. 2016, 13, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Maesen, B.; Zeemering, S.; Kuklik, P.; van Hunnik, A.; Lankveld, T.A.; Bidar, E.; Verheule, S.; Nijs, J.; Maessen, J.; et al. Indices of bipolar complex fractionated atrial electrograms correlate poorly with each other and atrial fibrillation substrate complexity. Heart Rhythm. 2015, 12, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
Sinus Rhythm/Pacing Location | ||||||
---|---|---|---|---|---|---|
Sinus Rhythm | RA | LA | RV | LV | ||
Mapping location | RA | 115, 115, 120, 134, 130, 95, 145 | 145epi, 145epi, 145epi, 120endo, 146endo | 145epi, 145epi, 145epi | ||
LA | 86, 90, 145, 171 | 145endo, 171endo | ||||
RV | 104, 95, 135, 150, 110, 132 | 145endo, 145epi, 146endo | 145epi | 145endo, 170endo, 146endo | ||
LV | 122, 130, 120, 86 | 145epi, 145epi, 145epi | 145epi | 145epi, 145 |
Mapping Location | Pacing Location | Mean of Absolute Differences (m/s) | IQR of Abs. Differences | Absolute Difference Ratio | IQR of Relative Change |
---|---|---|---|---|---|
RA | RA | 0.61 | 0.62 | 0.72 | 115% |
RA | LA | 0.74 | 0.82 | 0.88 | 190% |
LA | RA | 0.73 | 0.74 | 0.68 | 112% |
RV | RA | 0.66 | 0.79 | 0.91 | 161% |
RV | LV | 0.62 | 0.73 | 1.76 | 251% |
LV | RA | 0.76 | 0.67 | 0.84 | 88% |
LV | RV | 0.63 | 0.60 | 0.84 | 161% |
LV | LV | 0.75 | 0.80 | 0.84 | 167% |
Mapping Location | Pacing Location | Mean of Absolute Differences (mV) | IQR of Abs. Differences | Absolute Difference Ratio | IQR of Relative Change |
---|---|---|---|---|---|
RA | RA | 1.43 | 1.58 | 0.47 | 72% |
RA | LA | 1.34 | 1.36 | 0.41 | 64% |
LA | RA | 1.94 | 2.01 | 0.45 | 79% |
RV | RA | 2.09 | 2.36 | 0.25 | 41% |
RV | LV | 3.24 | 2.99 | 0.32 | 54% |
LV | RA | 6.76 | 8.01 | 0.51 | 56% |
LV | RV | 5.23 | 5.98 | 0.33 | 33% |
LV | LV | 4.51 | 5.07 | 0.34 | 45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilhelm, T.I.; Lewalter, T.; Reiser, J.; Werner, J.; Keil, A.; Oesterlein, T.; Gleirscher, L.; Tiemann, K.; Jilek, C. Influence of Heart Rate and Change in Wavefront Direction through Pacing on Conduction Velocity and Voltage Amplitude in a Porcine Model: A High-Density Mapping Study. J. Pers. Med. 2024, 14, 473. https://doi.org/10.3390/jpm14050473
Wilhelm TI, Lewalter T, Reiser J, Werner J, Keil A, Oesterlein T, Gleirscher L, Tiemann K, Jilek C. Influence of Heart Rate and Change in Wavefront Direction through Pacing on Conduction Velocity and Voltage Amplitude in a Porcine Model: A High-Density Mapping Study. Journal of Personalized Medicine. 2024; 14(5):473. https://doi.org/10.3390/jpm14050473
Chicago/Turabian StyleWilhelm, Theresa Isabelle, Thorsten Lewalter, Judith Reiser, Julia Werner, Andreas Keil, Tobias Oesterlein, Lukas Gleirscher, Klaus Tiemann, and Clemens Jilek. 2024. "Influence of Heart Rate and Change in Wavefront Direction through Pacing on Conduction Velocity and Voltage Amplitude in a Porcine Model: A High-Density Mapping Study" Journal of Personalized Medicine 14, no. 5: 473. https://doi.org/10.3390/jpm14050473
APA StyleWilhelm, T. I., Lewalter, T., Reiser, J., Werner, J., Keil, A., Oesterlein, T., Gleirscher, L., Tiemann, K., & Jilek, C. (2024). Influence of Heart Rate and Change in Wavefront Direction through Pacing on Conduction Velocity and Voltage Amplitude in a Porcine Model: A High-Density Mapping Study. Journal of Personalized Medicine, 14(5), 473. https://doi.org/10.3390/jpm14050473